Skip to main content
IUCrData logoLink to IUCrData
. 2020 Jul 28;5(Pt 7):x200980. doi: 10.1107/S2414314620009803

trans-Diamminebis(1,2-di­cyano­ethene-1,2-di­thiol­ato)platinum(IV)

Mahaa J Siddiqui a, Volodymyr V Nesterov b, Matthew T Steidle a, Bradley W Smucker a,*
Editor: R J Butcherc
PMCID: PMC9462246  PMID: 36339788

The structure of the trans-Pt(NH3)2(mnt)2 complex has Pt—N and Pt—S distances that are are consistent with those in other platinum(IV) complexes. The nitrile nitro­gen atoms are positioned suitably to hydrogen bond with adjacent ammines.

Keywords: crystal structure, platinum(IV), di­thiol­ene

Abstract

The title compound, [Pt(C4N2S2)2(NH3)2], represents an octa­hedral platinum(IV) complex with two trans-ammine and two mnt (mnt = 1,2-di­cyano­ethene-1,2-di­thiol­ato) ligands. The Pt—N and Pt—S distances are consistent with those in other platinum(IV) complexes. As a result of a slight canting of the coordination of the mnt ligand to the platinum(IV) atom, the nitrile nitro­gen atoms are positioned suitably to hydrogen-bond with adjacent ammines. graphic file with name x-05-x200980-scheme1-3D1.jpg

Structure description

The neutral title complex contains two ammine and two mnt ligands forming an octa­hedral platinum(IV) complex. The C—S distances of 1.747 (3) and 1.744 (3) Å and the C=C distance of 1.358 (4) Å support the ene-1,2-di­thiol­ate form of the mnt ligand (Güntner et al., 1989; Chandrasekaran et al., 2014). The two ammine ligands are trans with a Pt—N bond length of 2.055 (2) Å, which is consistent with the Pt—N distances in other platinum(IV) complexes of 2.056 (9) (Fanwick & Huckaby, 1982) and 2.053 (5) Å (Brawner et al., 1978). The Pt—S distances of 2.3434 (8) and 2.3461 (7) Å are longer than in square-planar platinum complexes with mnt such as the PtII—S distances of 2.290 and 2.282 Å in [Pt(mnt)2]2− (Günter et al., 1989) or the PtIII—S distance of 2.262 Å in [Pt(mnt)2] (Mochida et al., 2010). This longer Pt—S bond is comparable, however, with the Pt—S distance of 2.3619 Å found in a similar octa­hedral platinum(IV) complex with two di­thiol­ene and two trans phosphine ligands (Chandrasekaran et al., 2014). The coordination of the mnt ligands is slightly canted from the platinum(IV) atom, which allows for hydrogen bonding between the nitrile nitro­gen atoms and adjacent ammines (Fig. 1, Table 1). These interactions lead to the formation of a three-dimensional network.

Figure 1.

Figure 1

Displacement ellipsoid plot 50% probability of all non-H atoms showing N—H hydrogen bonding between nitrile nitro­gen atoms and hydrogen atoms on adjacent ammines. Symmetry codes: (i) −x, y −  Inline graphic , −z +  Inline graphic ; (ii) x, −y +  Inline graphic , z +  Inline graphic .

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.89 2.16 3.016 (3) 160
N3—H3B⋯S2ii 0.89 2.73 3.610 (3) 171
N3—H3C⋯N1iii 0.89 2.26 3.011 (3) 142

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Synthesis and crystallization

A solution of 13.9 mg (7.46 × 10 −5mol) of Na2mnt dissolved in 10 mL of water was combined with a solution of 25 mg (7.48 × 10−5 mol) of tetra­ammineplatinum(II) chloride dissolved in 25 mL of water, and stirred for 2 h in air. The solvent was removed using a vacuum oven to give 26.5 mg of a brown product isolated [1H NMR (d-DMSO) 4.23ppm]. Light-orange crystals of the title compound were grown by liquid diffusion of diethyl ether into a methanol solution of the synthesized product in a tall, narrow tube that was covered with parafilm. The platinum(II) di­thiol­ene complex is presumed to oxidize to the ammine-stabilized octa­hedral platinum(IV) di­thiol­ene compound via air, demonstrating a synthetic route toward stable neutral PtIV di­thiol­ene complexes (Geiger et al., 2001).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [Pt(C4N2S2)2(NH3)2]
M r 509.52
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 6.1778 (3), 7.7700 (4), 14.8862 (7)
β (°) 95.935 (4)
V3) 710.73 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 10.45
Crystal size (mm) 0.05 × 0.02 × 0.01
 
Data collection
Diffractometer Rigaku XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.509, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8027, 1556, 1375
R int 0.034
(sin θ/λ)max−1) 0.641
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.017, 0.038, 1.05
No. of reflections 1556
No. of parameters 89
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.62, −0.54

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620009803/bv4032sup1.cif

x-05-x200980-sup1.cif (298.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620009803/bv4032Isup2.hkl

x-05-x200980-Isup2.hkl (125.6KB, hkl)

CCDC reference: 2017151

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

[Pt(C4N2S2)2(NH3)2] F(000) = 476
Mr = 509.52 Dx = 2.381 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 6.1778 (3) Å Cell parameters from 5207 reflections
b = 7.7700 (4) Å θ = 2.7–29.7°
c = 14.8862 (7) Å µ = 10.45 mm1
β = 95.935 (4)° T = 100 K
V = 710.73 (6) Å3 Plate, clear light orange
Z = 2 0.05 × 0.02 × 0.01 mm

Data collection

Rigaku XtaLAB Synergy, Dualflex, HyPix diffractometer 1556 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source 1375 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.034
Detector resolution: 10.0000 pixels mm-1 θmax = 27.1°, θmin = 2.8°
ω scans h = −7→7
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) k = −9→9
Tmin = 0.509, Tmax = 1.000 l = −18→19
8027 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017 H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0154P)2 + 0.3678P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1556 reflections Δρmax = 0.62 e Å3
89 parameters Δρmin = −0.54 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.500000 0.500000 0.500000 0.00819 (6)
S1 0.62740 (13) 0.46855 (9) 0.35800 (5) 0.01208 (16)
S2 0.20123 (12) 0.65846 (10) 0.43437 (5) 0.01294 (16)
N1 0.4195 (5) 0.4964 (3) 0.1195 (2) 0.0179 (6)
N2 −0.0905 (4) 0.7217 (3) 0.20727 (17) 0.0182 (6)
N3 0.3182 (4) 0.2794 (3) 0.47944 (16) 0.0125 (5)
H3A 0.283811 0.263528 0.420476 0.015*
H3B 0.197076 0.289137 0.506596 0.015*
H3C 0.395109 0.189825 0.502333 0.015*
C1 0.4056 (5) 0.5506 (4) 0.2889 (2) 0.0110 (6)
C2 0.2301 (5) 0.6263 (4) 0.32026 (18) 0.0116 (6)
C3 0.4129 (5) 0.5226 (3) 0.1948 (2) 0.0120 (6)
C4 0.0516 (5) 0.6804 (4) 0.25742 (19) 0.0124 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.00671 (9) 0.01158 (10) 0.00598 (9) 0.00083 (6) −0.00073 (6) 0.00050 (6)
S1 0.0099 (4) 0.0183 (4) 0.0079 (3) 0.0023 (3) 0.0005 (3) 0.0006 (3)
S2 0.0104 (3) 0.0193 (4) 0.0088 (3) 0.0045 (3) −0.0006 (3) 0.0021 (3)
N1 0.0231 (16) 0.0163 (15) 0.0136 (14) 0.0000 (11) −0.0009 (12) 0.0000 (10)
N2 0.0171 (14) 0.0228 (15) 0.0143 (13) 0.0030 (12) −0.0008 (11) 0.0019 (11)
N3 0.0099 (13) 0.0157 (13) 0.0117 (12) 0.0002 (10) −0.0008 (10) 0.0027 (10)
C1 0.0123 (15) 0.0119 (14) 0.0085 (14) −0.0017 (12) −0.0010 (12) 0.0009 (11)
C2 0.0136 (15) 0.0119 (15) 0.0086 (14) −0.0020 (12) −0.0028 (11) 0.0024 (11)
C3 0.0149 (16) 0.0076 (15) 0.0124 (16) 0.0001 (11) −0.0035 (12) 0.0008 (11)
C4 0.0135 (15) 0.0111 (15) 0.0127 (14) −0.0019 (12) 0.0014 (12) −0.0002 (12)

Geometric parameters (Å, º)

Pt1—S1i 2.3434 (8) N1—C3 1.143 (4)
Pt1—S1 2.3434 (8) N2—C4 1.138 (4)
Pt1—S2 2.3461 (7) N3—H3A 0.8900
Pt1—S2i 2.3461 (7) N3—H3B 0.8900
Pt1—N3i 2.055 (2) N3—H3C 0.8900
Pt1—N3 2.055 (2) C1—C2 1.358 (4)
S1—C1 1.747 (3) C1—C3 1.423 (4)
S2—C2 1.744 (3) C2—C4 1.433 (4)
S1i—Pt1—S1 180.0 C2—S2—Pt1 100.09 (10)
S1i—Pt1—S2 89.87 (3) Pt1—N3—H3A 109.5
S1—Pt1—S2i 89.87 (3) Pt1—N3—H3B 109.5
S1—Pt1—S2 90.13 (3) Pt1—N3—H3C 109.5
S1i—Pt1—S2i 90.13 (3) H3A—N3—H3B 109.5
S2i—Pt1—S2 180.0 H3A—N3—H3C 109.5
N3i—Pt1—S1i 90.46 (7) H3B—N3—H3C 109.5
N3—Pt1—S1i 89.54 (7) C2—C1—S1 124.1 (2)
N3—Pt1—S1 90.46 (7) C2—C1—C3 120.8 (3)
N3i—Pt1—S1 89.54 (7) C3—C1—S1 114.9 (2)
N3i—Pt1—S2 91.06 (7) C1—C2—S2 124.2 (2)
N3—Pt1—S2i 91.06 (7) C1—C2—C4 119.4 (3)
N3—Pt1—S2 88.94 (7) C4—C2—S2 116.4 (2)
N3i—Pt1—S2i 88.94 (7) N1—C3—C1 178.5 (3)
N3—Pt1—N3i 180.0 N2—C4—C2 179.3 (3)
C1—S1—Pt1 100.20 (11)
Pt1—S1—C1—C2 6.6 (3) S1—C1—C2—S2 1.7 (4)
Pt1—S1—C1—C3 −169.3 (2) S1—C1—C2—C4 −176.5 (2)
Pt1—S2—C2—C1 −8.8 (3) C3—C1—C2—S2 177.4 (2)
Pt1—S2—C2—C4 169.4 (2) C3—C1—C2—C4 −0.8 (5)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···N2ii 0.89 2.16 3.016 (3) 160
N3—H3B···S2iii 0.89 2.73 3.610 (3) 171
N3—H3C···N1iv 0.89 2.26 3.011 (3) 142

Symmetry codes: (ii) −x, y−1/2, −z+1/2; (iii) −x, −y+1, −z+1; (iv) x, −y+1/2, z+1/2.

Funding Statement

We are grateful of the Welch Foundation (AD-0007) for a department grant supporting undergraduate research and the NSF MRI for a Jeol ECZ-400 NMR at Austin College (CHE-1725651) and a Rigaku XtaLAB Synergy-S X-ray diffractometer at UNT (CHE-1726652).

References

  1. Brawner, S. A., Lin, I. J. B., Kim, J.-H. & Everett, G. W. (1978). Inorg. Chem. 17, 1304–1308.
  2. Chandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). Inorg. Chem. 53, 9192–9205. [DOI] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Fanwick, P. E. & Huckaby, J. L. (1982). Inorg. Chem. 21, 3067–3071.
  5. Geiger, W. E., Barrière, F., LeSuer, R. J. & Trupia, S. (2001). Inorg. Chem. 40, 2472–2473. [DOI] [PubMed]
  6. Güntner, W., Gliemann, G., Klement, U. & Zabel, M. (1989). Inorg. Chim. Acta, 165, 51–56.
  7. Mochida, T., Nagabuchi, E. & Ueda, M. (2010). Inorg. Chim. Acta, 363, 4108–4111.
  8. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  9. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  10. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620009803/bv4032sup1.cif

x-05-x200980-sup1.cif (298.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620009803/bv4032Isup2.hkl

x-05-x200980-Isup2.hkl (125.6KB, hkl)

CCDC reference: 2017151

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES