Skip to main content
IUCrData logoLink to IUCrData
. 2020 Jun 12;5(Pt 6):x200759. doi: 10.1107/S2414314620007592

(E)-2-(3,5-Di­meth­oxy­benzyl­idene)indan-1-one

Elvia Encarnacion-Thomas a, Roger D Sommer b, Ajay Mallia a, Joseph Sloop a,*
Editor: M Boltec
PMCID: PMC9462231  PMID: 36340617

The title compound was prepared via a Claisen-Schmidt condensation through a solventless, green synthesis technique. The resulting crystals formed in the monoclinic space group P21/c, and adopting the common E configuration.

Keywords: crystal structure, green synthesis, indanone, chalcone

Abstract

The title chalcone, C18H16O3, was prepared by a solventless base-promoted Claisen–Schmidt condensation and, upon recrystallization from ethanol, obtained in 56% yield. The dihedral angle between the indanone ring system and the benzene ring is 2.54 (4) ° and the C atoms of the methoxy groups deviate from the benzene ring by 0.087 (1) and 0.114 (1) Å. In the crystal, π-stacking is the predominant inter­molecular force, with the mol­ecules stacking into columns running parallel to the b axis of the unit cell. graphic file with name x-05-x200759-scheme1-3D1.jpg

Structure description

The chalcone family of compounds possess an aromatic α,β-unsaturated ketone functionality and can readily be formed by base-promoted condensation–dehydrations of an aromatic aldehyde and an aromatic ketone. They are important pharmacophore scaffolds and can possess anti-inflammatory, anti-fungal, anti-cancer, and anti-malarial biological activities (Singh et al., 2015, 2014; Berthelette et al., 1997). Additionally, the aromatic groups can be functionalized so as to produce other biological effects. The indanone family of compounds are biologically active compounds that are involved in steroid hormone biosynthesis and arachidonic acid metabolism pathways (Berthelette et al., 1997). In addition, indanone derivatives serve as scaffolds for a variety of heterocycles (Sloop et al., 2002, 2012).

The combination of these two potential pharmacophores using greener and more efficient synthesis pathways en route to a series of highly functionalized indanone-based chalcones is now being studied by our research group. The solvent-free Claisen–Schmidt reaction undertaken in Fig. 1 minimizes reaction toxicity, limits waste production and enables easier product isolation in many cases.

Figure 1.

Figure 1

Green synthesis scheme for indanone-based chalcones

In the title mol­ecule (Fig. 2), the dihedral angle between the indanone ring system and the benzene ring is 2.54 (4) ° and the C‘7 and C18 atoms of the methoxy groups deviate from the benzene ring by 0.087 (1) and 0.114 (1) Å, respectively. No unusual bond lengths or angles are noted after a routine Mogul geometry check (Bruno et al., 2004).

Figure 2.

Figure 2

Displacement ellipsoid plot of 1b. Ellipsoids are drawn at the 50% probability level.

The predominant supra­molecular feature of this structure (Fig. 3) are slipped stacking inter­actions. This consists of ring-over-atom pairings between the indanone ring and the 3-position of the di­meth­oxy­phenyl ring of a neighboring mol­ecule and generates a relatively close contact of 2.7 Å for the methyl­ene H atoms of the indanone ring to the adjacent mol­ecule.

Figure 3.

Figure 3

Packing diagram of 1b viewed along the b axis.

Structurally characterized 1b is consistent with known structures of similar indaneones. A search of the Cambridge Structural Database (Version 5.41, update of November 2019; Groom et al., 2016) gave 35 hits with a similar core structure. A defined three-dimensional parameter search on the distance between the carbonyl O atom and the phenyl ring gave a clear indication of the stereochemistry of the double bond. The title compound adopts the more common E isomer – along with 33 of the other structures published – indicated by an O—C distances 4.2 to 4.5 Å. Only two examples of Z isomers (O—C of 3.2 to 3.4 Å) exist [POWZUX (Zhou et al., 2009) and HAVLAR (Mori & Maeda, 1994)]. The latter has seven structure determinations as part of a light-driven solid-state isomerization study (Harada et al., 2009).

Synthesis and crystallization

A 25 mL beaker equipped with a stir bar was charged with 3,5-di­meth­oxy­benzaldehyde (0.50 g, 3.0 mmol) and warmed to 60°C. To the liquified aldehyde was added 1-indanone (0.40 g, 3.0 mmol) and solid NaOH (0.20 g, 3.8 mmol). The reaction mixture was stirred for 30 minutes at 60°C. The resulting reaction mixture was neutralized with 4 mL of 1 M HCl, the resulting residue was washed with several 1 mL aliquots of distilled water and the crude product (0.80 g, 95% yield) isolated via vacuum filtration. Recrystallization from 95% ethanol solution via slow evaporation afforded the target chalcone, (E)-2-(3,5-di­meth­oxy­benzyl­iden­yl)-1-indanone (1b) as colorless needles, (0.47 g, 56% yield). Melting range: 174–175°C. IR, 1H and 13C NMR spectroscopy and single-crystal X-ray analysis (see supporting information) confirmed the product identity.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Table 1. Experimental details.

Crystal data
Chemical formula C18H16O3
M r 280.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.7611 (4), 7.2894 (4), 24.0331 (13)
β (°) 93.5573 (12)
V3) 1357.02 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.39 × 0.12 × 0.05
 
Data collection
Diffractometer Bruker-Nonius X8 Kappa APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.95, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 30838, 5231, 4087
R int 0.040
(sin θ/λ)max−1) 0.772
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.123, 1.02
No. of reflections 5231
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.24

Computer programs: Instrument Service, APEX3 and SAINT (Bruker, 2017), SHELXT (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314620007592/bt4094sup1.cif

x-05-x200759-sup1.cif (925.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620007592/bt4094Isup2.hkl

x-05-x200759-Isup2.hkl (416.3KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620007592/bt4094Isup3.smi

Supporting information file. DOI: 10.1107/S2414314620007592/bt4094Isup4.cml

1H NMR data. DOI: 10.1107/S2414314620007592/bt4094sup5.pdf

x-05-x200759-sup5.pdf (164.5KB, pdf)

13C NMR data. DOI: 10.1107/S2414314620007592/bt4094sup6.pdf

x-05-x200759-sup6.pdf (135.1KB, pdf)

CCDC reference: 1894469

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

All X-ray crystallography measurements were made in the Mol­ecular Education, Technology, and Research Innovation Center (METRIC) at North Carolina State University.

full crystallographic data

Crystal data

C18H16O3 F(000) = 592
Mr = 280.31 Dx = 1.372 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.7611 (4) Å Cell parameters from 242 reflections
b = 7.2894 (4) Å θ = 3.0–33.1°
c = 24.0331 (13) Å µ = 0.09 mm1
β = 93.5573 (12)° T = 100 K
V = 1357.02 (13) Å3 Needle, colourless
Z = 4 0.39 × 0.12 × 0.05 mm

Data collection

Bruker-Nonius X8 Kappa APEXII diffractometer 5231 independent reflections
Radiation source: fine-focus sealed tube 4087 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
Detector resolution: 8.3333 pixels mm-1 θmax = 33.3°, θmin = 2.6°
phi and ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −11→11
Tmin = 0.95, Tmax = 0.99 l = −37→37
30838 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0695P)2 + 0.2851P] where P = (Fo2 + 2Fc2)/3
5231 reflections (Δ/σ)max = 0.001
192 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All hydrogen atoms were seen in the difference map of later refinements, but were placed at calculated positions and refined using a riding model, setting isotropic displacement parameters to 1.2 or 1.5 times that of the parent atom for ring H atoms and methyl groups respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.47855 (9) 0.17474 (11) 0.33135 (3) 0.01698 (15)
O2 1.03362 (8) 0.10918 (10) 0.58143 (3) 0.01475 (14)
O3 0.48827 (9) 0.32457 (10) 0.64602 (3) 0.01472 (14)
C1 0.37431 (12) 0.23058 (12) 0.36368 (4) 0.01126 (16)
C2 0.40164 (11) 0.24728 (12) 0.42550 (4) 0.01007 (15)
C3 0.23699 (11) 0.31671 (12) 0.44870 (4) 0.01069 (16)
H3A 0.191109 0.227118 0.474981 0.013*
H3B 0.256199 0.435489 0.468075 0.013*
C4 0.11611 (11) 0.33843 (12) 0.39744 (4) 0.01048 (16)
C5 0.19615 (12) 0.29325 (12) 0.34906 (4) 0.01129 (16)
C6 0.11094 (12) 0.30860 (13) 0.29642 (4) 0.01457 (18)
H6 0.168019 0.279979 0.263676 0.017*
C7 −0.05951 (13) 0.36685 (14) 0.29328 (4) 0.01710 (19)
H7 −0.120329 0.378944 0.257935 0.021*
C8 −0.14259 (12) 0.40795 (13) 0.34182 (4) 0.01618 (18)
H8 −0.260325 0.444422 0.339062 0.019*
C9 −0.05538 (12) 0.39621 (12) 0.39403 (4) 0.01333 (17)
H9 −0.111664 0.427002 0.426756 0.016*
C10 0.55633 (12) 0.20333 (12) 0.44993 (4) 0.01049 (16)
H10 0.63798 0.160868 0.425033 0.013*
C11 0.62038 (11) 0.20978 (12) 0.50842 (4) 0.00944 (15)
C12 0.79305 (11) 0.15891 (12) 0.52012 (4) 0.01034 (15)
H12 0.86179 0.122965 0.490626 0.012*
C13 0.86425 (11) 0.16081 (12) 0.57468 (4) 0.01032 (15)
C14 0.76564 (11) 0.21385 (12) 0.61855 (4) 0.01067 (16)
H14 0.813948 0.214673 0.655848 0.013*
C15 0.59412 (11) 0.26573 (12) 0.60630 (4) 0.01004 (15)
C16 0.52038 (11) 0.26358 (12) 0.55215 (4) 0.01045 (15)
H16 0.40318 0.298291 0.544834 0.013*
C17 1.10933 (12) 0.09692 (13) 0.63704 (4) 0.01411 (17)
H17A 1.229061 0.054895 0.636091 0.021*
H17B 1.043717 0.009564 0.658384 0.021*
H17C 1.107152 0.217881 0.654776 0.021*
C18 0.54517 (13) 0.30032 (15) 0.70314 (4) 0.01596 (18)
H18A 0.57173 0.170604 0.710108 0.024*
H18B 0.453887 0.339485 0.726921 0.024*
H18C 0.648975 0.374224 0.711613 0.024*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0152 (3) 0.0258 (4) 0.0101 (3) 0.0022 (3) 0.0025 (2) −0.0029 (3)
O2 0.0093 (3) 0.0234 (3) 0.0114 (3) 0.0048 (2) −0.0004 (2) −0.0017 (2)
O3 0.0125 (3) 0.0249 (4) 0.0069 (3) 0.0053 (3) 0.0018 (2) −0.0017 (2)
C1 0.0120 (4) 0.0128 (4) 0.0089 (4) −0.0009 (3) 0.0004 (3) −0.0003 (3)
C2 0.0117 (4) 0.0111 (4) 0.0074 (3) −0.0006 (3) 0.0009 (3) −0.0002 (3)
C3 0.0112 (4) 0.0120 (4) 0.0090 (3) 0.0004 (3) 0.0015 (3) −0.0008 (3)
C4 0.0108 (4) 0.0096 (3) 0.0110 (4) −0.0010 (3) 0.0002 (3) 0.0002 (3)
C5 0.0119 (4) 0.0119 (4) 0.0099 (4) −0.0007 (3) −0.0007 (3) 0.0004 (3)
C6 0.0155 (4) 0.0170 (4) 0.0109 (4) −0.0010 (3) −0.0017 (3) 0.0006 (3)
C7 0.0164 (4) 0.0177 (4) 0.0165 (4) −0.0009 (3) −0.0053 (3) 0.0025 (3)
C8 0.0121 (4) 0.0142 (4) 0.0218 (5) 0.0007 (3) −0.0021 (3) 0.0023 (3)
C9 0.0116 (4) 0.0126 (4) 0.0159 (4) 0.0006 (3) 0.0012 (3) 0.0014 (3)
C10 0.0117 (4) 0.0116 (4) 0.0083 (3) 0.0002 (3) 0.0012 (3) −0.0007 (3)
C11 0.0100 (4) 0.0097 (3) 0.0086 (3) −0.0002 (3) 0.0006 (3) −0.0004 (3)
C12 0.0110 (4) 0.0116 (4) 0.0086 (3) 0.0012 (3) 0.0016 (3) −0.0005 (3)
C13 0.0089 (4) 0.0112 (4) 0.0109 (4) 0.0009 (3) 0.0007 (3) −0.0002 (3)
C14 0.0103 (4) 0.0125 (4) 0.0092 (4) 0.0011 (3) 0.0004 (3) −0.0005 (3)
C15 0.0101 (4) 0.0121 (4) 0.0080 (4) 0.0006 (3) 0.0017 (3) −0.0010 (3)
C16 0.0094 (4) 0.0127 (4) 0.0093 (4) 0.0011 (3) 0.0003 (3) −0.0004 (3)
C17 0.0123 (4) 0.0165 (4) 0.0132 (4) 0.0014 (3) −0.0025 (3) −0.0011 (3)
C18 0.0172 (4) 0.0238 (5) 0.0071 (4) 0.0020 (3) 0.0022 (3) −0.0007 (3)

Geometric parameters (Å, º)

O1—C1 1.2255 (11) C8—H8 0.95
O2—C13 1.3673 (11) C9—H9 0.95
O2—C17 1.4289 (11) C10—C11 1.4623 (12)
O3—C15 1.3665 (11) C10—H10 0.95
O3—C18 1.4267 (11) C11—C16 1.4006 (12)
C1—C5 1.4777 (13) C11—C12 1.4020 (12)
C1—C2 1.4929 (12) C12—C13 1.3912 (12)
C2—C10 1.3421 (12) C12—H12 0.95
C2—C3 1.5127 (13) C13—C14 1.3952 (12)
C3—C4 1.5098 (13) C14—C15 1.3975 (12)
C3—H3A 0.99 C14—H14 0.95
C3—H3B 0.99 C15—C16 1.3890 (12)
C4—C5 1.3913 (12) C16—H16 0.95
C4—C9 1.3935 (12) C17—H17A 0.98
C5—C6 1.3951 (12) C17—H17B 0.98
C6—C7 1.3869 (14) C17—H17C 0.98
C6—H6 0.95 C18—H18A 0.98
C7—C8 1.3999 (15) C18—H18B 0.98
C7—H7 0.95 C18—H18C 0.98
C8—C9 1.3908 (13)
C13—O2—C17 117.69 (7) C2—C10—H10 114.6
C15—O3—C18 118.00 (7) C11—C10—H10 114.6
O1—C1—C5 126.64 (8) C16—C11—C12 119.40 (8)
O1—C1—C2 126.83 (8) C16—C11—C10 123.99 (8)
C5—C1—C2 106.53 (7) C12—C11—C10 116.61 (8)
C10—C2—C1 118.94 (8) C13—C12—C11 120.34 (8)
C10—C2—C3 132.21 (8) C13—C12—H12 119.8
C1—C2—C3 108.84 (7) C11—C12—H12 119.8
C4—C3—C2 103.34 (7) O2—C13—C12 115.58 (8)
C4—C3—H3A 111.1 O2—C13—C14 123.71 (8)
C2—C3—H3A 111.1 C12—C13—C14 120.70 (8)
C4—C3—H3B 111.1 C13—C14—C15 118.42 (8)
C2—C3—H3B 111.1 C13—C14—H14 120.8
H3A—C3—H3B 109.1 C15—C14—H14 120.8
C5—C4—C9 119.79 (8) O3—C15—C16 115.30 (8)
C5—C4—C3 111.71 (8) O3—C15—C14 122.96 (8)
C9—C4—C3 128.50 (8) C16—C15—C14 121.73 (8)
C4—C5—C6 121.84 (8) C15—C16—C11 119.40 (8)
C4—C5—C1 109.53 (8) C15—C16—H16 120.3
C6—C5—C1 128.63 (8) C11—C16—H16 120.3
C7—C6—C5 118.09 (9) O2—C17—H17A 109.5
C7—C6—H6 121.0 O2—C17—H17B 109.5
C5—C6—H6 121.0 H17A—C17—H17B 109.5
C6—C7—C8 120.48 (9) O2—C17—H17C 109.5
C6—C7—H7 119.8 H17A—C17—H17C 109.5
C8—C7—H7 119.8 H17B—C17—H17C 109.5
C9—C8—C7 121.00 (9) O3—C18—H18A 109.5
C9—C8—H8 119.5 O3—C18—H18B 109.5
C7—C8—H8 119.5 H18A—C18—H18B 109.5
C8—C9—C4 118.77 (9) O3—C18—H18C 109.5
C8—C9—H9 120.6 H18A—C18—H18C 109.5
C4—C9—H9 120.6 H18B—C18—H18C 109.5
C2—C10—C11 130.87 (8)
O1—C1—C2—C10 2.20 (14) C3—C4—C9—C8 179.35 (9)
C5—C1—C2—C10 −178.24 (8) C1—C2—C10—C11 178.55 (9)
O1—C1—C2—C3 −178.27 (9) C3—C2—C10—C11 −0.85 (17)
C5—C1—C2—C3 1.28 (9) C2—C10—C11—C16 1.67 (15)
C10—C2—C3—C4 179.41 (10) C2—C10—C11—C12 −178.08 (9)
C1—C2—C3—C4 −0.03 (9) C16—C11—C12—C13 0.36 (13)
C2—C3—C4—C5 −1.36 (9) C10—C11—C12—C13 −179.87 (8)
C2—C3—C4—C9 179.02 (9) C17—O2—C13—C12 −175.86 (8)
C9—C4—C5—C6 1.74 (14) C17—O2—C13—C14 4.54 (13)
C3—C4—C5—C6 −177.92 (8) C11—C12—C13—O2 −179.86 (8)
C9—C4—C5—C1 −178.10 (8) C11—C12—C13—C14 −0.25 (13)
C3—C4—C5—C1 2.24 (10) O2—C13—C14—C15 179.29 (8)
O1—C1—C5—C4 177.40 (9) C12—C13—C14—C15 −0.29 (13)
C2—C1—C5—C4 −2.16 (10) C18—O3—C15—C16 169.35 (8)
O1—C1—C5—C6 −2.42 (16) C18—O3—C15—C14 −11.69 (13)
C2—C1—C5—C6 178.02 (9) C13—C14—C15—O3 −178.18 (8)
C4—C5—C6—C7 −1.47 (14) C13—C14—C15—C16 0.72 (13)
C1—C5—C6—C7 178.33 (9) O3—C15—C16—C11 178.37 (8)
C5—C6—C7—C8 −0.26 (14) C14—C15—C16—C11 −0.61 (13)
C6—C7—C8—C9 1.73 (15) C12—C11—C16—C15 0.06 (13)
C7—C8—C9—C4 −1.46 (14) C10—C11—C16—C15 −179.69 (8)
C5—C4—C9—C8 −0.24 (13)

Funding Statement

Funding for this research was provided by: GGC STEC 4500 Research Fund.

References

  1. Berthelette, C., McCooye, C., Leblanc, Y., Trimble, L. A. & Tsou, N. N. (1997). J. Org. Chem. 62, 4339–4342. [DOI] [PubMed]
  2. Bruker (2017). Instrument Service, APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. [DOI] [PubMed]
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Harada, J., Harakawa, M., Sugiyama, S. & Ogawa, K. (2009). CrystEngComm, 11, 1235–1239.
  6. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  7. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  8. Mori, Y. & Maeda, K. (1994). Acta Cryst. B50, 106–112.
  9. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  10. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  11. Singh, A., Fatima, K., Singh, A., Behl, A., Mintoo, M., Hasanain, M., Ashraf, R., Luqman, S., Shanker, K., Mondhe, D., Sarkar, J., Chanda, D. & Negi, A. S. (2015). Eur. J. Pharm. Sci. 76, 57–67. [DOI] [PubMed]
  12. Singh, P., Anand, A. & Kumar, V. (2014). Eur. J. Med. Chem. 85, 758–777. [DOI] [PubMed]
  13. Sloop, J., Boyle, P., Fountain, A. W., Gomez, C., Jackson, J., Pearman, W., Schmidt, R. & Weyand, J. (2012). Appl. Sci. 2, 61–99.
  14. Sloop, J., Bumgardner, C. & Loehle, W. D. (2002). J. Fluor. Chem. 118, 135–147.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Zhou, Y.-X., Wang, J.-Q., Du, R.-J., Tang, J.-G. & Guo, C. (2009). Acta Cryst. E65, o1936. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314620007592/bt4094sup1.cif

x-05-x200759-sup1.cif (925.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620007592/bt4094Isup2.hkl

x-05-x200759-Isup2.hkl (416.3KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620007592/bt4094Isup3.smi

Supporting information file. DOI: 10.1107/S2414314620007592/bt4094Isup4.cml

1H NMR data. DOI: 10.1107/S2414314620007592/bt4094sup5.pdf

x-05-x200759-sup5.pdf (164.5KB, pdf)

13C NMR data. DOI: 10.1107/S2414314620007592/bt4094sup6.pdf

x-05-x200759-sup6.pdf (135.1KB, pdf)

CCDC reference: 1894469

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES