Skip to main content
IUCrData logoLink to IUCrData
. 2020 Apr 7;5(Pt 4):x200448. doi: 10.1107/S2414314620004484

Diaquatetra­kis(μ-3-meth­oxy­benzoato-κ2 O 1:O 1′)dicopper(II)

Bikshandarkoil R Srinivasan a,*, Pooja H Bhargao a, P K Sudhadevi b
Editor: M Weilc
PMCID: PMC9462214  PMID: 36338302

In the crystal structure of the title compound two independent binuclear copper(II) complexes are present, each with site symmetry Inline graphic and with the CuII atoms in a square-pyramidal coordination environment.

Keywords: crystal structure, paddle-wheel structure, binuclear copper complex, hydrogen bonding

Abstract

The asymmetric unit of the binuclear title compound, [Cu2(C8H7O3)4(H2O)2], comprises two halves of diaquatetra­kis­(μ-3-meth­oxy­benzoato-κ2 O 1:O 1′)dicopper(II) units. The paddle-wheel structure of each complex is completed by application of inversion symmetry, with the inversion centre situated at the midpoint between two CuII atoms in each dimer. The two CuII atoms of each centrosymmetric dimer are bridged by four 3-meth­oxy­benzoate anions resulting in Cu⋯Cu separations of 2.5961 (11) and 2.6060 (12) Å, respectively. The square-pyramidal coordination sphere of each CuII atom is completed by an apical water mol­ecule. Inter­molecular O—H⋯O hydrogen bonds of weak nature link the complexes into layers parallel to (100). The three-dimensional network structure is accomplished by C—H⋯O hydrogen bonds inter­linking adjacent layers. graphic file with name x-05-x200448-scheme1-3D1.jpg

Structure description

A very early structure investigation of cupric acetate monohydrate revealed that it is dimeric in nature, represented by the formula [Cu2(CH3COO)4(H2O)2] (Van Niekerk & Schoening, 1953). In the dimer, each of the two cupric ions is bonded to four oxygen atoms of four bridging acetate ligands in addition to a terminal aqua ligand. This kind of coordination, wherein a pair of metal cations is bonded to four symmetrically bridging carboxyl­ate anions, is referred to as a paddle-wheel structure and is well documented for several dimeric copper carboxyl­ates (Doedens, 1976). The Cambridge Structural Database (CSD, version 5.40, update September 2019; Groom et al., 2016) lists the structures of several dicopper(II) compounds where the cupric cations are symmetrically bridged by four carboxyl­ate ligands. The fifth ligand can be a terminal water mol­ecule or any O– or N-donor ligand. A dinuclear copper compound with a paddle-wheel structure, viz. tetra­kis­(μ-3-meth­oxy­benzoato- κ2 O 1:O 1′)bis­[aceto­nitrile­copper(II)] (2), was reported previously for the meth­oxy­benzoate anion (Kar et al., 2011). In the present study, we describe the structure of a related dinuclear copper complex where the aceto­nitrile ligands are replaced by aqua ligands.

The crystal structure of the title compound, [Cu2(C8H7O3)4(H2O)2], (1), consists of two crystallographically unique cupric cations, four crystallographically independent 3-meth­oxy­benzoate anions and two terminal water mol­ecules that build up two independent halves of a dimeric [Cu2(C8H7O3)4(H2O)2] complex, the other halves being generated by inversion symmetry. The inversion centre is situated at the midpoint of the line connecting two CuII atoms in each of the dimers (Fig. 1). In each centrosymmetric dimer, a pair of CuII atoms is connected through four synsyn bis-monodentate 3-meth­oxy­benzoate bridges to generate a binuclear paddle-wheel unit. The fifth ligand, O7 on Cu1 and O14 on Cu2, is a terminal water mol­ecule, defining an overall square-pyramidal coordination sphere around the central metal cation. Bond lengths and angles of the 3-meth­oxy­benzoate anions are in normal ranges and are in agreement with reported data (Kar et al., 2011). The Cu—Owater bonds [2.171 (4) and 2.126 (4) Å for Cu1 and Cu2, respectively] are elongated as compared to the Cu—Ocarboxyl­ate distances ranging from 1.949 (4) to 1.959 (3) Å for Cu1 and from 1.936 (3) to 1.973 (3) Å for Cu2. The Cu⋯Cu separations in the dimers amount to 2.6060 (12) Å for Cu1 and 2.5961 (11) Å for Cu2, which are shorter than the Cu⋯Cu distance of 2.6433 (3) Å reported for (2) (Kar et al., 2011).

Figure 1.

Figure 1

The two centrosymmetric binuclear complexes in the crystal structure of [Cu2(C8H7O3)4(H2O)2] with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x + 2, −y + 1, −z + 1.]

The water mol­ecules, and the phenyl groups C23—H23 and C27—H27, respectively, function as hydrogen-bond donors, while the meth­oxy oxygen atoms O3, O6 and O13 and the carboxyl­ate oxygen atoms O1, O5, O11 and O14 function as hydrogen-bond acceptors; parts of the O—H⋯O hydrogen bonds are bifurcated (Table 1). Each Cu1 dimer is linked to six other symmetry-related Cu1 dimers with the aid of three O—H⋯O hydrogen bonds, and each Cu2 dimer is hydrogen-bonded to six other symmetry-related Cu2 dimers (Fig. 2). As a result, O—H⋯O hydrogen-bonded layers parallel to (100) are formed. The two C—H⋯O hydrogen bonds inter­link adjacent layers into a three-dimensional network (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O3i 0.84 (2) 2.11 (3) 2.912 (6) 161 (5)
O7—H7B⋯O1ii 0.83 (2) 2.42 (5) 3.107 (6) 141 (7)
O7—H7B⋯O5ii 0.83 (2) 2.60 (5) 3.306 (6) 144 (6)
O14—H14B⋯O13iii 0.84 (2) 2.00 (2) 2.831 (6) 169 (8)
O14—H14A⋯O11iv 0.83 (2) 2.11 (3) 2.905 (5) 160 (6)
O14—H14A⋯O14iv 0.83 (2) 2.57 (5) 3.055 (8) 118 (5)
C23—H23⋯O6v 0.93 2.52 3.355 (7) 149
C27—H27⋯O6vi 0.93 2.57 3.114 (7) 117

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic .

Figure 2.

Figure 2

A view along [100] showing the O—H⋯O hydrogen bonds (dashed lines) around the Cu1 dimer (left) and the Cu2 dimer (right).

Figure 3.

Figure 3

A view along [001] showing the inter­linking of dimeric Cu1 units with adjacent dimeric Cu2 units with the aid of C—H⋯O hydrogen bonds.

Synthesis and crystallization

Cupric oxide (100 mg) was added in small portions to a hot aqueous solution of 3-meth­oxy­benzoic acid (0.304 g, 2 mmol) in water (100 ml). The hot reaction mixture was continuously stirred to dissolve the oxide. When most of the oxide had dissolved, the blue reaction mixture was filtered to remove the insoluble matter. The blue filtrate thus obtained was left aside for crystallization. After a few days blue–greenish crystals of (1) slowly separated. The crystals were filtered and dried in air. Yield 35%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The crystal under investigation was a two-component twin with a refined batch scale factor (BASF) of 0.47. The matrix that was used for overlapping the twin domains is (101 0 Inline graphic 0 00 Inline graphic ). H atoms of water mol­ecules were discernible from a difference-Fourier map. To get a reasonable shape, water mol­ecules were refined with a target value of 0.85 (2) Å for O—H bond lengths and of 1.35 (2) Å for H⋯H distances.

Table 2. Experimental details.

Crystal data
Chemical formula [Cu2(C8H7O3)4(H2O)2]
M r 767.65
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 22.515 (3), 7.5349 (6), 21.536 (2)
β (°) 118.429 (4)
V3) 3213.0 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.40
Crystal size (mm) 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker AXS Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.410, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 36309, 6704, 5194
R int 0.082
(sin θ/λ)max−1) 0.631
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.108, 1.02
No. of reflections 6704
No. of parameters 454
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.90, −0.83

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620004484/wm4126sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620004484/wm4126Isup3.hkl

x-05-x200448-Isup3.hkl (532.8KB, hkl)

CCDC reference: 1993956

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

BRS acknowledges the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology (IIT), Madras, for the single-crystal X-ray data collection.

full crystallographic data

Crystal data

[Cu2(C8H7O3)4(H2O)2] F(000) = 1576
Mr = 767.65 Dx = 1.587 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 22.515 (3) Å Cell parameters from 9989 reflections
b = 7.5349 (6) Å θ = 2.2–26.2°
c = 21.536 (2) Å µ = 1.40 mm1
β = 118.429 (4)° T = 296 K
V = 3213.0 (6) Å3 Block, bluish green
Z = 4 0.20 × 0.20 × 0.15 mm

Data collection

Bruker AXS Kappa APEXII CCD diffractometer 6704 independent reflections
Radiation source: fine-focus sealed tube 5194 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.082
ω and φ scan θmax = 26.6°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −28→28
Tmin = 0.410, Tmax = 0.745 k = −9→9
36309 measured reflections l = −26→26

Refinement

Refinement on F2 6 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0351P)2 + 3.0856P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.002
6704 reflections Δρmax = 0.90 e Å3
454 parameters Δρmin = −0.83 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a two-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.50684 (3) 0.65510 (8) −0.02260 (3) 0.03022 (19)
C1 0.5402 (2) 0.6223 (7) 0.1219 (3) 0.0341 (12)
C2 0.5610 (2) 0.7024 (8) 0.1931 (3) 0.0352 (12)
C3 0.5619 (3) 0.8829 (7) 0.2013 (3) 0.0473 (14)
H3 0.553854 0.957326 0.163685 0.057*
C4 0.5745 (3) 0.9535 (8) 0.2649 (3) 0.0565 (16)
H4 0.572505 1.075719 0.269696 0.068*
C5 0.5900 (3) 0.8450 (8) 0.3216 (3) 0.0483 (15)
H5 0.598563 0.893345 0.364783 0.058*
C6 0.5929 (3) 0.6635 (7) 0.3145 (3) 0.0451 (14)
C7 0.5772 (3) 0.5917 (8) 0.2496 (3) 0.0409 (13)
H7 0.577578 0.469341 0.244079 0.049*
C8 0.6299 (5) 0.3893 (9) 0.3737 (4) 0.095 (3)
H8A 0.594361 0.328194 0.334527 0.142*
H8B 0.637957 0.332541 0.416971 0.142*
H8C 0.670353 0.385973 0.369359 0.142*
C9 0.3827 (2) 0.5945 (7) −0.0264 (3) 0.0370 (11)
C10 0.3150 (3) 0.6464 (7) −0.0354 (3) 0.0381 (12)
C11 0.2869 (3) 0.8092 (8) −0.0627 (3) 0.0465 (14)
H11 0.308308 0.886444 −0.079308 0.056*
C12 0.2266 (3) 0.8568 (8) −0.0650 (3) 0.0604 (17)
H12 0.206701 0.964655 −0.085164 0.073*
C13 0.1958 (3) 0.7476 (9) −0.0382 (4) 0.0584 (19)
H13 0.155816 0.782540 −0.038909 0.070*
C14 0.2244 (3) 0.5856 (9) −0.0100 (3) 0.0526 (15)
C15 0.2829 (3) 0.5331 (8) −0.0094 (3) 0.0457 (13)
H15 0.301205 0.422211 0.008402 0.055*
C16 0.2158 (4) 0.3189 (9) 0.0455 (5) 0.083 (2)
H16A 0.211575 0.238074 0.009184 0.124*
H16B 0.191200 0.273485 0.068286 0.124*
H16C 0.262557 0.331491 0.079654 0.124*
O1 0.53588 (19) 0.7269 (5) 0.0746 (2) 0.0403 (10)
O2 0.52749 (18) 0.4584 (4) 0.11476 (17) 0.0380 (8)
O3 0.6108 (2) 0.5671 (5) 0.3743 (2) 0.0639 (12)
O4 0.40388 (17) 0.4427 (5) −0.00258 (19) 0.0419 (9)
O5 0.41505 (18) 0.7099 (5) −0.04147 (19) 0.0412 (8)
O6 0.1892 (2) 0.4862 (6) 0.0153 (2) 0.0651 (12)
O7 0.5378 (3) 0.9096 (5) −0.0449 (3) 0.0582 (11)
H7A 0.566 (2) 0.927 (7) −0.059 (3) 0.050 (18)*
H7B 0.530 (3) 1.005 (5) −0.031 (4) 0.10 (3)*
Cu2 1.00357 (3) 0.34185 (7) 0.52545 (3) 0.02704 (17)
C17 0.8821 (2) 0.4364 (7) 0.4052 (3) 0.0344 (11)
C18 0.8143 (2) 0.3902 (6) 0.3454 (3) 0.0335 (11)
C19 0.7823 (2) 0.5098 (7) 0.2908 (3) 0.0378 (11)
H19 0.800444 0.622163 0.293246 0.045*
C20 0.7232 (3) 0.4598 (7) 0.2326 (3) 0.0416 (12)
C21 0.6958 (3) 0.2923 (9) 0.2304 (3) 0.0511 (15)
H21 0.655720 0.258591 0.191294 0.061*
C22 0.7275 (3) 0.1787 (7) 0.2854 (3) 0.0509 (14)
H22 0.708932 0.067457 0.283747 0.061*
C23 0.7873 (3) 0.2266 (8) 0.3437 (3) 0.0450 (15)
H23 0.808799 0.148658 0.381440 0.054*
C24 0.7133 (3) 0.7314 (10) 0.1710 (4) 0.073 (2)
H24A 0.721094 0.799866 0.211808 0.110*
H24B 0.680916 0.791342 0.129157 0.110*
H24C 0.754901 0.717887 0.169388 0.110*
C25 1.0434 (2) 0.3824 (7) 0.4183 (2) 0.0327 (11)
C26 1.0650 (2) 0.3142 (7) 0.3676 (3) 0.0334 (11)
C27 1.0786 (3) 0.1352 (7) 0.3666 (3) 0.0438 (13)
H27 1.077861 0.058767 0.400195 0.053*
C28 1.0931 (3) 0.0720 (8) 0.3153 (3) 0.0532 (16)
H28 1.101825 −0.048261 0.314230 0.064*
C29 1.0948 (3) 0.1821 (8) 0.2661 (3) 0.0499 (15)
H29 1.103129 0.136388 0.230861 0.060*
C30 1.0841 (3) 0.3626 (7) 0.2686 (3) 0.0400 (13)
C31 1.0693 (2) 0.4274 (7) 0.3186 (3) 0.0342 (12)
H31 1.061863 0.548415 0.320089 0.041*
C32 1.1014 (4) 0.6486 (8) 0.2328 (4) 0.0647 (18)
H32A 1.063753 0.700448 0.235440 0.097*
H32B 1.106403 0.703643 0.195349 0.097*
H32C 1.141820 0.666487 0.276769 0.097*
O8 0.91180 (17) 0.3186 (4) 0.44982 (19) 0.0428 (9)
O9 0.90509 (18) 0.5881 (4) 0.40517 (17) 0.0416 (9)
O10 0.68798 (18) 0.5618 (5) 0.1750 (2) 0.0544 (10)
O11 1.0361 (2) 0.2734 (4) 0.4584 (2) 0.0385 (9)
O12 1.0316 (2) 0.5454 (4) 0.41646 (19) 0.0408 (9)
O13 1.0901 (2) 0.4638 (5) 0.2193 (2) 0.0610 (12)
O14 1.0181 (3) 0.0849 (5) 0.5712 (2) 0.0567 (12)
H14B 1.034 (4) 0.074 (8) 0.6150 (11) 0.10 (3)*
H14A 0.998 (3) −0.009 (6) 0.552 (3) 0.09 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0338 (4) 0.0263 (3) 0.0275 (4) 0.0029 (2) 0.0122 (3) 0.0011 (2)
C1 0.019 (2) 0.050 (3) 0.029 (3) 0.004 (2) 0.008 (2) −0.002 (2)
C2 0.025 (3) 0.050 (3) 0.027 (3) −0.004 (2) 0.010 (2) −0.001 (2)
C3 0.051 (3) 0.044 (3) 0.043 (3) −0.001 (3) 0.019 (3) 0.000 (3)
C4 0.066 (4) 0.043 (3) 0.059 (4) −0.001 (3) 0.029 (3) −0.017 (3)
C5 0.045 (3) 0.061 (4) 0.034 (3) 0.001 (3) 0.014 (3) −0.016 (3)
C6 0.041 (3) 0.058 (3) 0.035 (3) 0.001 (3) 0.017 (3) 0.000 (3)
C7 0.045 (3) 0.047 (3) 0.033 (3) 0.000 (2) 0.020 (3) −0.007 (2)
C8 0.157 (8) 0.080 (5) 0.048 (4) 0.050 (5) 0.050 (5) 0.021 (4)
C9 0.032 (3) 0.049 (3) 0.025 (2) 0.007 (2) 0.009 (2) −0.004 (2)
C10 0.032 (3) 0.045 (3) 0.029 (3) 0.006 (2) 0.008 (2) −0.005 (2)
C11 0.038 (3) 0.056 (4) 0.038 (3) 0.011 (3) 0.012 (2) 0.004 (3)
C12 0.040 (3) 0.068 (4) 0.060 (4) 0.025 (3) 0.013 (3) −0.003 (3)
C13 0.033 (4) 0.086 (5) 0.056 (4) 0.008 (3) 0.020 (3) −0.016 (3)
C14 0.034 (3) 0.075 (4) 0.048 (3) 0.000 (3) 0.018 (3) −0.014 (3)
C15 0.039 (3) 0.055 (3) 0.036 (3) 0.001 (3) 0.012 (2) −0.010 (3)
C16 0.080 (5) 0.078 (5) 0.103 (7) −0.007 (4) 0.053 (5) 0.010 (5)
O1 0.047 (3) 0.0385 (19) 0.030 (2) −0.0018 (16) 0.0142 (19) −0.0012 (16)
O2 0.044 (2) 0.0358 (19) 0.0291 (19) −0.0007 (16) 0.0129 (16) −0.0034 (15)
O3 0.095 (3) 0.066 (3) 0.035 (2) 0.022 (2) 0.034 (2) 0.004 (2)
O4 0.0324 (18) 0.044 (2) 0.046 (2) 0.0060 (16) 0.0161 (16) 0.0035 (17)
O5 0.040 (2) 0.042 (2) 0.045 (2) 0.0090 (17) 0.0218 (18) 0.0052 (17)
O6 0.047 (2) 0.082 (3) 0.072 (3) −0.008 (2) 0.033 (2) −0.015 (3)
O7 0.092 (4) 0.031 (2) 0.070 (3) 0.001 (2) 0.053 (3) 0.009 (2)
Cu2 0.0363 (4) 0.0242 (3) 0.0232 (3) −0.0029 (2) 0.0163 (3) −0.0015 (2)
C17 0.033 (3) 0.044 (3) 0.030 (3) 0.000 (2) 0.018 (2) −0.005 (2)
C18 0.031 (2) 0.040 (3) 0.033 (3) −0.005 (2) 0.018 (2) −0.005 (2)
C19 0.033 (3) 0.044 (3) 0.034 (3) −0.005 (2) 0.014 (2) −0.007 (2)
C20 0.033 (3) 0.058 (3) 0.030 (3) 0.004 (2) 0.012 (2) −0.001 (2)
C21 0.042 (4) 0.062 (4) 0.041 (4) −0.008 (3) 0.014 (3) −0.010 (3)
C22 0.045 (3) 0.053 (3) 0.046 (3) −0.019 (3) 0.015 (3) −0.005 (3)
C23 0.045 (4) 0.051 (3) 0.034 (3) −0.009 (3) 0.016 (3) −0.005 (3)
C24 0.065 (4) 0.065 (4) 0.070 (5) −0.001 (4) 0.016 (4) 0.018 (4)
C25 0.036 (3) 0.041 (3) 0.021 (2) −0.005 (2) 0.014 (2) −0.004 (2)
C26 0.032 (3) 0.041 (3) 0.033 (3) −0.007 (2) 0.019 (2) −0.009 (2)
C27 0.054 (3) 0.043 (3) 0.038 (3) 0.005 (3) 0.025 (3) −0.001 (2)
C28 0.074 (4) 0.042 (3) 0.054 (4) 0.011 (3) 0.039 (3) −0.004 (3)
C29 0.063 (4) 0.059 (4) 0.042 (3) 0.004 (3) 0.037 (3) −0.011 (3)
C30 0.045 (3) 0.049 (3) 0.032 (3) −0.010 (3) 0.023 (3) −0.010 (2)
C31 0.039 (3) 0.035 (3) 0.029 (3) −0.004 (2) 0.016 (2) −0.002 (2)
C32 0.084 (5) 0.062 (4) 0.060 (4) −0.022 (3) 0.044 (4) −0.005 (3)
O8 0.038 (2) 0.044 (2) 0.038 (2) −0.0101 (17) 0.0114 (17) −0.0004 (17)
O9 0.041 (2) 0.0380 (18) 0.0358 (19) −0.0083 (16) 0.0105 (17) −0.0045 (16)
O10 0.044 (2) 0.059 (2) 0.042 (2) 0.0012 (18) 0.0057 (18) 0.0023 (19)
O11 0.060 (3) 0.0358 (18) 0.033 (2) −0.0010 (17) 0.033 (2) −0.0042 (15)
O12 0.065 (3) 0.0319 (19) 0.040 (2) −0.0024 (17) 0.036 (2) −0.0039 (15)
O13 0.099 (3) 0.058 (2) 0.047 (2) −0.019 (2) 0.051 (2) −0.013 (2)
O14 0.106 (4) 0.0252 (19) 0.036 (2) −0.012 (2) 0.032 (2) −0.0034 (17)

Geometric parameters (Å, º)

Cu1—O1 1.949 (4) Cu2—O8 1.936 (3)
Cu1—O2i 1.951 (3) Cu2—O9ii 1.953 (3)
Cu1—O5 1.951 (3) Cu2—O12ii 1.964 (3)
Cu1—O4i 1.959 (3) Cu2—O11 1.973 (3)
Cu1—O7 2.171 (4) Cu2—O14 2.126 (4)
Cu1—Cu1i 2.6060 (12) Cu2—Cu2ii 2.5961 (11)
C1—O1 1.254 (6) C17—O8 1.244 (6)
C1—O2 1.261 (6) C17—O9 1.255 (6)
C1—C2 1.500 (7) C17—C18 1.496 (7)
C2—C3 1.370 (7) C18—C23 1.367 (7)
C2—C7 1.374 (8) C18—C19 1.381 (7)
C3—C4 1.367 (9) C19—C20 1.377 (7)
C3—H3 0.9300 C19—H19 0.9300
C4—C5 1.369 (8) C20—O10 1.351 (6)
C4—H4 0.9300 C20—C21 1.396 (8)
C5—C6 1.381 (7) C21—C22 1.355 (8)
C5—H5 0.9300 C21—H21 0.9300
C6—O3 1.362 (7) C22—C23 1.382 (8)
C6—C7 1.378 (8) C22—H22 0.9300
C7—H7 0.9300 C23—H23 0.9300
C8—O3 1.409 (7) C24—O10 1.418 (8)
C8—H8A 0.9600 C24—H24A 0.9600
C8—H8B 0.9600 C24—H24B 0.9600
C8—H8C 0.9600 C24—H24C 0.9600
C9—O4 1.252 (6) C25—O12 1.253 (6)
C9—O5 1.272 (6) C25—O11 1.258 (6)
C9—C10 1.495 (7) C25—C26 1.484 (7)
C10—C11 1.377 (7) C26—C27 1.385 (7)
C10—C15 1.397 (7) C26—C31 1.395 (7)
C11—C12 1.380 (8) C27—C28 1.379 (8)
C11—H11 0.9300 C27—H27 0.9300
C12—C13 1.370 (9) C28—C29 1.361 (8)
C12—H12 0.9300 C28—H28 0.9300
C13—C14 1.379 (9) C29—C30 1.387 (8)
C13—H13 0.9300 C29—H29 0.9300
C14—C15 1.369 (8) C30—C31 1.361 (7)
C14—O6 1.376 (7) C30—O13 1.365 (7)
C15—H15 0.9300 C31—H31 0.9300
C16—O6 1.414 (8) C32—O13 1.420 (6)
C16—H16A 0.9600 C32—H32A 0.9600
C16—H16B 0.9600 C32—H32B 0.9600
C16—H16C 0.9600 C32—H32C 0.9600
O7—H7A 0.835 (19) O14—H14B 0.84 (2)
O7—H7B 0.830 (19) O14—H14A 0.832 (19)
O1—Cu1—O2i 169.12 (15) O8—Cu2—O9ii 168.91 (14)
O1—Cu1—O5 86.87 (16) O8—Cu2—O12ii 89.02 (16)
O2i—Cu1—O5 90.77 (15) O9ii—Cu2—O12ii 89.57 (16)
O1—Cu1—O4i 91.82 (16) O8—Cu2—O11 88.84 (16)
O2i—Cu1—O4i 88.52 (15) O9ii—Cu2—O11 90.47 (16)
O5—Cu1—O4i 169.26 (15) O12ii—Cu2—O11 169.05 (14)
O1—Cu1—O7 90.79 (17) O8—Cu2—O14 100.04 (17)
O2i—Cu1—O7 100.09 (17) O9ii—Cu2—O14 91.05 (17)
O5—Cu1—O7 100.79 (17) O12ii—Cu2—O14 96.79 (16)
O4i—Cu1—O7 89.89 (17) O11—Cu2—O14 94.16 (15)
O1—Cu1—Cu1i 83.50 (11) O8—Cu2—Cu2ii 84.33 (10)
O2i—Cu1—Cu1i 85.81 (10) O9ii—Cu2—Cu2ii 84.59 (10)
O5—Cu1—Cu1i 88.03 (11) O12ii—Cu2—Cu2ii 84.78 (10)
O4i—Cu1—Cu1i 81.23 (11) O11—Cu2—Cu2ii 84.32 (11)
O7—Cu1—Cu1i 169.25 (15) O14—Cu2—Cu2ii 175.37 (14)
O1—C1—O2 126.3 (5) O8—C17—O9 125.4 (5)
O1—C1—C2 116.3 (5) O8—C17—C18 116.9 (4)
O2—C1—C2 117.4 (5) O9—C17—C18 117.6 (5)
C3—C2—C7 120.4 (5) C23—C18—C19 121.4 (5)
C3—C2—C1 120.7 (5) C23—C18—C17 119.4 (5)
C7—C2—C1 118.9 (5) C19—C18—C17 119.1 (4)
C4—C3—C2 120.0 (6) C20—C19—C18 118.8 (5)
C4—C3—H3 120.0 C20—C19—H19 120.6
C2—C3—H3 120.0 C18—C19—H19 120.6
C3—C4—C5 120.2 (5) O10—C20—C19 124.8 (5)
C3—C4—H4 119.9 O10—C20—C21 115.3 (5)
C5—C4—H4 119.9 C19—C20—C21 119.9 (5)
C4—C5—C6 119.9 (5) C22—C21—C20 120.0 (5)
C4—C5—H5 120.1 C22—C21—H21 120.0
C6—C5—H5 120.1 C20—C21—H21 120.0
O3—C6—C7 124.6 (5) C21—C22—C23 120.6 (5)
O3—C6—C5 115.5 (5) C21—C22—H22 119.7
C7—C6—C5 119.9 (5) C23—C22—H22 119.7
C2—C7—C6 119.4 (5) C18—C23—C22 119.2 (6)
C2—C7—H7 120.3 C18—C23—H23 120.4
C6—C7—H7 120.3 C22—C23—H23 120.4
O3—C8—H8A 109.5 O10—C24—H24A 109.5
O3—C8—H8B 109.5 O10—C24—H24B 109.5
H8A—C8—H8B 109.5 H24A—C24—H24B 109.5
O3—C8—H8C 109.5 O10—C24—H24C 109.5
H8A—C8—H8C 109.5 H24A—C24—H24C 109.5
H8B—C8—H8C 109.5 H24B—C24—H24C 109.5
O4—C9—O5 125.2 (5) O12—C25—O11 124.5 (5)
O4—C9—C10 117.3 (5) O12—C25—C26 117.1 (4)
O5—C9—C10 117.4 (5) O11—C25—C26 118.4 (4)
C11—C10—C15 119.7 (5) C27—C26—C31 119.3 (5)
C11—C10—C9 121.5 (5) C27—C26—C25 119.9 (5)
C15—C10—C9 118.6 (5) C31—C26—C25 120.7 (4)
C10—C11—C12 119.4 (6) C28—C27—C26 119.1 (5)
C10—C11—H11 120.3 C28—C27—H27 120.5
C12—C11—H11 120.3 C26—C27—H27 120.5
C13—C12—C11 121.0 (6) C29—C28—C27 121.3 (5)
C13—C12—H12 119.5 C29—C28—H28 119.3
C11—C12—H12 119.5 C27—C28—H28 119.3
C12—C13—C14 119.5 (6) C28—C29—C30 119.8 (5)
C12—C13—H13 120.2 C28—C29—H29 120.1
C14—C13—H13 120.2 C30—C29—H29 120.1
C15—C14—O6 124.8 (6) C31—C30—O13 124.5 (5)
C15—C14—C13 120.4 (6) C31—C30—C29 119.7 (5)
O6—C14—C13 114.8 (5) O13—C30—C29 115.8 (5)
C14—C15—C10 119.9 (5) C30—C31—C26 120.6 (5)
C14—C15—H15 120.0 C30—C31—H31 119.7
C10—C15—H15 120.0 C26—C31—H31 119.7
O6—C16—H16A 109.5 O13—C32—H32A 109.5
O6—C16—H16B 109.5 O13—C32—H32B 109.5
H16A—C16—H16B 109.5 H32A—C32—H32B 109.5
O6—C16—H16C 109.5 O13—C32—H32C 109.5
H16A—C16—H16C 109.5 H32A—C32—H32C 109.5
H16B—C16—H16C 109.5 H32B—C32—H32C 109.5
C1—O1—Cu1 123.6 (3) C17—O8—Cu2 123.5 (3)
C1—O2—Cu1i 120.6 (3) C17—O9—Cu2ii 122.0 (3)
C6—O3—C8 117.0 (5) C20—O10—C24 119.4 (5)
C9—O4—Cu1i 126.7 (3) C25—O11—Cu2 123.2 (3)
C9—O5—Cu1 118.7 (3) C25—O12—Cu2ii 123.2 (3)
C14—O6—C16 118.1 (5) C30—O13—C32 117.6 (4)
Cu1—O7—H7A 127 (4) Cu2—O14—H14B 120 (4)
Cu1—O7—H7B 123 (4) Cu2—O14—H14A 128 (4)
H7A—O7—H7B 109 (3) H14B—O14—H14A 108 (3)
O1—C1—C2—C3 12.5 (7) O8—C17—C18—C23 2.6 (7)
O2—C1—C2—C3 −166.2 (5) O9—C17—C18—C23 −179.6 (5)
O1—C1—C2—C7 −169.6 (5) O8—C17—C18—C19 −173.4 (5)
O2—C1—C2—C7 11.8 (7) O9—C17—C18—C19 4.4 (7)
C7—C2—C3—C4 −4.4 (9) C23—C18—C19—C20 −2.3 (8)
C1—C2—C3—C4 173.6 (5) C17—C18—C19—C20 173.7 (5)
C2—C3—C4—C5 3.6 (10) C18—C19—C20—O10 −178.2 (5)
C3—C4—C5—C6 0.0 (10) C18—C19—C20—C21 1.6 (8)
C4—C5—C6—O3 178.1 (6) O10—C20—C21—C22 179.4 (5)
C4—C5—C6—C7 −2.9 (10) C19—C20—C21—C22 −0.4 (9)
C3—C2—C7—C6 1.4 (8) C20—C21—C22—C23 −0.3 (10)
C1—C2—C7—C6 −176.5 (5) C19—C18—C23—C22 1.6 (9)
O3—C6—C7—C2 −178.9 (5) C17—C18—C23—C22 −174.3 (5)
C5—C6—C7—C2 2.2 (9) C21—C22—C23—C18 −0.3 (10)
O4—C9—C10—C11 −178.6 (5) O12—C25—C26—C27 −179.6 (5)
O5—C9—C10—C11 3.5 (7) O11—C25—C26—C27 −2.0 (7)
O4—C9—C10—C15 7.5 (7) O12—C25—C26—C31 −2.3 (7)
O5—C9—C10—C15 −170.4 (5) O11—C25—C26—C31 175.4 (5)
C15—C10—C11—C12 −1.2 (8) C31—C26—C27—C28 −2.8 (8)
C9—C10—C11—C12 −175.1 (5) C25—C26—C27—C28 174.6 (5)
C10—C11—C12—C13 2.6 (9) C26—C27—C28—C29 0.5 (10)
C11—C12—C13—C14 −1.7 (10) C27—C28—C29—C30 2.2 (10)
C12—C13—C14—C15 −0.6 (9) C28—C29—C30—C31 −2.6 (9)
C12—C13—C14—O6 −179.8 (6) C28—C29—C30—O13 176.8 (6)
O6—C14—C15—C10 −179.0 (5) O13—C30—C31—C26 −179.1 (5)
C13—C14—C15—C10 1.9 (8) C29—C30—C31—C26 0.3 (8)
C11—C10—C15—C14 −1.0 (8) C27—C26—C31—C30 2.4 (8)
C9—C10—C15—C14 173.0 (5) C25—C26—C31—C30 −175.0 (5)
O2—C1—O1—Cu1 0.7 (7) O9—C17—O8—Cu2 −4.5 (7)
C2—C1—O1—Cu1 −177.8 (3) C18—C17—O8—Cu2 173.2 (3)
O1—C1—O2—Cu1i −3.4 (7) O8—C17—O9—Cu2ii 3.9 (7)
C2—C1—O2—Cu1i 175.1 (3) C18—C17—O9—Cu2ii −173.8 (3)
C7—C6—O3—C8 15.7 (10) C19—C20—O10—C24 2.3 (8)
C5—C6—O3—C8 −165.3 (6) C21—C20—O10—C24 −177.5 (6)
O5—C9—O4—Cu1i 3.4 (7) O12—C25—O11—Cu2 0.4 (7)
C10—C9—O4—Cu1i −174.3 (3) C26—C25—O11—Cu2 −177.1 (3)
O4—C9—O5—Cu1 −3.0 (7) O11—C25—O12—Cu2ii −1.9 (7)
C10—C9—O5—Cu1 174.7 (3) C26—C25—O12—Cu2ii 175.6 (3)
C15—C14—O6—C16 1.4 (9) C31—C30—O13—C32 19.3 (9)
C13—C14—O6—C16 −179.5 (6) C29—C30—O13—C32 −160.1 (5)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O7—H7A···O3iii 0.84 (2) 2.11 (3) 2.912 (6) 161 (5)
O7—H7B···O1iv 0.83 (2) 2.42 (5) 3.107 (6) 141 (7)
O7—H7B···O5iv 0.83 (2) 2.60 (5) 3.306 (6) 144 (6)
O14—H14B···O13v 0.84 (2) 2.00 (2) 2.831 (6) 169 (8)
O14—H14A···O11vi 0.83 (2) 2.11 (3) 2.905 (5) 160 (6)
O14—H14A···O14vi 0.83 (2) 2.57 (5) 3.055 (8) 118 (5)
C23—H23···O6vii 0.93 2.52 3.355 (7) 149
C27—H27···O6viii 0.93 2.57 3.114 (7) 117

Symmetry codes: (iii) x, −y+3/2, z−1/2; (iv) −x+1, −y+2, −z; (v) x, −y+1/2, z+1/2; (vi) −x+2, −y, −z+1; (vii) −x+1, y−1/2, −z+1/2; (viii) x+1, −y+1/2, z+1/2.

References

  1. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Doedens, R. J. (1976). Prog. Inorg. Chem. 21, 209–231.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Kar, S., Garai, A., Bala, S. & Purohit, C. S. (2011). Acta Cryst. E67, m557. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  7. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  8. Van Niekerk, J. N. & Schoening, F. R. L. (1953). Nature, 171, 36–37.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620004484/wm4126sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620004484/wm4126Isup3.hkl

x-05-x200448-Isup3.hkl (532.8KB, hkl)

CCDC reference: 1993956

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES