Skip to main content
IUCrData logoLink to IUCrData
. 2020 Jul 10;5(Pt 7):x200912. doi: 10.1107/S2414314620009128

Diethyl 3,3′-[(3-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate)

Hong Jiang a, Yu-Long Li a, Jin Zhou a,b, Hong-Shun Sun a,*, Qing-Yu Zhang a, Xing-Hao Shi a, Zhi-Yuan Zhang a, Tian Ling a
Editor: W T A Harrisonc
PMCID: PMC9462259  PMID: 36339780

In the title compound, the indole ring systems are approximately perpendicular to one another with a dihedral angle of 88.3 (4)°.

Keywords: crystal structure, bis­indole, MRI, contrast agents

Abstract

In the title compound, C29H25FN2O4, the mean planes of the indole ring systems are approximately perpendicular to one another [dihedral angle = 88.3 (4)°]. The benzene ring is twisted with respect to the indole ring systems by 49.8 (5) and 77.6 (3)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into the inversion dimers which are further linked into supra­molecular chains propagating along the [110] direction. graphic file with name x-05-x200912-scheme1-3D1.jpg

Structure description

There are abundant bis­(indol­yl)methane derivatives in various terrestrial and marine natural resources (Sundberg, 1996). As part of our ongoing studies of bis­(indoyl)methane compounds, we now report the synthesis and crystal structure of the title compound.

The mol­ecular structure of the title compound is shown in Fig. 1. The indole ring systems are nearly perpendicular to one another [dihedral angle = 88.3 (4)°] while the benzene ring (C2–C7) is twisted with respect to the N1/C8–C15 and N2/C19–C26 indole ring systems with dihedral angles of 49.8 (5) and 77.6 (3)°, respectively. The carboxyl groups are approximately co-planar with their attached indole ring systems, the dihedral angles between the carboxyl groups and the mean planes of the N1/C8–C15 and N2/C19–C26 indole ring systems being 6.2 (5) and 6.4 (4)°, respectively.

Figure 1.

Figure 1

The mol­ecular structure of the title mol­ecule with displacement ellipsoids drawn at the 30% probability level.

In the crystal, pairwise N1—H1A⋯O1i and N2—H2A⋯O4ii hydrogen bonds both generate Inline graphic (8) loops; together these lead to [110] chains of mol­ecules. A weak C11—H11A⋯O4iii inter­action also occurs, which links the chains into (001) sheets (Table 1 and Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.16 2.918 (11) 147
N2—H2A⋯O4ii 0.86 2.08 2.904 (9) 159
C11—H11A⋯O4iii 0.93 2.58 3.498 (13) 171

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 2.

Figure 2

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Several similar structures have been reported previously, viz. diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012), dimethyl 3,3′-[(3-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Lu et al., 2014), dimethyl 3,3′-[(4-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2015) and dimethyl 3,3′-[(2-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Lu et al., 2017). In these structures, the indole ring systems are also nearly perpendicular to one another, making dihedral angles of 82.0 (5), 87.8 (5), 84.0 (5) and 86.0 (5)°, respectively.

Synthesis and crystallization

Ethyl indole-2-carboxyl­ate (1.88 g, 10 mmol) was dissolved in 20 ml of ethanol and 3-fluoro­benzaldehyde (0.62 g, 5 mmol) and concentrated HCl (0.5 ml) was added. The mixture was heated to reflux temperature for 2 h. After cooling, the white product was filtered off and washed thoroughly with ethanol (yield = 92%). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C29H25FN2O4
M r 484.51
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 8.9960 (18), 15.921 (3), 18.297 (4)
β (°) 102.59 (3)
V3) 2557.6 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.20 × 0.10
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968)
T min, T max 0.982, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 5000, 4685, 1424
R int 0.131
(sin θ/λ)max−1) 0.603
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.143, 0.306, 1.30
No. of reflections 4685
No. of parameters 319
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.72

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620009128/hb4349sup1.cif

x-05-x200912-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620009128/hb4349Isup2.hkl

x-05-x200912-Isup2.hkl (229.5KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620009128/hb4349Isup3.cml

CCDC reference: 2014000

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

full crystallographic data

Crystal data

C29H25FN2O4 F(000) = 1016
Mr = 484.51 Dx = 1.258 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.9960 (18) Å Cell parameters from 25 reflections
b = 15.921 (3) Å θ = 9–12°
c = 18.297 (4) Å µ = 0.09 mm1
β = 102.59 (3)° T = 293 K
V = 2557.6 (9) Å3 Block, colorless
Z = 4 0.20 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 1424 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.131
Graphite monochromator θmax = 25.4°, θmin = 1.7°
ω/2θ scans h = 0→10
Absorption correction: ψ scan (North et al., 1968) k = 0→19
Tmin = 0.982, Tmax = 0.991 l = −22→21
5000 measured reflections 3 standard reflections every 200 reflections
4685 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.143 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.306 H atoms treated by a mixture of independent and constrained refinement
S = 1.30 w = 1/[σ2(Fo2) + (0.060P)2] where P = (Fo2 + 2Fc2)/3
4685 reflections (Δ/σ)max = 0.009
319 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.71 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms. The constraint Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C) was applied in all cases.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F 0.5574 (10) 0.2828 (5) 0.1783 (4) 0.154 (4)
O1 0.1733 (8) 0.0523 (4) 0.5601 (4) 0.080 (2)
N1 0.0972 (9) 0.0284 (4) 0.4084 (5) 0.063 (2)
H1A 0.0468 −0.0028 0.4327 0.076*
C1 0.3860 (9) 0.1906 (5) 0.3962 (5) 0.045 (2)
H1B 0.4561 0.1763 0.4434 0.054*
N2 0.3321 (8) 0.4124 (4) 0.4463 (4) 0.054 (2)
H2A 0.3634 0.4597 0.4668 0.064*
O2 0.3615 (8) 0.1390 (4) 0.5478 (4) 0.078 (2)
C2 0.4782 (11) 0.1845 (6) 0.3395 (6) 0.049 (3)
O3 0.6571 (7) 0.2781 (3) 0.4797 (3) 0.0609 (19)
C3 0.5727 (12) 0.1140 (8) 0.3428 (7) 0.094 (5)
H3A 0.5770 0.0753 0.3812 0.112*
O4 0.6412 (7) 0.4138 (4) 0.5044 (4) 0.071 (2)
C4 0.659 (2) 0.1009 (11) 0.2907 (12) 0.143 (7)
H4A 0.7197 0.0531 0.2945 0.172*
C5 0.6584 (19) 0.1558 (11) 0.2334 (11) 0.129 (7)
H5A 0.7151 0.1471 0.1972 0.155*
C6 0.5694 (16) 0.2231 (10) 0.2335 (7) 0.092 (4)
C7 0.4733 (12) 0.2417 (7) 0.2840 (6) 0.071 (3)
H7A 0.4121 0.2893 0.2792 0.086*
C8 0.2671 (10) 0.1236 (5) 0.3855 (6) 0.050 (3)
C9 0.1838 (10) 0.0882 (5) 0.3150 (6) 0.051 (3)
C10 0.1875 (12) 0.1021 (6) 0.2409 (7) 0.080 (4)
H10A 0.2524 0.1420 0.2276 0.096*
C11 0.0911 (12) 0.0547 (7) 0.1867 (6) 0.082 (4)
H11A 0.0929 0.0626 0.1366 0.099*
C12 −0.0061 (14) −0.0033 (7) 0.2053 (7) 0.088 (4)
H12A −0.0678 −0.0341 0.1673 0.105*
C13 −0.0162 (12) −0.0175 (6) 0.2762 (7) 0.077 (3)
H13A −0.0844 −0.0565 0.2878 0.092*
C14 0.0816 (11) 0.0295 (6) 0.3329 (7) 0.058 (3)
C15 0.2065 (11) 0.0855 (6) 0.4391 (6) 0.057 (3)
C16 0.2487 (12) 0.0887 (6) 0.5223 (7) 0.061 (3)
C17 0.4070 (12) 0.1489 (9) 0.6278 (6) 0.108 (5)
H17A 0.3662 0.2010 0.6427 0.129*
H17B 0.3673 0.1029 0.6525 0.129*
C18 0.5630 (13) 0.1500 (7) 0.6483 (7) 0.112
H18A 0.5940 0.1565 0.7016 0.168*
H18B 0.6015 0.1960 0.6241 0.168*
H18C 0.6027 0.0982 0.6337 0.168*
C19 0.3282 (9) 0.2778 (5) 0.4087 (5) 0.039 (2)
C20 0.1817 (11) 0.3129 (5) 0.3856 (5) 0.049 (3)
C21 0.0406 (12) 0.2819 (6) 0.3459 (6) 0.069 (3)
H21A 0.0315 0.2268 0.3286 0.082*
C22 −0.0847 (13) 0.3351 (7) 0.3330 (6) 0.077 (4)
H22A −0.1789 0.3152 0.3073 0.092*
C23 −0.0710 (13) 0.4196 (7) 0.3585 (6) 0.089 (4)
H23A −0.1560 0.4544 0.3490 0.106*
C24 0.0652 (12) 0.4502 (6) 0.3968 (6) 0.071 (3)
H24A 0.0749 0.5056 0.4131 0.085*
C25 0.1893 (11) 0.3958 (5) 0.4105 (5) 0.054 (3)
C26 0.4231 (11) 0.3414 (5) 0.4456 (5) 0.044 (2)
C27 0.5740 (11) 0.3489 (5) 0.4795 (5) 0.045 (2)
C28 0.8156 (10) 0.2802 (6) 0.5124 (6) 0.075 (3)
H28A 0.8324 0.2942 0.5651 0.089*
H28B 0.8662 0.3218 0.4877 0.089*
C29 0.8750 (12) 0.1962 (7) 0.5028 (6) 0.101 (4)
H29A 0.9824 0.1948 0.5241 0.152*
H29B 0.8573 0.1830 0.4504 0.152*
H29C 0.8242 0.1557 0.5276 0.152*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F 0.256 (10) 0.129 (7) 0.088 (6) −0.081 (7) 0.063 (6) −0.033 (5)
O1 0.085 (6) 0.085 (5) 0.073 (6) −0.020 (4) 0.022 (4) 0.013 (4)
N1 0.076 (6) 0.026 (4) 0.088 (7) −0.012 (4) 0.016 (6) −0.001 (5)
C1 0.050 (6) 0.033 (5) 0.053 (7) −0.012 (5) 0.011 (5) 0.000 (5)
N2 0.058 (5) 0.031 (4) 0.065 (6) −0.009 (4) 0.001 (5) −0.015 (4)
O2 0.081 (5) 0.091 (6) 0.060 (5) −0.032 (5) 0.014 (4) −0.005 (4)
C2 0.057 (7) 0.035 (6) 0.065 (8) −0.025 (5) 0.033 (6) −0.021 (5)
O3 0.068 (5) 0.036 (4) 0.072 (5) 0.002 (4) 0.001 (4) −0.004 (3)
C3 0.068 (8) 0.109 (11) 0.117 (12) −0.005 (8) 0.049 (8) −0.068 (9)
O4 0.079 (5) 0.030 (4) 0.093 (5) −0.004 (4) −0.008 (4) −0.016 (4)
C4 0.132 (15) 0.105 (14) 0.18 (2) −0.017 (12) 0.016 (15) −0.038 (13)
C5 0.132 (14) 0.101 (13) 0.169 (19) −0.033 (12) 0.065 (14) −0.106 (13)
C6 0.113 (11) 0.097 (11) 0.066 (10) −0.081 (9) 0.022 (9) −0.013 (9)
C7 0.079 (8) 0.067 (8) 0.077 (9) −0.039 (7) 0.036 (7) −0.046 (7)
C8 0.062 (7) 0.025 (5) 0.061 (7) −0.011 (5) 0.013 (6) −0.002 (5)
C9 0.063 (7) 0.025 (5) 0.069 (8) −0.017 (5) 0.023 (6) −0.012 (6)
C10 0.104 (9) 0.053 (7) 0.077 (9) −0.029 (6) 0.009 (8) −0.024 (7)
C11 0.097 (9) 0.081 (8) 0.070 (9) −0.023 (7) 0.021 (7) −0.029 (7)
C12 0.105 (10) 0.074 (9) 0.084 (10) −0.019 (8) 0.023 (9) −0.040 (8)
C13 0.084 (8) 0.034 (6) 0.112 (10) −0.010 (6) 0.019 (8) −0.028 (7)
C14 0.063 (7) 0.032 (6) 0.076 (9) 0.006 (5) 0.006 (7) −0.015 (6)
C15 0.069 (7) 0.031 (6) 0.067 (8) 0.007 (5) 0.010 (7) −0.003 (6)
C16 0.053 (7) 0.039 (6) 0.094 (10) −0.010 (6) 0.022 (7) 0.006 (6)
C17 0.062 (8) 0.200 (14) 0.058 (9) −0.006 (8) 0.008 (7) −0.030 (9)
C18 0.112 0.112 0.112 0.000 0.024 0.000
C19 0.041 (6) 0.026 (5) 0.049 (6) −0.005 (4) 0.010 (5) −0.006 (4)
C20 0.065 (7) 0.032 (5) 0.047 (6) −0.009 (5) 0.008 (6) −0.004 (5)
C21 0.072 (8) 0.042 (6) 0.085 (9) −0.001 (6) 0.003 (7) −0.010 (6)
C22 0.089 (9) 0.061 (8) 0.070 (8) −0.002 (7) −0.008 (7) −0.015 (6)
C23 0.086 (9) 0.072 (8) 0.098 (10) 0.028 (7) −0.002 (8) −0.001 (8)
C24 0.068 (8) 0.039 (6) 0.097 (9) −0.002 (6) −0.003 (7) −0.013 (6)
C25 0.054 (7) 0.036 (6) 0.063 (7) −0.001 (5) −0.007 (6) 0.004 (5)
C26 0.053 (6) 0.036 (5) 0.044 (6) 0.003 (5) 0.009 (5) −0.001 (5)
C27 0.060 (7) 0.030 (5) 0.042 (6) 0.006 (5) 0.001 (5) −0.008 (5)
C28 0.053 (7) 0.056 (7) 0.100 (9) 0.015 (6) −0.016 (7) 0.001 (6)
C29 0.097 (9) 0.099 (9) 0.104 (10) 0.053 (8) 0.012 (8) −0.007 (8)

Geometric parameters (Å, º)

F—C6 1.374 (13) C11—C12 1.365 (13)
O1—C16 1.216 (10) C11—H11A 0.9300
N1—C14 1.356 (11) C12—C13 1.339 (13)
N1—C15 1.367 (10) C12—H12A 0.9300
N1—H1A 0.8600 C13—C14 1.418 (12)
C1—C2 1.464 (11) C13—H13A 0.9300
C1—C8 1.492 (10) C15—C16 1.488 (13)
C1—C19 1.517 (10) C17—C18 1.371 (12)
C1—H1B 0.9800 C17—H17A 0.9700
N2—C25 1.335 (10) C17—H17B 0.9700
N2—C26 1.398 (9) C18—H18A 0.9600
N2—H2A 0.8600 C18—H18B 0.9600
O2—C16 1.297 (10) C18—H18C 0.9600
O2—C17 1.440 (11) C19—C26 1.399 (10)
C2—C7 1.359 (13) C19—C20 1.409 (11)
C2—C3 1.401 (13) C20—C25 1.394 (11)
O3—C27 1.351 (9) C20—C21 1.407 (11)
O3—C28 1.421 (9) C21—C22 1.389 (12)
C3—C4 1.370 (18) C21—H21A 0.9300
C3—H3A 0.9300 C22—C23 1.420 (12)
O4—C27 1.234 (9) C22—H22A 0.9300
C4—C5 1.363 (19) C23—C24 1.361 (12)
C4—H4A 0.9300 C23—H23A 0.9300
C5—C6 1.339 (18) C24—C25 1.392 (11)
C5—H5A 0.9300 C24—H24A 0.9300
C6—C7 1.426 (15) C26—C27 1.370 (11)
C7—H7A 0.9300 C28—C29 1.465 (11)
C8—C15 1.364 (11) C28—H28A 0.9700
C8—C9 1.457 (12) C28—H28B 0.9700
C9—C10 1.382 (12) C29—H29A 0.9600
C9—C14 1.400 (11) C29—H29B 0.9600
C10—C11 1.389 (12) C29—H29C 0.9600
C10—H10A 0.9300
C14—N1—C15 108.4 (9) C8—C15—C16 131.9 (10)
C14—N1—H1A 125.8 O1—C16—O2 125.4 (11)
C15—N1—H1A 125.8 O1—C16—C15 121.1 (10)
C2—C1—C8 111.1 (7) O2—C16—C15 113.2 (10)
C2—C1—C19 115.7 (7) C18—C17—O2 109.1 (10)
C8—C1—C19 114.4 (7) C18—C17—H17A 109.9
C2—C1—H1B 104.7 O2—C17—H17A 109.9
C8—C1—H1B 104.7 C18—C17—H17B 109.9
C19—C1—H1B 104.7 O2—C17—H17B 109.9
C25—N2—C26 109.7 (7) H17A—C17—H17B 108.3
C25—N2—H2A 125.1 C17—C18—H18A 109.5
C26—N2—H2A 125.1 C17—C18—H18B 109.5
C16—O2—C17 117.4 (9) H18A—C18—H18B 109.5
C7—C2—C3 119.2 (11) C17—C18—H18C 109.5
C7—C2—C1 123.7 (10) H18A—C18—H18C 109.5
C3—C2—C1 117.1 (10) H18B—C18—H18C 109.5
C27—O3—C28 119.0 (7) C26—C19—C20 106.9 (7)
C4—C3—C2 121.6 (15) C26—C19—C1 122.8 (8)
C4—C3—H3A 119.2 C20—C19—C1 130.2 (7)
C2—C3—H3A 119.2 C25—C20—C21 118.4 (9)
C3—C4—C5 122.0 (19) C25—C20—C19 107.5 (8)
C3—C4—H4A 119.0 C21—C20—C19 134.1 (8)
C5—C4—H4A 119.0 C22—C21—C20 118.8 (9)
C6—C5—C4 114.4 (18) C22—C21—H21A 120.6
C6—C5—H5A 122.8 C20—C21—H21A 120.6
C4—C5—H5A 122.8 C21—C22—C23 120.8 (10)
C5—C6—F 120.2 (17) C21—C22—H22A 119.6
C5—C6—C7 127.9 (14) C23—C22—H22A 119.6
F—C6—C7 111.8 (15) C24—C23—C22 120.8 (10)
C2—C7—C6 114.8 (11) C24—C23—H23A 119.6
C2—C7—H7A 122.6 C22—C23—H23A 119.6
C6—C7—H7A 122.6 C23—C24—C25 117.8 (9)
C15—C8—C9 104.8 (8) C23—C24—H24A 121.1
C15—C8—C1 127.7 (9) C25—C24—H24A 121.1
C9—C8—C1 127.4 (9) N2—C25—C24 127.8 (9)
C10—C9—C14 119.6 (10) N2—C25—C20 108.8 (8)
C10—C9—C8 133.6 (9) C24—C25—C20 123.4 (9)
C14—C9—C8 106.8 (9) C27—C26—N2 116.7 (8)
C11—C10—C9 117.9 (10) C27—C26—C19 136.2 (8)
C11—C10—H10A 121.0 N2—C26—C19 107.1 (7)
C9—C10—H10A 121.0 O4—C27—O3 118.1 (8)
C12—C11—C10 121.6 (11) O4—C27—C26 126.7 (8)
C12—C11—H11A 119.2 O3—C27—C26 114.9 (8)
C10—C11—H11A 119.2 O3—C28—C29 106.7 (8)
C13—C12—C11 122.5 (12) O3—C28—H28A 110.4
C13—C12—H12A 118.7 C29—C28—H28A 110.4
C11—C12—H12A 118.7 O3—C28—H28B 110.4
C12—C13—C14 117.2 (11) C29—C28—H28B 110.4
C12—C13—H13A 121.4 H28A—C28—H28B 108.6
C14—C13—H13A 121.4 C28—C29—H29A 109.5
N1—C14—C9 108.6 (9) C28—C29—H29B 109.5
N1—C14—C13 130.4 (11) H29A—C29—H29B 109.5
C9—C14—C13 121.0 (11) C28—C29—H29C 109.5
N1—C15—C8 111.4 (9) H29A—C29—H29C 109.5
N1—C15—C16 116.3 (10) H29B—C29—H29C 109.5
C8—C1—C2—C7 110.8 (9) C17—O2—C16—O1 3.8 (15)
C19—C1—C2—C7 −21.8 (13) C17—O2—C16—C15 177.6 (9)
C8—C1—C2—C3 −67.4 (11) N1—C15—C16—O1 −11.3 (14)
C19—C1—C2—C3 159.9 (8) C8—C15—C16—O1 176.3 (10)
C7—C2—C3—C4 −0.8 (16) N1—C15—C16—O2 174.6 (8)
C1—C2—C3—C4 177.5 (11) C8—C15—C16—O2 2.1 (15)
C2—C3—C4—C5 1 (2) C16—O2—C17—C18 138.6 (11)
C3—C4—C5—C6 1 (2) C2—C1—C19—C26 −72.7 (11)
C4—C5—C6—F −179.3 (12) C8—C1—C19—C26 156.2 (8)
C4—C5—C6—C7 −3 (2) C2—C1—C19—C20 104.3 (11)
C3—C2—C7—C6 −0.4 (13) C8—C1—C19—C20 −26.8 (14)
C1—C2—C7—C6 −178.6 (8) C26—C19—C20—C25 −1.7 (10)
C5—C6—C7—C2 2.2 (17) C1—C19—C20—C25 −179.0 (9)
F—C6—C7—C2 179.2 (8) C26—C19—C20—C21 179.0 (10)
C2—C1—C8—C15 149.4 (10) C1—C19—C20—C21 1.6 (18)
C19—C1—C8—C15 −77.3 (12) C25—C20—C21—C22 0.2 (15)
C2—C1—C8—C9 −34.5 (13) C19—C20—C21—C22 179.5 (10)
C19—C1—C8—C9 98.8 (11) C20—C21—C22—C23 0.8 (16)
C15—C8—C9—C10 177.8 (11) C21—C22—C23—C24 −0.5 (18)
C1—C8—C9—C10 1.0 (17) C22—C23—C24—C25 −0.6 (17)
C15—C8—C9—C14 −1.5 (10) C26—N2—C25—C24 −177.8 (10)
C1—C8—C9—C14 −178.2 (8) C26—N2—C25—C20 0.5 (11)
C14—C9—C10—C11 −1.9 (15) C23—C24—C25—N2 179.7 (10)
C8—C9—C10—C11 178.9 (10) C23—C24—C25—C20 1.7 (16)
C9—C10—C11—C12 0.9 (16) C21—C20—C25—N2 −179.8 (8)
C10—C11—C12—C13 0.7 (19) C19—C20—C25—N2 0.7 (11)
C11—C12—C13—C14 −1.2 (18) C21—C20—C25—C24 −1.4 (15)
C15—N1—C14—C9 0.3 (10) C19—C20—C25—C24 179.1 (9)
C15—N1—C14—C13 −179.8 (9) C25—N2—C26—C27 179.2 (8)
C10—C9—C14—N1 −178.7 (9) C25—N2—C26—C19 −1.5 (10)
C8—C9—C14—N1 0.7 (10) C20—C19—C26—C27 −179.0 (11)
C10—C9—C14—C13 1.4 (14) C1—C19—C26—C27 −1.4 (16)
C8—C9—C14—C13 −179.2 (8) C20—C19—C26—N2 1.9 (10)
C12—C13—C14—N1 −179.8 (10) C1—C19—C26—N2 179.5 (8)
C12—C13—C14—C9 0.1 (15) C28—O3—C27—O4 3.8 (13)
C14—N1—C15—C8 −1.3 (11) C28—O3—C27—C26 178.8 (8)
C14—N1—C15—C16 −175.3 (8) N2—C26—C27—O4 −7.4 (14)
C9—C8—C15—N1 1.7 (10) C19—C26—C27—O4 173.6 (10)
C1—C8—C15—N1 178.5 (8) N2—C26—C27—O3 178.1 (7)
C9—C8—C15—C16 174.4 (9) C19—C26—C27—O3 −1.0 (16)
C1—C8—C15—C16 −8.8 (16) C27—O3—C28—C29 −178.8 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.86 2.16 2.918 (11) 147
N2—H2A···O4ii 0.86 2.08 2.904 (9) 159
C11—H11A···O4iii 0.93 2.58 3.498 (13) 171

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x−1/2, −y+1/2, z−1/2.

Funding Statement

Funding for this research was provided by: Natural Science Foundation of Jiangsu Province (grant No. BK20181486); Natural Science Foundation of the Jiangsu Higher Education Institutions (grant No. 17KJB320001); Training program of Students Innovation and Entrepreneurship in Jiangsu Province (grant No. 201812920002Y); Overseas Training Program for Excellent Young Teachers and Principals of Jiangsu Province; Qing Lan Project of Jiangsu Province; Natural Science Foundation of Nanjing Polytechnic Institute (grant No. NHKY-2019-07).

References

  1. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
  3. Lu, X.-H., Sun, H.-S., Cai, Y., Chen, L.-L. & Chen, Y.-F. (2017). Acta Cryst. E73, 1790–1792. [DOI] [PMC free article] [PubMed]
  4. Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593–595. [DOI] [PMC free article] [PubMed]
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140–1142. [DOI] [PMC free article] [PubMed]
  8. Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764. [DOI] [PMC free article] [PubMed]
  9. Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620009128/hb4349sup1.cif

x-05-x200912-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620009128/hb4349Isup2.hkl

x-05-x200912-Isup2.hkl (229.5KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620009128/hb4349Isup3.cml

CCDC reference: 2014000

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES