Skip to main content
IUCrData logoLink to IUCrData
. 2020 Aug 4;5(Pt 8):x201048. doi: 10.1107/S2414314620010482

[2,2′-Bis(di­phenyl­phosphan­yl)-1,1′-binaphthyl-κ2 P,P′]di­chlorido­platinum(II) acetonitrile trisolvate

Jason D Braun a, Guneet Uppal a, David E Herbert a,*
Editor: O Blacqueb
PMCID: PMC9462241  PMID: 36338509

The crystal structure of racemic di­chloro­[2,2′-bis­(di­phenyl­phosphino)-1,1′-binaphth­yl]platinum(II) has been determined at 150 K. The asymmetric unit consists of a single mol­ecule of the title compound co-crystallized with three aceto­nitrile solvent mol­ecules.

Keywords: crystal structure, racemate, platinum, metallic complex

Abstract

The crystal structure (150 K) of the racemic title compound, [PtCl2(C44H32P2)]·3CH3CN, has been determined. The asymmetric unit comprises a single mol­ecule of the title compound co-crystallized with three aceto­nitrile solvent mol­ecules. Four mol­ecules are observed in the unit cell, with R and S enanti­omers present in a 2:2 ratio. Evidence of intra­molecular π-stacking is observed with no discernable inter­molecular inter­actions. graphic file with name x-05-x201048-scheme1-3D1.jpg

Structure description

The increasing demand for chiral compounds in the pharmaceutical, agrochemical and food industries has driven the development of chiral ligands and coordination complexes, which can perform asymmetric catalysis to yield desirable organic mol­ecules with high enanti­oselectivities (Noyori, 1994). Popular design motifs for chiral ligands are those that incorporate an atropisomeric backbone featuring C 2 symmetry (Genet et al., 2014). 2,2′-Bis(di­phenyl­phosphino)-1,1′-binaphthyl (BINAP, Fig. 1), first developed by Noyori and Takaya in 1980 (Miyashita et al., 1980), fits this brief. In the decades since its appearance in the literature, BINAP derivatives have been used to construct a wide variety of coordination complexes, typically involving late transition metals (Misra et al., 2017). Palladium complexes of BINAP have been historically amongst the most common (Pereira et al., 2013). They are exceptionally popular due to their successful and versatile application as catalysts in a variety of organic reactions such as the enanti­oselective benzoyl­ation of alcohols (Iwata et al., 2002) and asymmetric alkyl­ations (Guerrero-Ríos & Martin, 2014). Although less common than complexes of the second-row metal Pd, atropisomers of (BINAP)PtCl2 (Fig. 2) have found use in catalytic reactions such as enanti­oselective Baeyer–Villiger oxidations of cyclic ketones with hydrogen peroxide (Strukul et al., 1997) and as precatalysts for asymmetric carbonyl-ene reactions (Doherty et al., 2006). Enanti­omeric complexes of the formula L 2PtCl2 including (BINAP)PtCl2 have also been examined for their cytotoxic activity against cancer cell lines and their ability to bind to the human telomeric sequence folded in the G-quadruplex structure (Bombard et al., 2010). There is therefore significant inter­est in elucidating the solid-state structures of these types of compounds to help guide future design strategies appropriate for particular applications.

Figure 1.

Figure 1

BINAP atropisomers.

Figure 2.

Figure 2

Atropisomers of (BINAP)PtCl2.

While the structure of {(R)-BINAP}PtCl2 has been described as a di­chloro­methane solvate in the ortho­rhom­bic space group P212121 (Doherty et al., 2006), the corresponding racemate (racBINAP)PtCl2 has yet to be structurally characterized. We report here the solid-state crystal structure of (racBINAP)PtCl2 determined via single-crystal X-ray diffraction and discuss its structural properties. The solid-state structure of [racBINAP]PtCl2 obtained by modelling single-crystal X-ray diffraction data is shown in Fig. 3 with selected bonds and angles in Table 1. The compound crystallizes in the monoclinic space group P21/c with three aceto­nitrile solvent mol­ecules present within the asymmetric unit. The complex adopts a slightly distorted square-planar coordination geometry about the central PtII atom with trans atoms situated at bond angles of 171°, resulting in a τ4 value of 0.12. The bidentate BINAP ligand coordinates to Pt with a bite angle (P1—Pt1—P2) of 92.87 (3)°, consistent with typical literature values of approximately 93° (Birkholz et al., 2009). Evidence of intra­molecular π stacking between naphthyl and phenyl substituents is observed, generating close contacts ranging from 3.2 to 4.0 Å. Fig. 4 shows the distances between calculated centroids of two of the phospho­rus phenyl substituents and the nearest six membered carbon ring of a napthyl unit.

Figure 3.

Figure 3

Solid-state structure of (BINAP)PtCl2 showing (a) fully atom labels of the R enanti­omer and (b) side-on views of both R and S atropisomers present the crystal structure. Displacement ellipsoids are shown at the 50% probability. Hydrogen atoms and co-crystallized aceto­nitrile solvent mol­ecules are omitted for clarity.

Table 1. Selected geometric parameters (Å, °).

Pt1—Cl1 2.3518 (8) P1—Pt1 2.2447 (8)
Pt1—Cl2 2.3536 (8) P2—Pt1 2.2422 (8)
       
Cl1—Pt1—Cl2 87.44 (3) P2—Pt1—Cl1 170.91 (3)
P1—Pt1—Cl1 90.31 (3) P2—Pt1—Cl2 90.62 (3)
P1—Pt1—Cl2 171.33 (3) P2—Pt1—P1 92.87 (3)

Figure 4.

Figure 4

View showing the close intramolecular contacts between the naphthyl and phenyl rings in the title compound.

Compared to the Pd analogue (Véron et al., 2013), the Pt—Cl bond lengths [Pt1—Cl1 = 2.3518 (8) Å; Pt1—Cl2 = 2.3536 (8) Å]) are only around 0.01 Å longer. The two Pt—Cl distances are also statistically indistinguishable, implying similar orbital overlap between the PtII metal centre and the strong trans phosphine donors. An only slightly acute Cl1—Pt1—Cl2 angle of 87.44 (3)° is observed, indicating slight steric repulsion from the di­phenyl­phosphine arms. Angles closer to the ideal of 90° are seen between cis-disposed phospho­rus and chlorine atoms. The bond lengths involving the Pt metal centre are similar to those in the enanti­opure (R-BINAP)PtCl2 (Doherty et al., 2006); however, deviations are observed in several of the angles.

In a single unit cell, four mol­ecules can be found (Fig. 5), with two of each enanti­omer present. Inter­estingly, no significant inter­molecular inter­actions are present within the sum of the van der Waals radii. The closest inter­molecular inter­action stems from hydrogen bonds between neighbouring aceto­nitrile solvent mol­ecules. These inter­actions are all greater than 3.40 Å and so were not investigated any further. Distances of 3.30 to 3.70 Å can be observed between naphthyl carbon atoms of neighbouring complexes; however, the arrangement is not stacked and so not likely to be significant.

Figure 5.

Figure 5

A projection showing the unit-cell contents and packing of (racBINAP)PtCl2. Displacement ellipsoids are shown at 50% probability level. Hydrogen atoms are omitted for clarity.

Synthesis and crystallization

Crystals of (racBINAP)PtCl2 were obtained as a side-product from a reaction mixture of (COD)PtCl2 and a tridentate, di­aryl­amido-N,N-phenanthridine-based ligand (Mandapati et al., 2019). BINAP was used to construct this ligand via a Pd-cross coupling reaction and was not completely removed from the proligand before metalation. Crystal-structure data were collected from a multi-faceted crystal of suitable size and quality selected from a representative sample of crystals of the same habit using an optical microscope.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [PtCl2(C44H32P2)]·3C2H3N
M r 1011.79
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 11.3681 (4), 12.5001 (4), 30.7944 (11)
β (°) 96.439 (2)
V3) 4348.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.46
Crystal size (mm) 0.39 × 0.19 × 0.13
 
Data collection
Diffractometer Bruker D8 Quest ECO CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.553, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 142092, 13302, 11205
R int 0.079
(sin θ/λ)max−1) 0.715
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.072, 1.09
No. of reflections 13302
No. of parameters 526
No. of restraints 18
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.25, −1.49

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620010482/zq2254sup1.cif

x-05-x201048-sup1.cif (4.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620010482/zq2254Isup2.hkl

Supporting information file. DOI: 10.1107/S2414314620010482/zq2254Isup3.cml

Supporting tables and experimental information. DOI: 10.1107/S2414314620010482/zq2254sup4.pdf

x-05-x201048-sup4.pdf (222.7KB, pdf)

CCDC reference: 2020002

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

[PtCl2(C44H32P2)]·3C2H3N F(000) = 2016
Mr = 1011.79 Dx = 1.546 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.3681 (4) Å Cell parameters from 9175 reflections
b = 12.5001 (4) Å θ = 2.4–30.5°
c = 30.7944 (11) Å µ = 3.46 mm1
β = 96.439 (2)° T = 150 K
V = 4348.4 (3) Å3 Block, orange
Z = 4 0.39 × 0.19 × 0.13 mm

Data collection

Bruker D8 Quest ECO CMOS diffractometer 11205 reflections with I > 2σ(I)
Radiation source: fine–focus tube Rint = 0.079
φ and ω scans θmax = 30.6°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −16→16
Tmin = 0.553, Tmax = 0.746 k = −17→17
142092 measured reflections l = −44→44
13302 independent reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0143P)2 + 16.231P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.003
13302 reflections Δρmax = 1.25 e Å3
526 parameters Δρmin = −1.49 e Å3
18 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. A single-crystal was mounted on a MiTiGen loop and data collection was carried out in a cold stream of nitrogen. All diffractometer manipulations were carried out using Bruker APEX3 software (Bruker-AXS, 2016). Structure solution and refinement were carried out in the OLEX2 (Dolomanov et al., 2009) program using SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b) softwares. All hydrogen atoms within the structure were placed in geometrically idealized positions and were constrained to ride on their parent atoms (C–H = 0.95 Å). The absence of additional symmetry was confirmed using ADDSYM incorporated in the PLATON program (Spek, 2020). The presence of inter- or intramolecular hydrogen bonds was probed, but not observed below a limit of 3.40 Å with a D–H···A angle of less than 120°.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2521 (3) 0.1586 (3) 0.40291 (10) 0.0175 (6)
C2 0.2621 (3) 0.0859 (3) 0.43763 (11) 0.0218 (7)
H2 0.302614 0.020146 0.435151 0.026*
C3 0.2128 (3) 0.1098 (4) 0.47570 (12) 0.0309 (9)
H3 0.220148 0.060652 0.499378 0.037*
C4 0.1533 (3) 0.2046 (4) 0.47912 (13) 0.0367 (10)
H4 0.119892 0.220626 0.505285 0.044*
C5 0.1415 (3) 0.2765 (4) 0.44510 (14) 0.0350 (9)
H5 0.100082 0.341684 0.447939 0.042*
C6 0.1902 (3) 0.2542 (3) 0.40638 (12) 0.0237 (7)
H6 0.181422 0.303483 0.382742 0.028*
C7 0.2479 (3) 0.0151 (3) 0.32864 (10) 0.0159 (6)
C8 0.1587 (3) −0.0380 (3) 0.34728 (12) 0.0231 (7)
H8 0.135936 −0.014840 0.374495 0.028*
C9 0.1026 (4) −0.1259 (3) 0.32576 (13) 0.0305 (8)
H9 0.041022 −0.161847 0.338345 0.037*
C10 0.1359 (3) −0.1609 (3) 0.28637 (13) 0.0272 (8)
H10 0.098355 −0.221397 0.272208 0.033*
C11 0.2243 (3) −0.1073 (3) 0.26758 (11) 0.0228 (7)
H11 0.247682 −0.131209 0.240550 0.027*
C12 0.2784 (3) −0.0190 (3) 0.28826 (10) 0.0182 (6)
H12 0.337044 0.018842 0.274784 0.022*
C13 0.4718 (3) 0.0833 (2) 0.37430 (9) 0.0123 (5)
C14 0.5161 (3) −0.0090 (2) 0.35467 (10) 0.0139 (6)
H14 0.464981 −0.048898 0.334186 0.017*
C15 0.6304 (3) −0.0415 (2) 0.36460 (10) 0.0161 (6)
H15 0.657915 −0.102753 0.350507 0.019*
C16 0.7085 (3) 0.0145 (2) 0.39555 (10) 0.0147 (6)
C17 0.8273 (3) −0.0188 (3) 0.40605 (11) 0.0215 (7)
H17 0.855246 −0.080496 0.392353 0.026*
C18 0.9025 (3) 0.0369 (3) 0.43572 (12) 0.0247 (7)
H18 0.981974 0.013862 0.442746 0.030*
C19 0.8609 (3) 0.1288 (3) 0.45579 (11) 0.0232 (7)
H19 0.913246 0.167801 0.476178 0.028*
C20 0.7463 (3) 0.1628 (3) 0.44639 (10) 0.0176 (6)
H20 0.720221 0.224811 0.460328 0.021*
C21 0.6662 (3) 0.1061 (2) 0.41602 (10) 0.0140 (6)
C22 0.5464 (3) 0.1407 (2) 0.40469 (9) 0.0123 (5)
C23 0.5052 (3) 0.2397 (2) 0.42572 (9) 0.0131 (5)
C24 0.4825 (3) 0.3333 (2) 0.40198 (9) 0.0128 (5)
C25 0.4400 (3) 0.4247 (2) 0.42271 (10) 0.0158 (6)
H25 0.426277 0.489099 0.406547 0.019*
C26 0.4186 (3) 0.4219 (3) 0.46534 (10) 0.0171 (6)
H26 0.387404 0.483429 0.478066 0.020*
C27 0.4419 (3) 0.3292 (2) 0.49086 (10) 0.0148 (6)
C28 0.4214 (3) 0.3262 (3) 0.53539 (10) 0.0195 (6)
H28 0.391311 0.387923 0.548380 0.023*
C29 0.4443 (3) 0.2361 (3) 0.55992 (10) 0.0219 (6)
H29 0.429616 0.234811 0.589678 0.026*
C30 0.4899 (3) 0.1448 (3) 0.54072 (10) 0.0199 (6)
H30 0.505993 0.082119 0.557782 0.024*
C31 0.5114 (3) 0.1453 (2) 0.49788 (10) 0.0162 (6)
H31 0.542657 0.083009 0.485726 0.019*
C32 0.4877 (3) 0.2373 (2) 0.47126 (9) 0.0128 (5)
C33 0.4989 (3) 0.4806 (3) 0.33082 (10) 0.0168 (6)
C34 0.3962 (3) 0.5418 (3) 0.33043 (11) 0.0203 (7)
H34 0.325124 0.509001 0.337272 0.024*
C35 0.3965 (4) 0.6497 (3) 0.32019 (11) 0.0252 (7)
H35 0.326574 0.691091 0.320763 0.030*
C36 0.4990 (4) 0.6970 (3) 0.30914 (12) 0.0307 (9)
H36 0.499050 0.770707 0.301582 0.037*
C37 0.6009 (4) 0.6378 (3) 0.30905 (13) 0.0302 (8)
H37 0.671299 0.670836 0.301692 0.036*
C38 0.6014 (3) 0.5294 (3) 0.31972 (12) 0.0236 (7)
H38 0.671870 0.488684 0.319405 0.028*
C39 0.6310 (3) 0.2806 (2) 0.33394 (10) 0.0154 (6)
C40 0.6356 (3) 0.2005 (3) 0.30250 (10) 0.0174 (6)
H40 0.565041 0.177771 0.285560 0.021*
C41 0.7432 (3) 0.1544 (3) 0.29603 (12) 0.0245 (7)
H41 0.745961 0.099678 0.274747 0.029*
C42 0.8462 (3) 0.1873 (3) 0.32027 (13) 0.0265 (8)
H42 0.919463 0.154959 0.315777 0.032*
C43 0.8429 (3) 0.2678 (3) 0.35128 (12) 0.0257 (7)
H43 0.914178 0.291634 0.367440 0.031*
C44 0.7358 (3) 0.3132 (3) 0.35860 (11) 0.0207 (7)
H44 0.733391 0.366573 0.380423 0.025*
C45 0.0714 (4) 0.5037 (4) 0.32714 (18) 0.0429 (11)
C46 0.0589 (4) 0.5036 (4) 0.28013 (17) 0.0473 (12)
H46A 0.122395 0.546344 0.269788 0.071*
H46B −0.017963 0.534298 0.269059 0.071*
H46C 0.063717 0.429940 0.269533 0.071*
C47 0.8616 (4) 0.2521 (4) 0.56830 (15) 0.0408 (10)
C48 0.7545 (5) 0.3114 (6) 0.5712 (2) 0.0727 (19)
H48A 0.774248 0.385073 0.580191 0.109*
H48B 0.709346 0.277725 0.592839 0.109*
H48C 0.706889 0.311867 0.542659 0.109*
Cl1 0.14268 (7) 0.21270 (7) 0.27128 (3) 0.02745 (19)
Cl2 0.34019 (8) 0.38528 (6) 0.24790 (2) 0.02091 (16)
N1 0.0830 (6) 0.5016 (5) 0.3642 (2) 0.0805 (17)
N2 0.9465 (5) 0.2073 (4) 0.56653 (16) 0.0643 (14)
P1 0.32310 (7) 0.13146 (6) 0.35451 (2) 0.01190 (14)
P2 0.49025 (7) 0.33817 (6) 0.34282 (2) 0.01222 (14)
Pt1 0.32836 (2) 0.26525 (2) 0.30614 (2) 0.01414 (3)
C51 0.8660 (10) 0.5704 (9) 0.4281 (4) 0.144 (3)
H51A 0.894116 0.636153 0.443150 0.216*
H51B 0.790640 0.584487 0.410230 0.216*
H51C 0.924592 0.546071 0.409218 0.216*
C52 0.8493 (11) 0.4896 (11) 0.4595 (5) 0.142 (3)
N3 0.8066 (10) 0.4370 (8) 0.4778 (4) 0.144 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0155 (14) 0.0225 (16) 0.0150 (14) −0.0041 (12) 0.0049 (11) −0.0059 (12)
C2 0.0181 (16) 0.0295 (18) 0.0180 (15) −0.0067 (13) 0.0028 (12) 0.0005 (13)
C3 0.0261 (19) 0.053 (3) 0.0149 (16) −0.0179 (17) 0.0061 (14) −0.0020 (15)
C4 0.0241 (18) 0.066 (3) 0.0225 (18) −0.0163 (19) 0.0125 (15) −0.0214 (18)
C5 0.0227 (18) 0.045 (2) 0.039 (2) −0.0012 (17) 0.0096 (16) −0.0223 (19)
C6 0.0174 (15) 0.0272 (19) 0.0268 (17) −0.0012 (13) 0.0036 (12) −0.0075 (14)
C7 0.0163 (14) 0.0158 (15) 0.0148 (14) −0.0016 (11) −0.0016 (11) 0.0010 (11)
C8 0.0231 (17) 0.0245 (18) 0.0220 (16) −0.0072 (13) 0.0038 (13) −0.0031 (13)
C9 0.031 (2) 0.028 (2) 0.032 (2) −0.0154 (16) 0.0050 (16) −0.0027 (15)
C10 0.0298 (19) 0.0165 (16) 0.034 (2) −0.0084 (14) −0.0038 (15) −0.0042 (14)
C11 0.0272 (18) 0.0200 (16) 0.0202 (16) −0.0010 (13) −0.0010 (13) −0.0050 (13)
C12 0.0213 (16) 0.0164 (15) 0.0169 (15) 0.0004 (12) 0.0023 (12) −0.0017 (11)
C13 0.0143 (13) 0.0108 (13) 0.0122 (13) −0.0014 (10) 0.0030 (10) 0.0018 (10)
C14 0.0184 (15) 0.0116 (13) 0.0116 (13) −0.0014 (11) 0.0017 (11) −0.0012 (10)
C15 0.0203 (15) 0.0139 (14) 0.0147 (14) 0.0022 (11) 0.0042 (11) −0.0017 (11)
C16 0.0140 (14) 0.0157 (14) 0.0152 (14) 0.0018 (11) 0.0045 (11) 0.0007 (11)
C17 0.0186 (16) 0.0241 (17) 0.0222 (16) 0.0047 (13) 0.0035 (13) −0.0016 (13)
C18 0.0121 (15) 0.035 (2) 0.0271 (18) 0.0024 (13) 0.0014 (13) 0.0002 (15)
C19 0.0176 (16) 0.0303 (19) 0.0211 (16) −0.0035 (13) −0.0002 (13) −0.0020 (13)
C20 0.0150 (14) 0.0200 (15) 0.0182 (15) −0.0007 (12) 0.0032 (11) −0.0015 (12)
C21 0.0138 (14) 0.0150 (14) 0.0134 (13) −0.0017 (11) 0.0031 (11) 0.0010 (11)
C22 0.0153 (14) 0.0098 (13) 0.0124 (13) −0.0026 (10) 0.0038 (10) 0.0004 (10)
C23 0.0143 (13) 0.0111 (13) 0.0141 (13) −0.0011 (11) 0.0020 (10) −0.0004 (10)
C24 0.0126 (13) 0.0125 (13) 0.0129 (13) −0.0020 (10) 0.0005 (10) −0.0012 (10)
C25 0.0176 (15) 0.0136 (14) 0.0159 (14) 0.0016 (11) 0.0008 (11) 0.0012 (11)
C26 0.0212 (16) 0.0140 (14) 0.0162 (14) 0.0022 (12) 0.0031 (12) −0.0026 (11)
C27 0.0158 (14) 0.0146 (14) 0.0143 (14) −0.0012 (11) 0.0034 (11) −0.0025 (11)
C28 0.0240 (17) 0.0196 (16) 0.0161 (15) −0.0012 (13) 0.0068 (12) −0.0045 (12)
C29 0.0301 (17) 0.0230 (16) 0.0136 (13) −0.0032 (14) 0.0061 (12) −0.0017 (12)
C30 0.0286 (18) 0.0169 (15) 0.0144 (14) −0.0003 (13) 0.0032 (13) 0.0026 (11)
C31 0.0195 (15) 0.0138 (14) 0.0154 (14) −0.0007 (11) 0.0020 (11) 0.0002 (11)
C32 0.0135 (12) 0.0119 (13) 0.0129 (12) −0.0012 (11) 0.0010 (10) −0.0007 (10)
C33 0.0250 (16) 0.0147 (14) 0.0105 (13) −0.0017 (12) 0.0009 (12) 0.0013 (10)
C34 0.0293 (18) 0.0139 (15) 0.0175 (15) 0.0008 (13) 0.0015 (13) 0.0026 (11)
C35 0.040 (2) 0.0167 (16) 0.0188 (16) 0.0063 (14) 0.0027 (14) 0.0001 (12)
C36 0.059 (3) 0.0129 (15) 0.0209 (17) −0.0026 (16) 0.0075 (17) 0.0009 (13)
C37 0.043 (2) 0.0193 (17) 0.0300 (19) −0.0100 (16) 0.0134 (17) 0.0004 (14)
C38 0.0307 (19) 0.0180 (16) 0.0238 (17) −0.0045 (14) 0.0108 (14) 0.0023 (13)
C39 0.0167 (14) 0.0157 (15) 0.0142 (13) −0.0010 (11) 0.0037 (11) 0.0025 (11)
C40 0.0206 (15) 0.0154 (14) 0.0172 (14) −0.0013 (12) 0.0058 (12) 0.0018 (11)
C41 0.0281 (18) 0.0193 (17) 0.0284 (18) 0.0025 (14) 0.0134 (15) 0.0000 (13)
C42 0.0178 (16) 0.0291 (19) 0.0342 (19) 0.0051 (14) 0.0097 (14) 0.0091 (15)
C43 0.0167 (15) 0.0324 (18) 0.0283 (17) −0.0045 (14) 0.0034 (13) 0.0076 (15)
C44 0.0190 (16) 0.0237 (17) 0.0195 (15) −0.0051 (13) 0.0025 (12) 0.0009 (13)
C45 0.030 (2) 0.043 (3) 0.056 (3) 0.0023 (19) 0.006 (2) −0.003 (2)
C46 0.036 (2) 0.048 (3) 0.054 (3) 0.010 (2) −0.007 (2) −0.002 (2)
C47 0.046 (3) 0.043 (3) 0.034 (2) 0.003 (2) 0.0074 (18) −0.0024 (19)
C48 0.037 (3) 0.092 (5) 0.088 (5) 0.011 (3) 0.001 (3) −0.031 (4)
Cl1 0.0199 (4) 0.0220 (4) 0.0371 (5) −0.0016 (3) −0.0112 (3) 0.0027 (3)
Cl2 0.0344 (4) 0.0152 (3) 0.0128 (3) 0.0019 (3) 0.0008 (3) 0.0034 (3)
N1 0.091 (5) 0.086 (4) 0.066 (4) 0.013 (3) 0.019 (3) −0.001 (3)
N2 0.071 (3) 0.069 (3) 0.054 (3) 0.029 (3) 0.013 (2) 0.001 (2)
P1 0.0128 (3) 0.0113 (3) 0.0118 (3) −0.0015 (3) 0.0020 (3) −0.0003 (3)
P2 0.0151 (4) 0.0104 (3) 0.0114 (3) −0.0009 (3) 0.0024 (3) 0.0009 (3)
Pt1 0.01585 (5) 0.01254 (5) 0.01380 (5) 0.00102 (5) 0.00066 (4) 0.00026 (4)
C51 0.144 (6) 0.130 (7) 0.170 (8) −0.018 (5) 0.072 (4) −0.085 (6)
C52 0.142 (6) 0.128 (7) 0.168 (8) −0.018 (5) 0.071 (5) −0.086 (6)
N3 0.145 (6) 0.130 (7) 0.170 (8) −0.016 (5) 0.068 (4) −0.085 (6)

Geometric parameters (Å, º)

C1—C2 1.398 (5) C27—C32 1.423 (4)
C1—C6 1.397 (5) C28—H28 0.9500
C1—P1 1.805 (3) C28—C29 1.366 (5)
C2—H2 0.9500 C29—H29 0.9500
C2—C3 1.387 (5) C29—C30 1.410 (5)
C3—H3 0.9500 C30—H30 0.9500
C3—C4 1.374 (6) C30—C31 1.368 (4)
C4—H4 0.9500 C31—H31 0.9500
C4—C5 1.376 (7) C31—C32 1.421 (4)
C5—H5 0.9500 C33—C34 1.395 (5)
C5—C6 1.398 (5) C33—C38 1.391 (5)
C6—H6 0.9500 C33—P2 1.824 (3)
C7—C8 1.389 (5) C34—H34 0.9500
C7—C12 1.395 (4) C34—C35 1.386 (5)
C7—P1 1.825 (3) C35—H35 0.9500
C8—H8 0.9500 C35—C36 1.383 (6)
C8—C9 1.399 (5) C36—H36 0.9500
C9—H9 0.9500 C36—C37 1.375 (6)
C9—C10 1.381 (5) C37—H37 0.9500
C10—H10 0.9500 C37—C38 1.394 (5)
C10—C11 1.387 (5) C38—H38 0.9500
C11—H11 0.9500 C39—C40 1.397 (4)
C11—C12 1.383 (5) C39—C44 1.399 (4)
C12—H12 0.9500 C39—P2 1.803 (3)
C13—C14 1.421 (4) C40—H40 0.9500
C13—C22 1.390 (4) C40—C41 1.387 (5)
C13—P1 1.833 (3) C41—H41 0.9500
C14—H14 0.9500 C41—C42 1.379 (5)
C14—C15 1.363 (4) C42—H42 0.9500
C15—H15 0.9500 C42—C43 1.390 (6)
C15—C16 1.413 (4) C43—H43 0.9500
C16—C17 1.416 (4) C43—C44 1.385 (5)
C16—C21 1.418 (4) C44—H44 0.9500
C17—H17 0.9500 C45—C46 1.438 (7)
C17—C18 1.369 (5) C45—N1 1.134 (7)
C18—H18 0.9500 C46—H46A 0.9800
C18—C19 1.411 (5) C46—H46B 0.9800
C19—H19 0.9500 C46—H46C 0.9800
C19—C20 1.369 (5) C47—C48 1.437 (7)
C20—H20 0.9500 C47—N2 1.123 (6)
C20—C21 1.419 (4) C48—H48A 0.9800
C21—C22 1.434 (4) C48—H48B 0.9800
C22—C23 1.497 (4) C48—H48C 0.9800
C23—C24 1.389 (4) Pt1—Cl1 2.3518 (8)
C23—C32 1.439 (4) Pt1—Cl2 2.3536 (8)
C24—C25 1.420 (4) P1—Pt1 2.2447 (8)
C24—P2 1.835 (3) P2—Pt1 2.2422 (8)
C25—H25 0.9500 C51—H51A 0.9800
C25—C26 1.362 (4) C51—H51B 0.9800
C26—H26 0.9500 C51—H51C 0.9800
C26—C27 1.408 (4) C51—C52 1.426 (17)
C27—C28 1.417 (4) C52—N3 1.023 (15)
C2—C1—P1 120.3 (3) C30—C29—H29 120.3
C6—C1—C2 119.7 (3) C29—C30—H30 119.5
C6—C1—P1 120.0 (3) C31—C30—C29 121.0 (3)
C1—C2—H2 120.0 C31—C30—H30 119.5
C3—C2—C1 120.1 (4) C30—C31—H31 119.4
C3—C2—H2 120.0 C30—C31—C32 121.1 (3)
C2—C3—H3 120.0 C32—C31—H31 119.4
C4—C3—C2 119.9 (4) C27—C32—C23 119.6 (3)
C4—C3—H3 120.0 C31—C32—C23 122.8 (3)
C3—C4—H4 119.6 C31—C32—C27 117.6 (3)
C3—C4—C5 120.8 (3) C34—C33—P2 118.2 (2)
C5—C4—H4 119.6 C38—C33—C34 118.8 (3)
C4—C5—H5 119.8 C38—C33—P2 122.9 (3)
C4—C5—C6 120.4 (4) C33—C34—H34 119.6
C6—C5—H5 119.8 C35—C34—C33 120.8 (3)
C1—C6—C5 119.1 (4) C35—C34—H34 119.6
C1—C6—H6 120.4 C34—C35—H35 120.1
C5—C6—H6 120.4 C36—C35—C34 119.7 (4)
C8—C7—C12 119.2 (3) C36—C35—H35 120.1
C8—C7—P1 121.9 (3) C35—C36—H36 119.9
C12—C7—P1 118.8 (2) C37—C36—C35 120.2 (3)
C7—C8—H8 120.2 C37—C36—H36 119.9
C7—C8—C9 119.7 (3) C36—C37—H37 119.9
C9—C8—H8 120.2 C36—C37—C38 120.2 (4)
C8—C9—H9 119.7 C38—C37—H37 119.9
C10—C9—C8 120.6 (3) C33—C38—C37 120.2 (4)
C10—C9—H9 119.7 C33—C38—H38 119.9
C9—C10—H10 120.1 C37—C38—H38 119.9
C9—C10—C11 119.7 (3) C40—C39—C44 119.3 (3)
C11—C10—H10 120.1 C40—C39—P2 119.6 (2)
C10—C11—H11 120.0 C44—C39—P2 121.1 (2)
C12—C11—C10 119.9 (3) C39—C40—H40 120.0
C12—C11—H11 120.0 C41—C40—C39 120.0 (3)
C7—C12—H12 119.6 C41—C40—H40 120.0
C11—C12—C7 120.8 (3) C40—C41—H41 119.8
C11—C12—H12 119.6 C42—C41—C40 120.5 (3)
C14—C13—P1 118.9 (2) C42—C41—H41 119.8
C22—C13—C14 119.1 (3) C41—C42—H42 120.0
C22—C13—P1 121.7 (2) C41—C42—C43 120.1 (3)
C13—C14—H14 119.3 C43—C42—H42 120.0
C15—C14—C13 121.4 (3) C42—C43—H43 120.0
C15—C14—H14 119.3 C44—C43—C42 120.0 (3)
C14—C15—H15 119.5 C44—C43—H43 120.0
C14—C15—C16 121.0 (3) C39—C44—H44 119.9
C16—C15—H15 119.5 C43—C44—C39 120.2 (3)
C15—C16—C17 121.3 (3) C43—C44—H44 119.9
C15—C16—C21 118.8 (3) N1—C45—C46 178.3 (6)
C17—C16—C21 119.9 (3) C45—C46—H46A 109.5
C16—C17—H17 119.6 C45—C46—H46B 109.5
C18—C17—C16 120.7 (3) C45—C46—H46C 109.5
C18—C17—H17 119.6 H46A—C46—H46B 109.5
C17—C18—H18 120.3 H46A—C46—H46C 109.5
C17—C18—C19 119.5 (3) H46B—C46—H46C 109.5
C19—C18—H18 120.3 N2—C47—C48 178.6 (6)
C18—C19—H19 119.4 C47—C48—H48A 109.5
C20—C19—C18 121.2 (3) C47—C48—H48B 109.5
C20—C19—H19 119.4 C47—C48—H48C 109.5
C19—C20—H20 119.7 H48A—C48—H48B 109.5
C19—C20—C21 120.6 (3) H48A—C48—H48C 109.5
C21—C20—H20 119.7 H48B—C48—H48C 109.5
C16—C21—C20 118.2 (3) C1—P1—C7 106.21 (15)
C16—C21—C22 119.7 (3) C1—P1—C13 105.57 (14)
C20—C21—C22 122.1 (3) C1—P1—Pt1 117.11 (12)
C13—C22—C21 120.0 (3) C7—P1—C13 104.64 (14)
C13—C22—C23 121.4 (3) C7—P1—Pt1 110.51 (10)
C21—C22—C23 118.6 (3) C13—P1—Pt1 111.90 (10)
C24—C23—C22 121.2 (3) C24—P2—Pt1 111.01 (10)
C24—C23—C32 119.5 (3) C33—P2—C24 104.08 (14)
C32—C23—C22 119.3 (3) C33—P2—Pt1 110.78 (11)
C23—C24—C25 119.6 (3) C39—P2—C24 106.24 (14)
C23—C24—P2 121.6 (2) C39—P2—C33 106.87 (15)
C25—C24—P2 118.5 (2) C39—P2—Pt1 116.96 (11)
C24—C25—H25 119.4 Cl1—Pt1—Cl2 87.44 (3)
C26—C25—C24 121.3 (3) P1—Pt1—Cl1 90.31 (3)
C26—C25—H25 119.4 P1—Pt1—Cl2 171.33 (3)
C25—C26—H26 119.5 P2—Pt1—Cl1 170.91 (3)
C25—C26—C27 121.1 (3) P2—Pt1—Cl2 90.62 (3)
C27—C26—H26 119.5 P2—Pt1—P1 92.87 (3)
C26—C27—C28 121.4 (3) H51A—C51—H51B 109.5
C26—C27—C32 118.8 (3) H51A—C51—H51C 109.5
C28—C27—C32 119.8 (3) H51B—C51—H51C 109.5
C27—C28—H28 119.5 C52—C51—H51A 109.5
C29—C28—C27 121.0 (3) C52—C51—H51B 109.5
C29—C28—H28 119.5 C52—C51—H51C 109.5
C28—C29—H29 120.3 N3—C52—C51 159.4 (19)
C28—C29—C30 119.5 (3)
C1—C2—C3—C4 0.5 (5) C23—C24—P2—C33 −163.2 (3)
C2—C1—C6—C5 1.4 (5) C23—C24—P2—C39 −50.6 (3)
C2—C1—P1—C7 66.5 (3) C23—C24—P2—Pt1 77.5 (3)
C2—C1—P1—C13 −44.3 (3) C24—C23—C32—C27 3.0 (4)
C2—C1—P1—Pt1 −169.6 (2) C24—C23—C32—C31 −178.7 (3)
C2—C3—C4—C5 0.2 (6) C24—C25—C26—C27 2.3 (5)
C3—C4—C5—C6 −0.1 (6) C25—C24—P2—C33 23.5 (3)
C4—C5—C6—C1 −0.7 (5) C25—C24—P2—C39 136.1 (2)
C6—C1—C2—C3 −1.3 (5) C25—C24—P2—Pt1 −95.7 (2)
C6—C1—P1—C7 −115.7 (3) C25—C26—C27—C28 179.1 (3)
C6—C1—P1—C13 133.5 (3) C25—C26—C27—C32 −0.5 (5)
C6—C1—P1—Pt1 8.2 (3) C26—C27—C28—C29 −180.0 (3)
C7—C8—C9—C10 0.6 (6) C26—C27—C32—C23 −2.2 (4)
C8—C7—C12—C11 −2.6 (5) C26—C27—C32—C31 179.4 (3)
C8—C7—P1—C1 −2.9 (3) C27—C28—C29—C30 0.5 (5)
C8—C7—P1—C13 108.5 (3) C28—C27—C32—C23 178.3 (3)
C8—C7—P1—Pt1 −130.9 (3) C28—C27—C32—C31 −0.1 (4)
C8—C9—C10—C11 −1.1 (6) C28—C29—C30—C31 −0.1 (5)
C9—C10—C11—C12 −0.2 (6) C29—C30—C31—C32 −0.4 (5)
C10—C11—C12—C7 2.1 (5) C30—C31—C32—C23 −177.8 (3)
C12—C7—C8—C9 1.2 (5) C30—C31—C32—C27 0.5 (5)
C12—C7—P1—C1 174.9 (3) C32—C23—C24—C25 −1.3 (4)
C12—C7—P1—C13 −73.7 (3) C32—C23—C24—P2 −174.5 (2)
C12—C7—P1—Pt1 46.9 (3) C32—C27—C28—C29 −0.4 (5)
C13—C14—C15—C16 1.3 (5) C33—C34—C35—C36 1.6 (5)
C13—C22—C23—C24 −69.7 (4) C34—C33—C38—C37 0.9 (5)
C13—C22—C23—C32 109.7 (3) C34—C33—P2—C24 −75.0 (3)
C14—C13—C22—C21 −0.3 (4) C34—C33—P2—C39 172.9 (2)
C14—C13—C22—C23 178.8 (3) C34—C33—P2—Pt1 44.4 (3)
C14—C13—P1—C1 134.1 (2) C34—C35—C36—C37 −1.2 (6)
C14—C13—P1—C7 22.2 (3) C35—C36—C37—C38 0.6 (6)
C14—C13—P1—Pt1 −97.5 (2) C36—C37—C38—C33 −0.4 (6)
C14—C15—C16—C17 180.0 (3) C38—C33—C34—C35 −1.5 (5)
C14—C15—C16—C21 −0.5 (5) C38—C33—P2—C24 108.7 (3)
C15—C16—C17—C18 179.2 (3) C38—C33—P2—C39 −3.5 (3)
C15—C16—C21—C20 −178.8 (3) C38—C33—P2—Pt1 −131.9 (3)
C15—C16—C21—C22 −0.7 (4) C39—C40—C41—C42 −0.4 (5)
C16—C17—C18—C19 −0.4 (5) C40—C39—C44—C43 1.2 (5)
C16—C21—C22—C13 1.0 (4) C40—C39—P2—C24 129.9 (3)
C16—C21—C22—C23 −178.1 (3) C40—C39—P2—C33 −119.4 (3)
C17—C16—C21—C20 0.7 (4) C40—C39—P2—Pt1 5.4 (3)
C17—C16—C21—C22 178.9 (3) C40—C41—C42—C43 −0.4 (5)
C17—C18—C19—C20 0.6 (6) C41—C42—C43—C44 1.6 (5)
C18—C19—C20—C21 −0.1 (5) C42—C43—C44—C39 −1.9 (5)
C19—C20—C21—C16 −0.6 (5) C44—C39—C40—C41 0.0 (5)
C19—C20—C21—C22 −178.6 (3) C44—C39—P2—C24 −48.8 (3)
C20—C21—C22—C13 179.1 (3) C44—C39—P2—C33 61.9 (3)
C20—C21—C22—C23 0.0 (4) C44—C39—P2—Pt1 −173.4 (2)
C21—C16—C17—C18 −0.3 (5) P1—C1—C2—C3 176.5 (3)
C21—C22—C23—C24 109.4 (3) P1—C1—C6—C5 −176.4 (3)
C21—C22—C23—C32 −71.3 (4) P1—C7—C8—C9 179.0 (3)
C22—C13—C14—C15 −0.9 (4) P1—C7—C12—C11 179.6 (3)
C22—C13—P1—C1 −52.6 (3) P1—C13—C14—C15 172.6 (2)
C22—C13—P1—C7 −164.4 (2) P1—C13—C22—C21 −173.6 (2)
C22—C13—P1—Pt1 75.9 (2) P1—C13—C22—C23 5.5 (4)
C22—C23—C24—C25 178.1 (3) P2—C24—C25—C26 172.0 (3)
C22—C23—C24—P2 4.9 (4) P2—C33—C34—C35 −178.0 (3)
C22—C23—C32—C27 −176.3 (3) P2—C33—C38—C37 177.2 (3)
C22—C23—C32—C31 2.0 (4) P2—C39—C40—C41 −178.8 (2)
C23—C24—C25—C26 −1.4 (5) P2—C39—C44—C43 179.9 (3)

Funding Statement

The following sources of funding are gratefully acknowledged: the Natural Sciences Engineering Research Council of Canada for a Discovery Grant to DEH (RGPIN-2014–03733) and a USRA to GU; the Canadian Foundation for Innovation and Research Manitoba for an award in support of an X-ray diffractometer (CFI No. 32146); the University of Manitoba for a UMGF PhD Fellowship (JDB).

References

  1. Birkholz (née Gensow), M., Freixa, Z. & van Leeuwen, P. W. N. M. (2009). Chem. Soc. Rev. 38, 1099–1118. [DOI] [PubMed]
  2. Bombard, S., Gariboldi, M. B., Monti, E., Gabano, E., Gaviglio, L., Ravera, M. & Osella, D. (2010). J. Biol. Inorg. Chem. 15, 841–850. [DOI] [PubMed]
  3. Bruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.
  4. Doherty, S., Knight, J. G., Smyth, C. H., Harrington, R. W. & Clegg, W. (2006). J. Org. Chem. 71, 9751–9764. [DOI] [PubMed]
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Genet, J.-P., Ayad, T. & Ratovelomanana-Vidal, V. (2014). Chem. Rev. 114, 2824–2880. [DOI] [PubMed]
  7. Guerrero-Ríos, I. & Martin, E. (2014). Dalton Trans. 43, 7533–7539. [DOI] [PubMed]
  8. Iwata, T., Miyake, Y., Nishibayashi, Y. & Uemura, S. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 1548–1554.
  9. Mandapati, P., Braun, J. D., Killeen, C., Davis, R. L., Williams, J. A. G. & Herbert, D. E. (2019). Inorg. Chem. 58, 14808–14817. [DOI] [PubMed]
  10. Misra, A., Dwivedi, J. & Kishore, D. (2017). Synth. Commun. 47, 497–535.
  11. Miyashita, A., Yasuda, A., Takaya, H., Toriumi, K., Ito, T., Souchi, T. & Noyori, R. (1980). J. Am. Chem. Soc. 102, 7932–7934.
  12. Noyori, R. (1994). Asymmetric Catalysis in Organic Synthesis. New York: Wiley.
  13. Pereira, M. M., Calvete, M. J. F., Carrilho, R. M. B. & Abreu, A. R. (2013). Chem. Soc. Rev. 42, 6990–7027. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  17. Strukul, G., Varagnolo, A. & Pinna, F. (1997). J. Mol. Catal. A Chem. 117, 413–423.
  18. Véron, A. C., Felber, M., Blacque, O. & Spingler, B. (2013). Polyhedron, 52, 102–105.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620010482/zq2254sup1.cif

x-05-x201048-sup1.cif (4.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620010482/zq2254Isup2.hkl

Supporting information file. DOI: 10.1107/S2414314620010482/zq2254Isup3.cml

Supporting tables and experimental information. DOI: 10.1107/S2414314620010482/zq2254sup4.pdf

x-05-x201048-sup4.pdf (222.7KB, pdf)

CCDC reference: 2020002

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES