Skip to main content
IUCrData logoLink to IUCrData
. 2020 Jul 28;5(Pt 7):x201018. doi: 10.1107/S2414314620010184

Methyl 3,3,6,6-tetra­methyl-1,8-dioxo-4,5,7,9-tetra­hydro-2H-xanthene-9-carboxyl­ate

Heiner Detert a,*, Laura Kluge a, Dieter Schollmeyer a
Editor: J F Gallagherb
PMCID: PMC9462258  PMID: 36339785

The title mol­ecule is built by annulation of a half-chair cyclo­hexenone and a twist-cyclo­hexenone to a flat 4-H-pyrane boat. In the crystal, mol­ecules are connected via van der Waals inter­actions and C—H⋯O hydrogen bonds.

Keywords: crystal structure, heterocycles, polycyclic system

Abstract

The title mol­ecule, C19H24O5, is built by annulation of a half-chair cyclo­hexenone and a twist-cyclo­hexenone to a flat 4-H-pyrane boat. In the crystal, mol­ecules are connected via van der Waals inter­actions and C—H⋯O hydrogen bonds. graphic file with name x-05-x201018-scheme1-3D1.jpg

Structure description

The title compound was obtained as a side product during the formation of methyl meth­oxy(2,6-dioxo-4,4-di­methyl­cyclo­hex­yl)acetate according to the procedure of Grosz & Freiberg (1966). A similar product (1,2,3,4,5,6,7,8-octa­hydro-3,3,6,6-tetra­methyl-1,8-dioxo-9-xanthenyl acetic acid) was obtained by Gustafsson (1948) in the condensation of dimedone and glyoxalic acid. The free acid is an isomer of the title compound with a methyl­ene group connecting the heterocyclic unit and carb­oxy­lic acid group. A short route to these compounds is the uncatalysed tandem aldol condensation/elimination/Michael addition/condensation, as discovered by Rohr & Mahrwald (2009).

The mol­ecule is composed of two di­methyl­cyclo­hexenone units annulated to a central 4H-pyrane (Fig. 1). While the conformation of the latter is a flat boat, one cyclo­hexenone (C2–C7) forms a half-chair and the other (C9–C14) has a twist form. The pyrane boat promotes a folded shape of the mol­ecule, the angle between the mean planes through atoms C1–C3/C6/C7/O8 and O8/C9/C10/C13//C14 being 22.42 (11)°, with maximum deviations from the mean planes at O8 [−0.1046 (18) Å] and C1 [0.051 (3) Å]. The torsion angle of the ester group (O17—C15—C1—C2) is 66.4 (3)°.

Figure 1.

Figure 1

Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Four mol­ecules occupy the monoclinic unit cell, the packing in the cell being dominated by van der Waals inter­actions and hydrogen-bonding inter­actions (Table 1 and Fig. 2). The C—H⋯O hydrogen bonds (Steiner, 1996) C18—H18A⋯O17 and C18—H18A⋯O19 form a hydrogen-bonded dimer while the C6—H6B⋯O24 inter­action connects two mol­ecules related by the c-glide plane.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O24i 0.99 2.50 3.324 (4) 140
C18—H18A⋯O17ii 0.98 2.53 3.451 (5) 156
C18—H18A⋯O19ii 0.98 2.41 3.093 (4) 126

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 2.

Figure 2

Partial packing diagram of the title compound with a view along the b axis. Most of the hydrogen atoms omitted for clarity. Hydrogen bonds are depicted with dashed lines.

Synthesis and crystallization

Dimedone (7.01 g, 0.05 mol, 1 eq.) and tri­ethyl­amine (5.05 g, 50 mmol, 6.9 ml, 1 eq.) were dissolved in di­chloro­methane (25 ml) in a 250 ml flask under nitro­gen. Methyl chloro­meth­oxy­acetate (5.9 ml, 6.49 g, 0.525 mol, 1.05 eq.) was added dropwise to the ice-cooled mixture under stirring and the stirring was continued for 75 min at room temperature and a further 3 h under reflux conditions. The solvent was evaporated, methyl tert-butyl ether was added to the suspension and triethyl ammonium chloride was removed via filtration. The etheral layer was washed with aqueous sodium carbonate and brine, and dried over sodium sulfate. Evaporation of the solvent and chromatography (silica gel, petroleum ether/ethyl acetate = 3/1, R f = 3:1) yielded 0.83 g (2.5 mmol, 5%) of the title compound as colourless crystals with m.p. = 474–478 K. The main product yield was 83%. Crystals of the title compound were obtained from a solution in ethyl acetate. IR: 2959, 2875, 1728, 1663, 1368, 1193, 995. 1H NMR (300 MHz, CDCl3) δ/p.p.m.: 4.47–4.46 (s, 1H), 3.68 (s, 3H), 2.43 (2*d, 2*2 gem H, J = 18 Hz), 4H), 2.27 (2*d, 2*2 gem H, J = 18 Hz), 1.11 (s, 12H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C19H24O5
M r 332.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 13.1494 (10), 9.6899 (6), 14.8185 (13)
β (°) 113.295 (6)
V3) 1734.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.22 × 0.11 × 0.06
 
Data collection
Diffractometer Stoe IPDS 2T
No. of measured, independent and observed [I > 2σ(I)] reflections 8583, 4123, 2784
R int 0.036
(sin θ/λ)max−1) 0.659
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.072, 0.185, 1.05
No. of reflections 4123
No. of parameters 222
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.30

Computer programs: X-AREA WinXpose, X-AREA Recipe and X-AREA Integrate (Stoe & Cie, 2019), SIR2004 (Burla et al., 2005), SHELXL2018/3 (Sheldrick, 2015) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620010184/gg4005sup1.cif

x-05-x201018-sup1.cif (315.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620010184/gg4005Isup2.hkl

x-05-x201018-Isup2.hkl (328.7KB, hkl)

schematic diagram of the reaction. DOI: 10.1107/S2414314620010184/gg4005sup3.tif

Supporting information file. DOI: 10.1107/S2414314620010184/gg4005Isup4.cml

CCDC reference: 2018468

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C19H24O5 F(000) = 712
Mr = 332.38 Dx = 1.273 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.1494 (10) Å Cell parameters from 9146 reflections
b = 9.6899 (6) Å θ = 2.6–28.2°
c = 14.8185 (13) Å µ = 0.09 mm1
β = 113.295 (6)° T = 120 K
V = 1734.2 (2) Å3 Plate, colourless
Z = 4 0.22 × 0.11 × 0.06 mm

Data collection

STOE IPDS 2T diffractometer 2784 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Rint = 0.036
Detector resolution: 6.67 pixels mm-1 θmax = 28.0°, θmin = 2.6°
rotation method, ω scans h = −16→17
8583 measured reflections k = −12→12
4123 independent reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072 H-atom parameters constrained
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.0577P)2 + 2.4014P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.002
4123 reflections Δρmax = 0.24 e Å3
222 parameters Δρmin = −0.30 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the riding-model approximation with C–H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6910 (2) 0.3522 (3) 0.3759 (2) 0.0290 (5)
H1 0.715526 0.337644 0.320767 0.035*
C2 0.7343 (2) 0.2359 (3) 0.4490 (2) 0.0284 (5)
C3 0.8403 (2) 0.1694 (3) 0.4650 (2) 0.0292 (5)
C4 0.8801 (2) 0.0564 (3) 0.5415 (2) 0.0327 (6)
H4A 0.962100 0.056545 0.570806 0.039*
H4B 0.855649 −0.033835 0.508675 0.039*
C5 0.8385 (2) 0.0705 (3) 0.6237 (2) 0.0302 (6)
C6 0.7113 (2) 0.0808 (3) 0.5759 (2) 0.0313 (6)
H6A 0.679951 −0.010095 0.548221 0.038*
H6B 0.683107 0.105346 0.626632 0.038*
C7 0.67398 (19) 0.1865 (3) 0.49633 (19) 0.0270 (5)
O8 0.56625 (14) 0.22547 (18) 0.47408 (13) 0.0293 (4)
C9 0.5126 (2) 0.2955 (3) 0.38683 (19) 0.0283 (5)
C10 0.3910 (2) 0.3002 (3) 0.3590 (2) 0.0301 (6)
H10A 0.375949 0.313286 0.418829 0.036*
H10B 0.358002 0.211094 0.328896 0.036*
C11 0.3362 (2) 0.4177 (3) 0.2862 (2) 0.0312 (6)
C12 0.3794 (2) 0.4120 (3) 0.2043 (2) 0.0329 (6)
H12A 0.354823 0.324715 0.167285 0.040*
H12B 0.347003 0.489267 0.158080 0.040*
C13 0.5040 (2) 0.4207 (3) 0.2430 (2) 0.0302 (5)
C14 0.5668 (2) 0.3511 (3) 0.33598 (19) 0.0276 (5)
C15 0.7354 (2) 0.4908 (3) 0.4252 (2) 0.0307 (6)
O16 0.68175 (18) 0.5800 (2) 0.4402 (2) 0.0579 (7)
O17 0.84313 (17) 0.5003 (2) 0.4521 (2) 0.0606 (8)
C18 0.8958 (3) 0.6248 (3) 0.5039 (3) 0.0611 (11)
H18A 0.976272 0.616654 0.525273 0.092*
H18B 0.877556 0.637293 0.561397 0.092*
H18C 0.869276 0.704400 0.460044 0.092*
O19 0.89116 (15) 0.19842 (19) 0.41368 (14) 0.0334 (4)
C20 0.8901 (2) 0.1983 (3) 0.6859 (2) 0.0369 (6)
H20A 0.971000 0.190656 0.712677 0.055*
H20B 0.865283 0.204928 0.740014 0.055*
H20C 0.867042 0.281133 0.644830 0.055*
C21 0.8723 (2) −0.0569 (3) 0.6899 (2) 0.0407 (7)
H21A 0.841283 −0.139699 0.650705 0.061*
H21B 0.844160 −0.048635 0.741779 0.061*
H21C 0.953273 −0.063927 0.719617 0.061*
C22 0.3647 (2) 0.5576 (3) 0.3387 (2) 0.0386 (7)
H22A 0.332418 0.631853 0.290953 0.058*
H22B 0.445306 0.568687 0.369190 0.058*
H22C 0.334574 0.561723 0.389470 0.058*
C23 0.2108 (2) 0.3990 (3) 0.2434 (2) 0.0386 (7)
H23A 0.175703 0.475736 0.198843 0.058*
H23B 0.184611 0.397602 0.296837 0.058*
H23C 0.191455 0.311806 0.207127 0.058*
O24 0.55164 (16) 0.4811 (2) 0.19806 (15) 0.0394 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0238 (11) 0.0255 (12) 0.0370 (14) −0.0006 (10) 0.0111 (10) 0.0008 (10)
C2 0.0257 (12) 0.0230 (12) 0.0356 (14) −0.0012 (10) 0.0110 (11) −0.0004 (10)
C3 0.0251 (12) 0.0255 (12) 0.0373 (15) −0.0023 (10) 0.0125 (11) −0.0049 (11)
C4 0.0301 (13) 0.0271 (13) 0.0409 (16) 0.0045 (11) 0.0142 (12) 0.0013 (11)
C5 0.0253 (12) 0.0290 (13) 0.0340 (14) 0.0027 (10) 0.0095 (11) 0.0048 (11)
C6 0.0294 (12) 0.0268 (12) 0.0375 (15) −0.0010 (11) 0.0131 (11) 0.0041 (11)
C7 0.0209 (11) 0.0234 (11) 0.0349 (14) −0.0004 (9) 0.0091 (10) −0.0030 (10)
O8 0.0231 (8) 0.0295 (9) 0.0348 (10) 0.0014 (7) 0.0109 (7) 0.0041 (8)
C9 0.0268 (12) 0.0237 (12) 0.0326 (14) 0.0025 (10) 0.0100 (10) 0.0026 (10)
C10 0.0240 (12) 0.0266 (13) 0.0385 (15) 0.0018 (10) 0.0110 (11) 0.0034 (11)
C11 0.0251 (12) 0.0267 (13) 0.0402 (15) 0.0024 (10) 0.0113 (11) 0.0050 (11)
C12 0.0279 (12) 0.0315 (13) 0.0380 (15) 0.0011 (11) 0.0115 (11) 0.0021 (11)
C13 0.0297 (12) 0.0256 (12) 0.0351 (14) 0.0012 (10) 0.0125 (11) 0.0017 (11)
C14 0.0244 (11) 0.0229 (12) 0.0344 (14) 0.0005 (10) 0.0103 (10) 0.0008 (10)
C15 0.0262 (12) 0.0258 (12) 0.0396 (15) −0.0022 (10) 0.0124 (11) 0.0033 (11)
O16 0.0392 (12) 0.0427 (13) 0.094 (2) −0.0050 (10) 0.0282 (13) −0.0255 (13)
O17 0.0286 (11) 0.0317 (11) 0.116 (2) −0.0079 (9) 0.0229 (13) −0.0240 (13)
C18 0.0410 (17) 0.0309 (16) 0.104 (3) −0.0120 (14) 0.0204 (19) −0.0201 (18)
O19 0.0305 (9) 0.0317 (10) 0.0425 (11) −0.0013 (8) 0.0193 (9) −0.0026 (8)
C20 0.0311 (13) 0.0402 (16) 0.0355 (15) 0.0013 (12) 0.0089 (12) −0.0025 (12)
C21 0.0368 (15) 0.0381 (16) 0.0460 (18) 0.0077 (13) 0.0151 (13) 0.0103 (13)
C22 0.0377 (14) 0.0295 (14) 0.0512 (18) 0.0048 (12) 0.0204 (14) −0.0010 (13)
C23 0.0289 (13) 0.0376 (15) 0.0461 (17) 0.0024 (12) 0.0112 (12) 0.0106 (13)
O24 0.0367 (10) 0.0391 (11) 0.0470 (12) 0.0054 (9) 0.0214 (10) 0.0129 (9)

Geometric parameters (Å, º)

C1—C14 1.501 (3) C11—C12 1.532 (4)
C1—C2 1.510 (4) C11—C22 1.534 (4)
C1—C15 1.530 (4) C12—C13 1.508 (3)
C1—H1 1.0000 C12—H12A 0.9900
C2—C7 1.337 (3) C12—H12B 0.9900
C2—C3 1.468 (3) C13—O24 1.229 (3)
C3—O19 1.228 (3) C13—C14 1.461 (4)
C3—C4 1.513 (4) C15—O16 1.191 (3)
C4—C5 1.526 (4) C15—O17 1.314 (3)
C4—H4A 0.9900 O17—C18 1.450 (4)
C4—H4B 0.9900 C18—H18A 0.9800
C5—C21 1.529 (4) C18—H18B 0.9800
C5—C20 1.533 (4) C18—H18C 0.9800
C5—C6 1.541 (3) C20—H20A 0.9800
C6—C7 1.490 (4) C20—H20B 0.9800
C6—H6A 0.9900 C20—H20C 0.9800
C6—H6B 0.9900 C21—H21A 0.9800
C7—O8 1.374 (3) C21—H21B 0.9800
O8—C9 1.381 (3) C21—H21C 0.9800
C9—C14 1.338 (3) C22—H22A 0.9800
C9—C10 1.486 (3) C22—H22B 0.9800
C10—C11 1.538 (4) C22—H22C 0.9800
C10—H10A 0.9900 C23—H23A 0.9800
C10—H10B 0.9900 C23—H23B 0.9800
C11—C23 1.526 (3) C23—H23C 0.9800
C14—C1—C2 108.7 (2) C22—C11—C10 110.2 (2)
C14—C1—C15 110.2 (2) C13—C12—C11 112.6 (2)
C2—C1—C15 110.4 (2) C13—C12—H12A 109.1
C14—C1—H1 109.2 C11—C12—H12A 109.1
C2—C1—H1 109.2 C13—C12—H12B 109.1
C15—C1—H1 109.2 C11—C12—H12B 109.1
C7—C2—C3 118.7 (2) H12A—C12—H12B 107.8
C7—C2—C1 120.7 (2) O24—C13—C14 120.7 (2)
C3—C2—C1 120.5 (2) O24—C13—C12 122.0 (2)
O19—C3—C2 121.0 (2) C14—C13—C12 117.2 (2)
O19—C3—C4 121.2 (2) C9—C14—C13 119.2 (2)
C2—C3—C4 117.7 (2) C9—C14—C1 121.3 (2)
C3—C4—C5 114.0 (2) C13—C14—C1 119.4 (2)
C3—C4—H4A 108.8 O16—C15—O17 122.7 (3)
C5—C4—H4A 108.8 O16—C15—C1 125.7 (2)
C3—C4—H4B 108.8 O17—C15—C1 111.6 (2)
C5—C4—H4B 108.8 C15—O17—C18 116.8 (2)
H4A—C4—H4B 107.7 O17—C18—H18A 109.5
C4—C5—C21 109.6 (2) O17—C18—H18B 109.5
C4—C5—C20 109.8 (2) H18A—C18—H18B 109.5
C21—C5—C20 108.6 (2) O17—C18—H18C 109.5
C4—C5—C6 107.8 (2) H18A—C18—H18C 109.5
C21—C5—C6 109.6 (2) H18B—C18—H18C 109.5
C20—C5—C6 111.5 (2) C5—C20—H20A 109.5
C7—C6—C5 111.5 (2) C5—C20—H20B 109.5
C7—C6—H6A 109.3 H20A—C20—H20B 109.5
C5—C6—H6A 109.3 C5—C20—H20C 109.5
C7—C6—H6B 109.3 H20A—C20—H20C 109.5
C5—C6—H6B 109.3 H20B—C20—H20C 109.5
H6A—C6—H6B 108.0 C5—C21—H21A 109.5
C2—C7—O8 123.0 (2) C5—C21—H21B 109.5
C2—C7—C6 125.6 (2) H21A—C21—H21B 109.5
O8—C7—C6 111.4 (2) C5—C21—H21C 109.5
C7—O8—C9 117.1 (2) H21A—C21—H21C 109.5
C14—C9—O8 122.5 (2) H21B—C21—H21C 109.5
C14—C9—C10 125.8 (2) C11—C22—H22A 109.5
O8—C9—C10 111.7 (2) C11—C22—H22B 109.5
C9—C10—C11 111.8 (2) H22A—C22—H22B 109.5
C9—C10—H10A 109.2 C11—C22—H22C 109.5
C11—C10—H10A 109.2 H22A—C22—H22C 109.5
C9—C10—H10B 109.2 H22B—C22—H22C 109.5
C11—C10—H10B 109.2 C11—C23—H23A 109.5
H10A—C10—H10B 107.9 C11—C23—H23B 109.5
C23—C11—C12 110.2 (2) H23A—C23—H23B 109.5
C23—C11—C22 108.8 (2) C11—C23—H23C 109.5
C12—C11—C22 109.9 (2) H23A—C23—H23C 109.5
C23—C11—C10 109.5 (2) H23B—C23—H23C 109.5
C12—C11—C10 108.1 (2)
C14—C1—C2—C7 −25.2 (3) O8—C9—C10—C11 159.3 (2)
C15—C1—C2—C7 95.7 (3) C9—C10—C11—C23 167.9 (2)
C14—C1—C2—C3 151.0 (2) C9—C10—C11—C12 47.7 (3)
C15—C1—C2—C3 −88.1 (3) C9—C10—C11—C22 −72.5 (3)
C7—C2—C3—O19 170.0 (2) C23—C11—C12—C13 −176.3 (2)
C1—C2—C3—O19 −6.3 (4) C22—C11—C12—C13 63.7 (3)
C7—C2—C3—C4 −5.4 (4) C10—C11—C12—C13 −56.7 (3)
C1—C2—C3—C4 178.2 (2) C11—C12—C13—O24 −144.6 (3)
O19—C3—C4—C5 156.8 (2) C11—C12—C13—C14 36.9 (3)
C2—C3—C4—C5 −27.7 (3) O8—C9—C14—C13 178.5 (2)
C3—C4—C5—C21 173.5 (2) C10—C9—C14—C13 −1.7 (4)
C3—C4—C5—C20 −67.3 (3) O8—C9—C14—C1 −5.9 (4)
C3—C4—C5—C6 54.3 (3) C10—C9—C14—C1 173.9 (2)
C4—C5—C6—C7 −49.8 (3) O24—C13—C14—C9 174.9 (3)
C21—C5—C6—C7 −168.9 (2) C12—C13—C14—C9 −6.5 (4)
C20—C5—C6—C7 70.8 (3) O24—C13—C14—C1 −0.8 (4)
C3—C2—C7—O8 −168.6 (2) C12—C13—C14—C1 177.8 (2)
C1—C2—C7—O8 7.7 (4) C2—C1—C14—C9 24.4 (3)
C3—C2—C7—C6 9.2 (4) C15—C1—C14—C9 −96.7 (3)
C1—C2—C7—C6 −174.5 (2) C2—C1—C14—C13 −160.0 (2)
C5—C6—C7—C2 20.1 (4) C15—C1—C14—C13 78.9 (3)
C5—C6—C7—O8 −161.9 (2) C14—C1—C15—O16 7.8 (4)
C2—C7—O8—C9 13.7 (3) C2—C1—C15—O16 −112.2 (3)
C6—C7—O8—C9 −164.4 (2) C14—C1—C15—O17 −173.5 (2)
C7—O8—C9—C14 −14.7 (4) C2—C1—C15—O17 66.4 (3)
C7—O8—C9—C10 165.5 (2) O16—C15—O17—C18 1.4 (5)
C14—C9—C10—C11 −20.5 (4) C1—C15—O17—C18 −177.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6B···O24i 0.99 2.50 3.324 (4) 140
C18—H18A···O17ii 0.98 2.53 3.451 (5) 156
C18—H18A···O19ii 0.98 2.41 3.093 (4) 126

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, −y+1, −z+1.

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  2. Gross, H. & Freiberg, J. (1966). Chem. Ber. 99, 3260–3267.
  3. Gustafsson, C. (1948). Suomen Kemistilehti B, 21, 3–5.
  4. Rohr, K. & Mahrwald, R. (2009). Bioorg. Med. Chem. Lett. 19, 3949–3951. [DOI] [PubMed]
  5. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  6. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  7. Steiner, T. (1996). Crystallogr. Rev. 6, 1–51.
  8. Stoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620010184/gg4005sup1.cif

x-05-x201018-sup1.cif (315.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620010184/gg4005Isup2.hkl

x-05-x201018-Isup2.hkl (328.7KB, hkl)

schematic diagram of the reaction. DOI: 10.1107/S2414314620010184/gg4005sup3.tif

Supporting information file. DOI: 10.1107/S2414314620010184/gg4005Isup4.cml

CCDC reference: 2018468

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES