Skip to main content
IUCrData logoLink to IUCrData
. 2020 Apr 9;5(Pt 4):x200422. doi: 10.1107/S2414314620004228

Crystal structure of the Al8Cr5-type inter­metallic Al7.85Cr5.16

Xu Geng a, Bin Wen a, Changzeng Fan a,*
Editor: S Bernèsb
PMCID: PMC9462207  PMID: 36338303

An aluminium-deficient γ-brass phase, Al7.85Cr5.16, was synthesized by high-pressure sinter­ing and its crystal structure determined.

Keywords: crystal structure, high-pressure sinter­ing, inter­metallic, γ-brass phase

Abstract

An aluminium-deficient Al8Cr5-type inter­metallic with formula Al7.85Cr5.16 (octa­aluminium penta­chromium) was uncovered when high-pressure sinter­ing of a mixture with composition Al11Cr4 was carried out. Structure analysis reveals that there are three co-occupied positions with refined occupancy factors for Al atoms being 0.958, 0.772 and 1/2. The present phase is confirmed to be isotypic with the previously reported rhombohedral Al8Cr5 ordered phase [Bradley & Lu (1937). Z. Kristallogr. 96, 20–37] and structurally closely related to the disordered phases of rhombohedral Al16Cr9.5 and cubic Al8Cr5. graphic file with name x-05-x200422-scheme1-3D1.jpg

Structure description

The γ2-Al8Cr5 phase (hereafter named as the γ2 phase) was determined to have a γ-brass-like structure by powder diffraction photographs. This phase was found in slowly cooled chromium–aluminium alloys (Bradley & Lu, 1937). Although the same clusters of 26 atoms are found in the γ2 phase, the atomic arrangement in the γ2 phase is much more complex than that of the γ-brass, and results in a rhombohedral rather than cubic symmetry (Bradley & Lu, 1937). A high-temperature γ1 phase was also reported to be stable between 1350 and 980°C at the same composition (Bradley & Lu, 1937) and its structure has been redetermined by single-crystal methods for a sample sintered at 1000°C for 6 h and re-annealed at 1215°C for 287 h (Brandon et al., 1977). As a result of the close agreement of Brandon’s analysis with that of Bradley & Lu, it was suggested that either the structure of γ1 and γ2 are very similar, or that in the former case the crystals decomposed to γ2 on quenching. In another work, the high-temperature γ1 phase prepared by splat cooling was reported to be of the same type as Cu5Zn8, by using power diffraction data combined with electron diffraction patterns (Braun et al., 1992). When comparing the three aforementioned models (see Table S1 of the supporting information), it was found that there are one vacancy position and three co-occupied positions in the Brandon model, while all atomic sites are fully occupied in Bradley & Lu’s model. For the convenience of comparison, the cubic Braun model was transformed to the rhombohedral description, and it was found that there are two co-occupied positions. In the study reported herein, the crystal structure of a third type of Al8Cr5 phase, with the refined chemical composition Al7.85Cr5.16 and hereafter named as γ2′-Al8Cr5 phase, was determined by single-crystal X-ray diffraction measurements.

Fig. 1 shows the crystal structure of γ2′-Al8Cr5 based on the standardized crystal data in the primitive trigonal setting (see Tables S2 and S3 of the supporting information). There are 78 atoms in the unit cell (a = b = 12.8717 Å, c = 7.8408 Å, α = β = 90°, γ = 120°), whose volume is three times that of the refined model (trigonal cell, rhombohedral axes, see Table 1). For simplicity, only two distorted icosa­hedra centred at Wyckoff sites 3a (Cr4, with coordinates 0, 0, z) are illustrated in Fig. 1, and the environment of the Cr4 atoms is shown in Fig. 2. The twelve vertices include three Al atoms (Al5), three Cr atoms (Cr6) along with six co-occupied Al/Cr sites (Al1/Cr1 and Al3/Cr3), for which the refined site occupancies converged to 0.772 (4) and 0.958 (4) for Al atoms Al1 and Al3.

Figure 1.

Figure 1

The crystal structure of Al7.85Cr5.16. The icosa­hedra centred on Cr4 are emphasized.

Table 1. Experimental details.

Crystal data
Chemical formula Al7.85Cr5.16
M r 479.72
Crystal system, space group Trigonal, R3m:R
Temperature (K) 296
a (Å) 7.8777 (5), 7.8777 (5)
α (°) 109.566 (2)
V3) 375.01 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 8.05
Crystal size (mm) 0.13 × 0.06 × 0.05
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2015)
T min, T max 0.496, 0.523
No. of measured, independent and observed [I > 2σ(I)] reflections 7330, 576, 547
R int 0.090
(sin θ/λ)max−1) 0.634
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.068, 0.178, 1.16
No. of reflections 576
No. of parameters 53
No. of restraints 37
Δρmax, Δρmin (e Å−3) 1.02, −1.27
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.3 (2)

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2017/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2017) and publCIF (Westrip, 2010).

Figure 2.

Figure 2

The environment of the Cr4 atom. Displacement ellipsoids are given at the 99% probability level. [Symmetry codes: (i) y, z, x; (v) y, z, x.]

The principle building blocks in the structure can also be represented by four inter­penetrating distorted icosa­hedra centred at one Cr4 and three Al3/Cr3 atomic sites, as shown in Fig. 3, similarly to the building blocks of the I-cell (space group I Inline graphic 3m) of the γ-brass phase (Pankova et al., 2013). According to the topological analysis of the structure model with the ‘nanocluster’ method available in the ToposPro package (Akhmetshina & Blatov, 2017), these one Cr4 and three Al3/Cr3 sites form an inner tetra­hedron (IT), followed by an outer tetra­hedron (OT), an octa­hedron (OH), whose vertices are projected onto the edges of the outer tetra­hedron, and finally a distorted cubocta­hedron (CO) with vertices located above the edges of the octa­hedron, as illustrated in Fig. 4.

Figure 3.

Figure 3

26-atom γ-brass-type cluster represented as four inter­penetrating distorted icosa­hedra centred at one Cr4 and three Al3/Cr3 sites.

Figure 4.

Figure 4

26-atom γ-brass-type cluster represented as a sequence of polyhedral shells.

The present rhombohedral γ2′-Al8Cr5 phase is thus confirmed to be isotypic to the previously reported ordered Al8Cr5 phase (Bradley & Lu, 1937), and closely related to the the disordered rhombohedral Al16Cr9.5 phase (Brandon et al., 1977) and the disordered cubic Al8Cr5 phase (Braun et al., 1992).

Synthesis and crystallization

The high-purity elements Al (indicated purity 99.8%, 0.588 g) and Cr (indicated purity 99.95%, 0.539 g) were mixed uniformly in the stoichiometric ratio 11:4 and thoroughly ground in an agate mortar. The blended powders were then placed in a cemented carbide grinding mould of 5 mm diameter, and pressed into a tablet at about 4 MPa for 5 min. A cylindrical block (5 mm in diameter and 3 mm in height) was obtained without deformations or cracks. Details of the high-pressure sinter­ing experiment using a six-anvil high-temperature high-pressure apparatus can be found elsewhere (Liu & Fan, 2018). The samples were pressurized up to 5 GPa and heated to 1400°C for 30 minutes, slowly cooled to 660°C and held at this temperature for 2 h, and then rapidly cooled to room temperature by turning off the furnace power. Subsequently, a small amount of powder sample was uniformly placed on the inner wall of a quartz tube, annealed in a vacuum environment, heated to 300°C for 24 h, and then cooled within the furnace. A piece of a single crystal (0.13 × 0.06 × 0.05 mm3) was selected and mounted on a glass fibre for single-crystal X-ray diffraction measurements.

Refinement

Table 1 shows the details of data collection and structural refinement. Three sites are co-occupied by Al and Cr atoms (Al1/Cr1, Al2/Cr2, Al3/Cr3). Site occupancies were refined, and then fixed to their as-found values, 0.772, 0.5 and 0.958 for Al1, Al2 and Al3, respectively, assuming full occupancy for each site. Atoms sharing the same site were constrained to have the same coordinates and displacement parameters. Moreover, disordered atoms were restrained to be isotropic, with standard deviations of 0.01 Å2 (Sheldrick, 2015b ). The maximum and minimum residual electron densities in the last difference map are located 1.68 Å from atom Cr3 and 0.36 Å from atom Cr4, respectively. The crystal was considered as a sample twinned by inversion (Parsons et al., 2013), and the batch scale factor converged to x = 0.3 (2).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620004228/bh4049sup1.cif

x-05-x200422-sup1.cif (243.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620004228/bh4049Isup2.hkl

x-05-x200422-Isup2.hkl (48.3KB, hkl)

supporting information. DOI: 10.1107/S2414314620004228/bh4049sup3.pdf

x-05-x200422-sup3.pdf (214KB, pdf)

CCDC reference: 1993113

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

Al7.85Cr5.16 Dx = 4.248 Mg m3
Mr = 479.72 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3m:R Cell parameters from 2208 reflections
a = 7.8777 (5) Å θ = 3.2–26.3°
α = 109.566 (2)° µ = 8.05 mm1
V = 375.01 (7) Å3 T = 296 K
Z = 2 Graininess, metallic silver
F(000) = 451 0.13 × 0.06 × 0.05 mm

Data collection

Bruker D8 Venture Photon 100 CMOS diffractometer 547 reflections with I > 2σ(I)
φ and ω scans Rint = 0.090
Absorption correction: multi-scan (SADABS; Bruker, 2015) θmax = 26.8°, θmin = 3.2°
Tmin = 0.496, Tmax = 0.523 h = −9→9
7330 measured reflections k = −9→9
576 independent reflections l = −9→9

Refinement

Refinement on F2 37 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0652P)2 + 19.1482P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.068 (Δ/σ)max < 0.001
wR(F2) = 0.178 Δρmax = 1.02 e Å3
S = 1.16 Δρmin = −1.27 e Å3
576 reflections Absolute structure: Refined as an inversion twin.
53 parameters Absolute structure parameter: 0.3 (2)

Special details

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Al1 0.2998 (14) 0.2998 (14) 0.0928 (15) 0.0108 (19) 0.772
Cr1 0.2998 (14) 0.2998 (14) 0.0928 (15) 0.0108 (19) 0.228
Al2 1.3096 (13) 0.6646 (11) 0.6646 (11) 0.0117 (19) 0.5
Cr2 1.3096 (13) 0.6646 (11) 0.6646 (11) 0.0117 (19) 0.5
Al3 0.9238 (18) 0.6488 (14) 0.6488 (14) 0.012 (2) 0.958
Cr3 0.9238 (18) 0.6488 (14) 0.6488 (14) 0.012 (2) 0.042
Cr4 −0.0434 (12) −0.0434 (12) −0.0434 (12) 0.006 (2)
Cr5 0.6391 (8) 0.3060 (8) 0.3060 (8) 0.0028 (10)
Cr6 1.3001 (10) 0.9464 (8) 0.9464 (8) 0.0108 (14)
Cr7 0.5198 (13) 0.5198 (13) 0.5198 (13) 0.008 (2)
Al4 0.5500 (17) −0.0607 (15) 0.2804 (16) 0.018 (2)
Al5 0.0366 (18) 0.0366 (18) −0.313 (2) 0.015 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Al1 0.007 (3) 0.007 (3) 0.019 (5) 0.005 (3) 0.006 (3) 0.006 (3)
Cr1 0.007 (3) 0.007 (3) 0.019 (5) 0.005 (3) 0.006 (3) 0.006 (3)
Al2 0.008 (4) 0.008 (3) 0.008 (3) 0.000 (3) 0.000 (3) 0.001 (3)
Cr2 0.008 (4) 0.008 (3) 0.008 (3) 0.000 (3) 0.000 (3) 0.001 (3)
Al3 0.013 (5) 0.010 (3) 0.010 (3) 0.007 (3) 0.007 (3) −0.001 (3)
Cr3 0.013 (5) 0.010 (3) 0.010 (3) 0.007 (3) 0.007 (3) −0.001 (3)
Cr4 0.007 (4) 0.007 (4) 0.007 (4) 0.005 (4) 0.005 (4) 0.005 (4)
Cr5 0.001 (2) 0.0034 (18) 0.0034 (18) 0.0001 (17) 0.0001 (17) 0.002 (2)
Cr6 0.016 (3) 0.008 (3) 0.008 (3) 0.006 (3) 0.006 (3) 0.003 (3)
Cr7 0.006 (3) 0.006 (3) 0.006 (3) 0.000 (4) 0.000 (4) 0.000 (4)
Al4 0.024 (5) 0.021 (4) 0.031 (5) 0.016 (3) 0.021 (4) 0.021 (4)
Al5 0.015 (4) 0.015 (4) 0.017 (5) 0.004 (5) 0.011 (4) 0.011 (4)

Geometric parameters (Å, º)

Al1—Cr5 2.611 (7) Cr2—Al5xi 2.930 (16)
Al1—Cr5i 2.611 (7) Al3—Cr5 2.572 (12)
Al1—Cr6ii 2.634 (7) Al3—Cr6 2.606 (11)
Al1—Cr6iii 2.634 (7) Al3—Cr4xiii 2.655 (12)
Al1—Cr4 2.644 (11) Al3—Cr7 2.678 (13)
Al1—Al4i 2.654 (11) Al3—Al5xiii 2.758 (11)
Al1—Al4iv 2.654 (11) Al3—Al5xiv 2.758 (11)
Al1—Al5 2.659 (17) Al3—Al4xii 2.798 (12)
Al1—Al1i 2.665 (16) Al3—Al4ix 2.798 (12)
Al1—Al1v 2.665 (16) Cr3—Cr5 2.572 (12)
Al1—Cr7 2.739 (11) Cr3—Cr6 2.606 (11)
Cr1—Cr5 2.611 (7) Cr3—Cr4xiii 2.655 (12)
Cr1—Cr5i 2.611 (7) Cr3—Cr7 2.678 (13)
Cr1—Cr6ii 2.634 (7) Cr3—Al5xiii 2.758 (11)
Cr1—Cr6iii 2.634 (7) Cr3—Al5xiv 2.758 (11)
Cr1—Cr4 2.644 (11) Cr3—Al4xii 2.798 (12)
Cr1—Al4i 2.654 (11) Cr3—Al4ix 2.798 (12)
Cr1—Al4iv 2.654 (11) Cr4—Al5 2.616 (10)
Cr1—Al5 2.659 (17) Cr4—Al5v 2.616 (10)
Cr1—Cr7 2.739 (11) Cr4—Al5i 2.616 (10)
Al2—Cr6 2.604 (9) Cr4—Cr6iii 2.761 (7)
Al2—Cr7vi 2.647 (9) Cr4—Cr6ii 2.761 (7)
Al2—Al4vii 2.656 (9) Cr5—Cr7 2.603 (7)
Al2—Al4viii 2.656 (9) Cr5—Al4xii 2.620 (10)
Al2—Cr5ix 2.754 (6) Cr5—Al4ix 2.620 (10)
Al2—Cr5x 2.754 (6) Cr5—Al4iv 2.652 (9)
Al2—Al5xi 2.930 (16) Cr5—Al4 2.652 (9)
Al2—Al4xii 2.996 (10) Cr5—Al5x 2.683 (12)
Al2—Al4ix 2.996 (10) Cr6—Al5xi 2.654 (12)
Cr2—Cr6 2.604 (9) Cr6—Al4xv 2.739 (11)
Cr2—Cr7vi 2.647 (9) Cr6—Al4xiii 2.739 (11)
Cr2—Al4vii 2.656 (9) Cr6—Al5xiv 2.849 (8)
Cr2—Al4viii 2.656 (9) Al4—Al5x 2.693 (12)
Cr2—Cr5ix 2.754 (6) Al4—Al4ix 2.726 (5)
Cr2—Cr5x 2.754 (6) Al4—Al4xvi 2.726 (5)
Cr5—Al1—Cr5i 110.4 (5) Cr3—Cr5—Cr7 62.3 (4)
Cr5—Al1—Cr6ii 63.75 (14) Al3—Cr5—Cr7 62.3 (4)
Cr5i—Al1—Cr6ii 167.7 (4) Cr3—Cr5—Al1v 116.2 (4)
Cr5—Al1—Cr6iii 167.7 (4) Al3—Cr5—Al1v 116.2 (4)
Cr5i—Al1—Cr6iii 63.75 (14) Cr7—Cr5—Al1v 63.4 (3)
Cr6ii—Al1—Cr6iii 119.6 (5) Cr7—Cr5—Al1 63.4 (3)
Cr5—Al1—Cr4 112.8 (3) Al1v—Cr5—Al1 61.4 (4)
Cr5i—Al1—Cr4 112.8 (3) Cr7—Cr5—Cr1 63.4 (3)
Cr6ii—Al1—Cr4 63.1 (2) Cr3—Cr5—Al4xii 65.2 (3)
Cr6iii—Al1—Cr4 63.1 (2) Al3—Cr5—Al4xii 65.2 (3)
Cr5—Al1—Al4i 125.5 (4) Cr7—Cr5—Al4xii 110.8 (3)
Cr5i—Al1—Al4i 60.5 (2) Al1v—Cr5—Al4xii 168.9 (3)
Cr6ii—Al1—Al4i 131.8 (4) Al1—Cr5—Al4xii 107.8 (3)
Cr6iii—Al1—Al4i 62.4 (2) Cr1—Cr5—Al4xii 107.8 (3)
Cr4—Al1—Al4i 120.0 (3) Cr3—Cr5—Al4ix 65.2 (3)
Cr5—Al1—Al4iv 60.5 (2) Al3—Cr5—Al4ix 65.2 (3)
Cr5i—Al1—Al4iv 125.5 (4) Cr7—Cr5—Al4ix 110.8 (3)
Cr6ii—Al1—Al4iv 62.4 (2) Al1v—Cr5—Al4ix 107.8 (3)
Cr6iii—Al1—Al4iv 131.8 (4) Al1—Cr5—Al4ix 168.9 (3)
Cr4—Al1—Al4iv 120.0 (3) Cr1—Cr5—Al4ix 168.9 (3)
Al4i—Al1—Al4iv 81.7 (5) Al4xii—Cr5—Al4ix 83.0 (5)
Cr5—Al1—Al5 124.0 (2) Cr3—Cr5—Al4iv 121.2 (3)
Cr5i—Al1—Al5 124.0 (2) Al3—Cr5—Al4iv 121.2 (3)
Cr6ii—Al1—Al5 65.1 (3) Cr7—Cr5—Al4iv 115.6 (3)
Cr6iii—Al1—Al5 65.1 (3) Al1v—Cr5—Al4iv 110.7 (4)
Cr4—Al1—Al5 59.1 (3) Al1—Cr5—Al4iv 60.5 (3)
Al4i—Al1—Al5 76.7 (3) Cr1—Cr5—Al4iv 60.5 (3)
Al4iv—Al1—Al5 76.7 (3) Al4xii—Cr5—Al4iv 62.3 (2)
Cr5—Al1—Al1i 108.1 (2) Al4ix—Cr5—Al4iv 129.1 (2)
Cr5i—Al1—Al1i 59.3 (2) Cr3—Cr5—Al4 121.2 (3)
Cr6ii—Al1—Al1i 111.0 (2) Al3—Cr5—Al4 121.2 (3)
Cr6iii—Al1—Al1i 59.6 (2) Cr7—Cr5—Al4 115.6 (3)
Cr4—Al1—Al1i 59.73 (18) Al1v—Cr5—Al4 60.5 (3)
Al4i—Al1—Al1i 109.0 (2) Al1—Cr5—Al4 110.7 (4)
Al4iv—Al1—Al1i 168.2 (3) Cr1—Cr5—Al4 110.7 (4)
Al5—Al1—Al1i 110.2 (3) Al4xii—Cr5—Al4 129.1 (2)
Cr5—Al1—Al1v 59.3 (2) Al4ix—Cr5—Al4 62.3 (2)
Cr5i—Al1—Al1v 108.1 (2) Al4iv—Cr5—Al4 111.7 (5)
Cr6ii—Al1—Al1v 59.6 (2) Cr3—Cr5—Al5x 128.3 (4)
Cr6iii—Al1—Al1v 111.0 (2) Al3—Cr5—Al5x 128.3 (4)
Cr4—Al1—Al1v 59.73 (18) Cr7—Cr5—Al5x 169.4 (4)
Al4i—Al1—Al1v 168.2 (3) Al1v—Cr5—Al5x 107.8 (3)
Al4iv—Al1—Al1v 109.0 (2) Al1—Cr5—Al5x 107.8 (3)
Al5—Al1—Al1v 110.2 (3) Cr1—Cr5—Al5x 107.8 (3)
Al1i—Al1—Al1v 60.000 (1) Al4xii—Cr5—Al5x 76.8 (3)
Cr5—Al1—Cr7 58.2 (2) Al4ix—Cr5—Al5x 76.8 (3)
Cr5i—Al1—Cr7 58.2 (2) Al4iv—Cr5—Al5x 60.6 (3)
Cr6ii—Al1—Cr7 111.2 (3) Al4—Cr5—Al5x 60.6 (3)
Cr6iii—Al1—Cr7 111.2 (3) Cr3—Cr5—Al2xvi 64.3 (2)
Cr4—Al1—Cr7 110.2 (4) Al3—Cr5—Al2xvi 64.3 (2)
Al4i—Al1—Cr7 111.1 (3) Cr7—Cr5—Al2xvi 59.1 (2)
Al4iv—Al1—Cr7 111.1 (3) Al1v—Cr5—Al2xvi 60.5 (3)
Al5—Al1—Cr7 169.4 (5) Al1—Cr5—Al2xvi 110.8 (3)
Al1i—Al1—Cr7 60.89 (18) Cr1—Cr5—Al2xvi 110.8 (3)
Al1v—Al1—Cr7 60.89 (18) Al4xii—Cr5—Al2xvi 125.9 (4)
Cr5—Cr1—Cr5i 110.4 (5) Al4ix—Cr5—Al2xvi 59.2 (3)
Cr5—Cr1—Cr6ii 63.75 (14) Al4iv—Cr5—Al2xvi 170.8 (4)
Cr5i—Cr1—Cr6ii 167.7 (4) Al4—Cr5—Al2xvi 67.3 (2)
Cr5—Cr1—Cr6iii 167.7 (4) Al5x—Cr5—Al2xvi 123.0 (2)
Cr5i—Cr1—Cr6iii 63.75 (14) Cr2—Cr6—Al1xiii 149.6 (2)
Cr6ii—Cr1—Cr6iii 119.6 (5) Al2—Cr6—Al1xiii 149.6 (2)
Cr5—Cr1—Cr4 112.8 (3) Cr3—Cr6—Al1xiii 108.9 (3)
Cr5i—Cr1—Cr4 112.8 (3) Al3—Cr6—Al1xiii 108.9 (3)
Cr6ii—Cr1—Cr4 63.1 (2) Al1xiii—Cr6—Al1xiv 60.8 (4)
Cr6iii—Cr1—Cr4 63.1 (2) Cr2—Cr6—Al5xi 67.7 (4)
Cr5—Cr1—Al4i 125.5 (4) Al2—Cr6—Al5xi 67.7 (4)
Cr5i—Cr1—Al4i 60.5 (2) Cr3—Cr6—Al5xi 136.9 (4)
Cr6ii—Cr1—Al4i 131.8 (4) Al3—Cr6—Al5xi 136.9 (4)
Cr6iii—Cr1—Al4i 62.4 (2) Al1xiii—Cr6—Al5xi 108.0 (4)
Cr4—Cr1—Al4i 120.0 (3) Al1xiv—Cr6—Al5xi 108.0 (4)
Cr5—Cr1—Al4iv 60.5 (2) Al1xiii—Cr6—Al4xv 59.2 (3)
Cr5i—Cr1—Al4iv 125.5 (4) Al1xiv—Cr6—Al4xv 107.4 (4)
Cr6ii—Cr1—Al4iv 62.4 (2) Al5xi—Cr6—Al4xv 59.9 (3)
Cr6iii—Cr1—Al4iv 131.8 (4) Cr2—Cr6—Al4xiii 96.4 (3)
Cr4—Cr1—Al4iv 120.0 (3) Al2—Cr6—Al4xiii 96.4 (3)
Al4i—Cr1—Al4iv 81.7 (5) Cr3—Cr6—Al4xiii 126.1 (2)
Cr5—Cr1—Al5 124.0 (2) Al3—Cr6—Al4xiii 126.1 (2)
Cr5i—Cr1—Al5 124.0 (2) Al1xiii—Cr6—Al4xiii 107.4 (4)
Cr6ii—Cr1—Al5 65.1 (3) Al1xiv—Cr6—Al4xiii 59.2 (3)
Cr6iii—Cr1—Al5 65.1 (3) Al5xi—Cr6—Al4xiii 59.9 (3)
Cr4—Cr1—Al5 59.1 (3) Al4xv—Cr6—Al4xiii 106.5 (5)
Al4i—Cr1—Al5 76.7 (3) Al1xiii—Cr6—Cr4xiii 58.6 (2)
Al4iv—Cr1—Al5 76.7 (3) Al1xiv—Cr6—Cr4xiii 58.6 (2)
Cr5—Cr1—Cr7 58.2 (2) Al5xi—Cr6—Cr4xiii 163.9 (4)
Cr5i—Cr1—Cr7 58.2 (2) Al4xv—Cr6—Cr4xiii 113.1 (3)
Cr6ii—Cr1—Cr7 111.2 (3) Al4xiii—Cr6—Cr4xiii 113.1 (3)
Cr6iii—Cr1—Cr7 111.2 (3) Cr2—Cr6—Cr5xiii 127.0 (4)
Cr4—Cr1—Cr7 110.2 (4) Al2—Cr6—Cr5xiii 127.0 (4)
Al4i—Cr1—Cr7 111.1 (3) Cr3—Cr6—Cr5xiii 163.9 (3)
Al4iv—Cr1—Cr7 111.1 (3) Al3—Cr6—Cr5xiii 163.9 (3)
Al5—Cr1—Cr7 169.4 (5) Al1xiii—Cr6—Cr5xiii 57.7 (2)
Cr6—Al2—Cr7vi 150.7 (4) Al1xiv—Cr6—Cr5xiii 57.7 (2)
Cr6—Al2—Al4vii 71.0 (2) Al5xi—Cr6—Cr5xiii 59.2 (3)
Cr7vi—Al2—Al4vii 108.3 (2) Al4xv—Cr6—Cr5xiii 57.6 (2)
Cr6—Al2—Al4viii 71.0 (2) Al4xiii—Cr6—Cr5xiii 57.6 (3)
Cr7vi—Al2—Al4viii 108.3 (2) Cr4xiii—Cr6—Cr5xiii 104.7 (3)
Al4vii—Al2—Al4viii 141.3 (4) Cr2—Cr6—Al5xiv 99.6 (3)
Cr6—Al2—Cr5ix 128.85 (18) Al2—Cr6—Al5xiv 99.6 (3)
Cr7vi—Al2—Cr5ix 57.6 (2) Cr3—Cr6—Al5xiv 60.5 (3)
Al4vii—Al2—Cr5ix 159.6 (4) Al3—Cr6—Al5xiv 60.5 (3)
Al4viii—Al2—Cr5ix 57.9 (2) Al1xiii—Cr6—Al5xiv 105.5 (3)
Cr6—Al2—Cr5x 128.85 (18) Al1xiv—Cr6—Al5xiv 57.8 (3)
Cr7vi—Al2—Cr5x 57.6 (2) Al5xi—Cr6—Al5xiv 127.5 (2)
Al4vii—Al2—Cr5x 57.9 (2) Al4xv—Cr6—Al5xiv 164.0 (4)
Al4viii—Al2—Cr5x 159.6 (4) Al4xiii—Cr6—Al5xiv 72.2 (3)
Cr5ix—Al2—Cr5x 102.2 (4) Cr4xiii—Cr6—Al5xiv 55.6 (2)
Cr6—Al2—Al5xi 56.9 (3) Cr5xiii—Cr6—Al5xiv 111.8 (3)
Cr7vi—Al2—Al5xi 93.8 (4) Cr5—Cr7—Cr5v 110.9 (2)
Al4vii—Al2—Al5xi 82.8 (3) Cr5—Cr7—Cr5i 110.9 (2)
Al4viii—Al2—Al5xi 82.8 (3) Cr5v—Cr7—Cr5i 110.9 (2)
Cr5ix—Al2—Al5xi 111.2 (3) Cr5—Cr7—Al2xviii 166.5 (5)
Cr5x—Al2—Al5xi 111.2 (3) Cr5v—Cr7—Al2xviii 63.27 (8)
Cr6—Al2—Al4xii 99.9 (3) Cr5i—Cr7—Al2xviii 63.27 (8)
Cr7vi—Al2—Al4xii 103.8 (3) Cr5—Cr7—Al2xix 63.27 (8)
Al4vii—Al2—Al4xii 57.30 (18) Cr5v—Cr7—Al2xix 166.5 (5)
Al4viii—Al2—Al4xii 123.5 (4) Cr5i—Cr7—Al2xix 63.27 (8)
Cr5ix—Al2—Al4xii 108.9 (3) Cr5—Cr7—Al2xvi 63.27 (8)
Cr5x—Al2—Al4xii 54.7 (2) Cr5v—Cr7—Al2xvi 63.27 (8)
Al5xi—Al2—Al4xii 139.6 (3) Cr5i—Cr7—Al2xvi 166.5 (5)
Cr6—Al2—Al4ix 99.9 (3) Al2xviii—Cr7—Al2xvi 119.39 (7)
Cr7vi—Al2—Al4ix 103.8 (3) Al2xix—Cr7—Al2xvi 119.39 (7)
Al4vii—Al2—Al4ix 123.5 (4) Cr5—Cr7—Al3 58.3 (2)
Al4viii—Al2—Al4ix 57.30 (18) Cr5v—Cr7—Al3 124.25 (17)
Cr5ix—Al2—Al4ix 54.7 (2) Cr5i—Cr7—Al3 124.25 (17)
Cr5x—Al2—Al4ix 108.9 (3) Cr5—Cr7—Cr3 58.3 (2)
Al5xi—Al2—Al4ix 139.6 (3) Cr5v—Cr7—Cr3 124.25 (17)
Al4xii—Al2—Al4ix 70.8 (4) Cr5i—Cr7—Cr3 124.25 (17)
Cr6—Cr2—Cr7vi 150.7 (4) Cr5—Cr7—Al3i 124.25 (17)
Cr6—Cr2—Al4vii 71.0 (2) Cr5v—Cr7—Al3i 124.25 (17)
Cr7vi—Cr2—Al4vii 108.3 (2) Cr5i—Cr7—Al3i 58.3 (2)
Cr6—Cr2—Al4viii 71.0 (2) Al2xviii—Cr7—Al3i 64.46 (17)
Cr7vi—Cr2—Al4viii 108.3 (2) Al2xix—Cr7—Al3i 64.46 (17)
Al4vii—Cr2—Al4viii 141.3 (4) Al2xvi—Cr7—Al3i 135.3 (5)
Cr6—Cr2—Cr5ix 128.85 (18) Al3—Cr7—Al3i 82.8 (4)
Cr7vi—Cr2—Cr5ix 57.6 (2) Cr3—Cr7—Al3i 82.8 (4)
Al4vii—Cr2—Cr5ix 159.6 (4) Cr5—Cr7—Al3v 124.25 (17)
Al4viii—Cr2—Cr5ix 57.9 (2) Cr5v—Cr7—Al3v 58.3 (2)
Cr6—Cr2—Cr5x 128.85 (18) Cr5i—Cr7—Al3v 124.25 (17)
Cr7vi—Cr2—Cr5x 57.6 (2) Cr5—Cr7—Al1v 58.5 (2)
Al4vii—Cr2—Cr5x 57.9 (2) Cr5v—Cr7—Al1v 58.5 (2)
Al4viii—Cr2—Cr5x 159.6 (4) Cr5i—Cr7—Al1v 106.2 (4)
Cr5ix—Cr2—Cr5x 102.2 (4) Al2xviii—Cr7—Al1v 110.2 (3)
Cr6—Cr2—Al5xi 56.9 (3) Al2xix—Cr7—Al1v 110.2 (3)
Cr7vi—Cr2—Al5xi 93.8 (4) Al2xvi—Cr7—Al1v 60.3 (3)
Al4vii—Cr2—Al5xi 82.8 (3) Al3—Cr7—Al1v 108.7 (3)
Al4viii—Cr2—Al5xi 82.8 (3) Cr3—Cr7—Al1v 108.7 (3)
Cr5ix—Cr2—Al5xi 111.2 (3) Al3i—Cr7—Al1v 164.4 (4)
Cr5x—Cr2—Al5xi 111.2 (3) Al3v—Cr7—Al1v 108.7 (3)
Cr5—Al3—Cr6 157.4 (4) Cr5—Cr7—Al1i 106.2 (4)
Cr5—Al3—Cr4xiii 139.3 (5) Cr5v—Cr7—Al1i 58.5 (2)
Cr6—Al3—Cr4xiii 63.3 (3) Cr5i—Cr7—Al1i 58.5 (2)
Cr5—Al3—Cr7 59.4 (3) Al2xviii—Cr7—Al1i 60.3 (3)
Cr6—Al3—Cr7 143.2 (4) Al2xix—Cr7—Al1i 110.2 (3)
Cr4xiii—Al3—Cr7 79.9 (4) Al2xvi—Cr7—Al1i 110.2 (3)
Cr5—Al3—Al5xiii 123.2 (3) Al3—Cr7—Al1i 164.4 (4)
Cr6—Al3—Al5xiii 64.1 (3) Cr3—Cr7—Al1i 164.4 (4)
Cr4xiii—Al3—Al5xiii 57.8 (3) Al3i—Cr7—Al1i 108.7 (3)
Cr7—Al3—Al5xiii 97.1 (3) Al3v—Cr7—Al1i 108.7 (3)
Cr5—Al3—Al5xiv 123.2 (3) Al1v—Cr7—Al1i 58.2 (4)
Cr6—Al3—Al5xiv 64.1 (3) Cr5xvi—Al4—Cr5 144.8 (4)
Cr4xiii—Al3—Al5xiv 57.8 (3) Cr5xvi—Al4—Al1v 86.3 (4)
Cr7—Al3—Al5xiv 97.1 (3) Cr5—Al4—Al1v 59.0 (3)
Al5xiii—Al3—Al5xiv 109.5 (6) Cr5xvi—Al4—Al2xx 62.9 (2)
Cr5—Al3—Al4xii 58.2 (3) Cr5—Al4—Al2xx 150.4 (5)
Cr6—Al3—Al4xii 105.2 (4) Al1v—Al4—Al2xx 148.8 (4)
Cr4xiii—Al3—Al4xii 141.1 (3) Cr5xvi—Al4—Al5x 145.4 (6)
Cr7—Al3—Al4xii 103.4 (4) Cr5—Al4—Al5x 60.2 (3)
Al5xiii—Al3—Al4xii 83.5 (3) Al1v—Al4—Al5x 106.3 (3)
Al5xiv—Al3—Al4xii 154.2 (5) Al2xx—Al4—Al5x 102.4 (4)
Cr5—Al3—Al4ix 58.2 (3) Cr5xvi—Al4—Al4ix 134.5 (5)
Cr6—Al3—Al4ix 105.2 (4) Cr5—Al4—Al4ix 58.3 (4)
Cr4xiii—Al3—Al4ix 141.1 (3) Al1v—Al4—Al4ix 103.5 (4)
Cr7—Al3—Al4ix 103.4 (4) Al2xx—Al4—Al4ix 95.5 (4)
Al5xiii—Al3—Al4ix 154.2 (5) Al5x—Al4—Al4ix 74.9 (5)
Al5xiv—Al3—Al4ix 83.5 (3) Cr5xvi—Al4—Al4xvi 59.4 (3)
Al4xii—Al3—Al4ix 76.6 (5) Cr5—Al4—Al4xvi 128.9 (4)
Cr5—Cr3—Cr6 157.4 (4) Al1v—Al4—Al4xvi 102.1 (5)
Cr5—Cr3—Cr4xiii 139.3 (5) Al2xx—Al4—Al4xvi 67.6 (4)
Cr6—Cr3—Cr4xiii 63.3 (3) Al5x—Al4—Al4xvi 86.1 (5)
Cr5—Cr3—Cr7 59.4 (3) Al4ix—Al4—Al4xvi 151.5 (6)
Cr6—Cr3—Cr7 143.2 (4) Cr5xvi—Al4—Cr6ii 106.6 (5)
Cr4xiii—Cr3—Cr7 79.9 (4) Cr5—Al4—Cr6ii 61.8 (2)
Cr5—Cr3—Al5xiii 123.2 (3) Al1v—Al4—Cr6ii 58.4 (3)
Cr6—Cr3—Al5xiii 64.1 (3) Al2xx—Al4—Cr6ii 132.5 (4)
Cr4xiii—Cr3—Al5xiii 57.8 (3) Al5x—Al4—Cr6ii 58.5 (3)
Cr7—Cr3—Al5xiii 97.1 (3) Al4ix—Al4—Cr6ii 116.5 (5)
Cr5—Cr3—Al5xiv 123.2 (3) Al4xvi—Al4—Cr6ii 68.0 (3)
Cr6—Cr3—Al5xiv 64.1 (3) Cr5xvi—Al4—Al3xvi 56.6 (3)
Cr4xiii—Cr3—Al5xiv 57.8 (3) Cr5—Al4—Al3xvi 118.0 (5)
Cr7—Cr3—Al5xiv 97.1 (3) Al1v—Al4—Al3xvi 97.2 (4)
Al5xiii—Cr3—Al5xiv 109.5 (6) Al2xx—Al4—Al3xvi 62.7 (3)
Cr5—Cr3—Al4xii 58.2 (3) Al5x—Al4—Al3xvi 147.5 (5)
Cr6—Cr3—Al4xii 105.2 (4) Al4ix—Al4—Al3xvi 78.0 (4)
Cr4xiii—Cr3—Al4xii 141.1 (3) Al4xvi—Al4—Al3xvi 110.9 (4)
Cr7—Cr3—Al4xii 103.4 (4) Cr6ii—Al4—Al3xvi 153.0 (5)
Al5xiii—Cr3—Al4xii 83.5 (3) Cr5xvi—Al4—Al2xvi 99.8 (4)
Al5xiv—Cr3—Al4xii 154.2 (5) Cr5—Al4—Al2xvi 58.0 (2)
Cr5—Cr3—Al4ix 58.2 (3) Al1v—Al4—Al2xvi 56.9 (3)
Cr6—Cr3—Al4ix 105.2 (4) Al2xx—Al4—Al2xvi 120.5 (4)
Cr4xiii—Cr3—Al4ix 141.1 (3) Al5x—Al4—Al2xvi 114.1 (4)
Cr7—Cr3—Al4ix 103.4 (4) Al4ix—Al4—Al2xvi 55.1 (2)
Al5xiii—Cr3—Al4ix 154.2 (5) Al4xvi—Al4—Al2xvi 153.3 (5)
Al5xiv—Cr3—Al4ix 83.5 (3) Cr6ii—Al4—Al2xvi 106.8 (3)
Al4xii—Cr3—Al4ix 76.6 (5) Al3xvi—Al4—Al2xvi 61.3 (4)
Al5—Cr4—Al5v 118.81 (14) Cr4—Al5—Cr6xxi 152.4 (6)
Al5—Cr4—Al5i 118.81 (14) Cr4—Al5—Cr1 60.2 (4)
Al5v—Cr4—Al5i 118.81 (14) Cr6xxi—Al5—Cr1 147.5 (5)
Al5—Cr4—Cr1 60.7 (4) Cr4—Al5—Al1 60.2 (4)
Al5v—Cr4—Cr1 112.2 (3) Cr6xxi—Al5—Al1 147.5 (5)
Al5i—Cr4—Cr1 112.2 (3) Cr4—Al5—Cr5xix 145.1 (6)
Al5—Cr4—Al1 60.7 (4) Cr6xxi—Al5—Cr5xix 62.5 (3)
Al5v—Cr4—Al1 112.2 (3) Cr1—Al5—Cr5xix 84.9 (5)
Al5i—Cr4—Al1 112.2 (3) Al1—Al5—Cr5xix 84.9 (5)
Al5—Cr4—Al1i 112.2 (3) Cr4—Al5—Al4xxii 125.1 (3)
Al5v—Cr4—Al1i 112.2 (3) Cr6xxi—Al5—Al4xxii 61.6 (3)
Al5i—Cr4—Al1i 60.7 (4) Al1—Al5—Al4xxii 102.9 (4)
Cr1—Cr4—Al1i 60.5 (4) Cr5xix—Al5—Al4xxii 59.1 (3)
Al1—Cr4—Al1i 60.5 (4) Cr4—Al5—Al4xix 125.1 (3)
Al5—Cr4—Al1v 112.2 (3) Cr6xxi—Al5—Al4xix 61.6 (3)
Al5v—Cr4—Al1v 60.7 (4) Cr1—Al5—Al4xix 102.9 (4)
Al5i—Cr4—Al1v 112.2 (3) Al1—Al5—Al4xix 102.9 (4)
Cr1—Cr4—Al1v 60.5 (4) Cr5xix—Al5—Al4xix 59.1 (3)
Al1—Cr4—Al1v 60.5 (4) Al4xxii—Al5—Al4xix 109.2 (5)
Al1i—Cr4—Al1v 60.5 (4) Cr4—Al5—Al3iii 59.1 (3)
Al5—Cr4—Al3iii 63.1 (2) Cr6xxi—Al5—Al3iii 101.0 (4)
Al5v—Cr4—Al3iii 134.0 (6) Cr1—Al5—Al3iii 103.8 (4)
Al5i—Cr4—Al3iii 63.1 (2) Al1—Al5—Al3iii 103.8 (4)
Cr1—Cr4—Al3iii 107.2 (3) Cr5xix—Al5—Al3iii 138.3 (3)
Al1—Cr4—Al3iii 107.2 (3) Al4xxii—Al5—Al3iii 149.3 (6)
Al1i—Cr4—Al3iii 107.2 (3) Al4xix—Al5—Al3iii 79.2 (3)
Al1v—Cr4—Al3iii 165.2 (4) Cr4—Al5—Al3ii 59.1 (3)
Al5—Cr4—Al3xvii 134.0 (6) Cr6xxi—Al5—Al3ii 101.0 (4)
Al5v—Cr4—Al3xvii 63.1 (2) Cr1—Al5—Al3ii 103.8 (4)
Al5i—Cr4—Al3xvii 63.1 (2) Al1—Al5—Al3ii 103.8 (4)
Cr1—Cr4—Al3xvii 165.2 (4) Cr5xix—Al5—Al3ii 138.3 (3)
Al1—Cr4—Al3xvii 165.2 (4) Al4xxii—Al5—Al3ii 79.2 (3)
Al1i—Cr4—Al3xvii 107.2 (3) Al4xix—Al5—Al3ii 149.3 (6)
Al1v—Cr4—Al3xvii 107.2 (3) Al3iii—Al5—Al3ii 79.9 (6)
Al3iii—Cr4—Al3xvii 83.6 (4) Cr4—Al5—Cr6ii 60.5 (3)
Al5—Cr4—Al3ii 63.1 (2) Cr6xxi—Al5—Cr6ii 126.6 (2)
Al5v—Cr4—Al3ii 63.1 (2) Cr1—Al5—Cr6ii 57.0 (2)
Al5i—Cr4—Al3ii 134.0 (6) Al1—Al5—Cr6ii 57.0 (2)
Cr1—Cr4—Al3ii 107.2 (3) Cr5xix—Al5—Cr6ii 101.9 (3)
Al1—Cr4—Al3ii 107.2 (3) Al4xxii—Al5—Cr6ii 66.8 (2)
Al1i—Cr4—Al3ii 165.2 (4) Al4xix—Al5—Cr6ii 155.4 (6)
Al1v—Cr4—Al3ii 107.2 (3) Al3iii—Al5—Cr6ii 117.2 (4)
Al3iii—Cr4—Al3ii 83.6 (4) Al3ii—Al5—Cr6ii 55.4 (2)
Al3xvii—Cr4—Al3ii 83.6 (4) Cr4—Al5—Cr6iii 60.5 (3)
Al5—Cr4—Cr6iii 63.93 (12) Cr6xxi—Al5—Cr6iii 126.6 (2)
Al5v—Cr4—Cr6iii 168.5 (6) Cr1—Al5—Cr6iii 57.0 (2)
Al5i—Cr4—Cr6iii 63.93 (12) Al1—Al5—Cr6iii 57.0 (2)
Cr1—Cr4—Cr6iii 58.27 (18) Cr5xix—Al5—Cr6iii 101.9 (3)
Al1—Cr4—Cr6iii 58.27 (18) Al4xxii—Al5—Cr6iii 155.4 (6)
Al1i—Cr4—Cr6iii 58.27 (18) Al4xix—Al5—Cr6iii 66.8 (2)
Al1v—Cr4—Cr6iii 107.8 (4) Al3iii—Al5—Cr6iii 55.4 (2)
Al3iii—Cr4—Cr6iii 57.5 (3) Al3ii—Al5—Cr6iii 117.2 (4)
Al3xvii—Cr4—Cr6iii 124.18 (16) Cr6ii—Al5—Cr6iii 106.1 (4)
Al3ii—Cr4—Cr6iii 124.18 (16) Cr4—Al5—Al2xxi 97.0 (4)
Al5—Cr4—Cr6ii 63.93 (12) Cr6xxi—Al5—Al2xxi 55.3 (3)
Al5v—Cr4—Cr6ii 63.93 (12) Cr1—Al5—Al2xxi 157.2 (5)
Al5i—Cr4—Cr6ii 168.5 (6) Al1—Al5—Al2xxi 157.2 (5)
Cr1—Cr4—Cr6ii 58.27 (18) Cr5xix—Al5—Al2xxi 117.9 (4)
Al1—Cr4—Cr6ii 58.27 (18) Al4xxii—Al5—Al2xxi 90.1 (4)
Al1i—Cr4—Cr6ii 107.8 (4) Al4xix—Al5—Al2xxi 90.1 (4)
Al1v—Cr4—Cr6ii 58.27 (18) Al3iii—Al5—Al2xxi 59.8 (3)
Al3iii—Cr4—Cr6ii 124.18 (16) Al3ii—Al5—Al2xxi 59.8 (3)
Al3xvii—Cr4—Cr6ii 124.18 (16) Cr6ii—Al5—Al2xxi 113.8 (3)
Al3ii—Cr4—Cr6ii 57.5 (3) Cr6iii—Al5—Al2xxi 113.8 (3)
Cr6iii—Cr4—Cr6ii 111.1 (2)

Symmetry codes: (i) z, x, y; (ii) x−1, y−1, z−1; (iii) z−1, x−1, y−1; (iv) x, z, y; (v) y, z, x; (vi) x+1, y, z; (vii) z+1, y+1, x; (viii) z+1, x, y+1; (ix) y+1, z, x; (x) z+1, x, y; (xi) z+2, x+1, y+1; (xii) y+1, x, z; (xiii) x+1, y+1, z+1; (xiv) y+1, z+1, x+1; (xv) x+1, z+1, y+1; (xvi) z, x−1, y; (xvii) y−1, z−1, x−1; (xviii) x−1, y, z; (xix) y, z, x−1; (xx) y, z−1, x−1; (xxi) y−1, z−1, x−2; (xxii) z, y, x−1.

Funding Statement

Funding for this research was provided by: Research Foundation of Education Bureau of Hebei Province (grant No. ZD2018069); The National Natural Science Foundation of China (grant No. 51771165).

References

  1. Akhmetshina, T. G. & Blatov, V. A. (2017). Z. Kristallogr. 232, 497–506.
  2. Bradley, A. J. & Lu, S. S. (1937). Z. Kristallogr. 96, 20–37.
  3. Brandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Brandon, J. K., Pearson, W. B., Riley, P. W., Chieh, C. & Stokhuyzen, R. (1977). Acta Cryst. B33, 1088–1095.
  5. Braun, J., Ellner, M. & Predel, B. (1992). J. Alloys Compd. 183, 444–448.
  6. Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Liu, C. & Fan, C. (2018). IUCrData, 3, x180363.
  8. Pankova, A. A., Blatov, V. A., Ilyushin, G. D. & Proserpio, D. M. (2013). Inorg. Chem. 52, 13094–13107. [DOI] [PubMed]
  9. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620004228/bh4049sup1.cif

x-05-x200422-sup1.cif (243.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620004228/bh4049Isup2.hkl

x-05-x200422-Isup2.hkl (48.3KB, hkl)

supporting information. DOI: 10.1107/S2414314620004228/bh4049sup3.pdf

x-05-x200422-sup3.pdf (214KB, pdf)

CCDC reference: 1993113

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES