Skip to main content
IUCrData logoLink to IUCrData
. 2020 Sep 18;5(Pt 9):x201248. doi: 10.1107/S2414314620012481

2,2′-Oxybis[1,3-bis­(4-meth­oxy­phen­yl)-2,3-di­hydro-1H-benzo[d][1,3,2]di­aza­borole]

Hannah H Mallard a, Nicholas D Kennedy a, Nathan A Rudman b, Alexa M Greenwood a, Jonathan Nicoleau a, Corey E Angle a, Nicole A Torquato c, Michael R Gau b, Patrick J Carroll b, Mitchell R Anstey a,*
Editor: W T A Harrisond
PMCID: PMC9462278  PMID: 36338902

The title compound features a B—O—B bond angle of 132.75 (13)°.

Keywords: crystal structure, bridging μ-oxo, boron

Abstract

In the title compound, C40H36B2N4O5, the B—O—B bond angle is 132.75 (13) and the dihedral angle between the benzodiazborole rings is 73.02 (5)°. In the crystal, weak C—H⋯O inter­actions link the mol­ecules. graphic file with name x-05-x201248-scheme1-3D1.jpg

Structure description

The field of cooperative catalysis has given scientists the ability to access more complex mol­ecular transformations using cheaper, readily available metals (Allen et al., 2012; Lohr & Marks, 2015). The title compound, C40H36B2N4O5, was synthesized using elements from the main group of the periodic table, which are cheaper and more accessible than the traditionally used transition metals (Karunananda et al., 2017; Power, 2010).

The title compound has a pincer-like orientation formed by an oxygen single-atom bridge connected to two Lewis-acidic boron centers (Fig. 1). The di­amine moieties bound to the boron atoms provide redox-active sites, which give the structure the electron equivalents that boron lacks while also modulating the steric environment (Prier et al., 2013; Pye et al., 2017; Bellemin-Laponnaz et al., 2014). The pincer shape might allow the compound to use the boron atoms and the redox-active ligands to create a binding pocket for coordination and bridging of a small mol­ecule substrate.

Figure 1.

Figure 1

The mol­ecular structure of the title compound. Hydrogen atoms have been omitted for clarity. Ellipsoids are at 50% probability.

The B1A—O1—B1B bond angle is 132.75 (13)°, which is reasonable given the steric bulk that is present in the di­aza­borole moiety. Additionally, it is likely that a p-type electronic inter­action exists between O1 and the adjacent boron atoms (B1A and B1B) that would serve to open up the bond angle substanti­ally beyond the textbook angle of 109.5° for an O atom bearing two lone pairs of electrons. As a result of steric encumbrance, the B1A and B1B benzodi­aza­borole rings are angled away from one another to a near perpendicular orientation, with a plane-to-plane tilt of 73.02 (5)°. The dihedral angles between the B1A benzodi­aza­borole ring system and its pendant p-meth­oxy­benzene rings are 80.49 (6) and 49.84 (7)° for the C7A and C14A rings, respectively. Comparable data for the B1B ring system and its pendant C7B and C14B rings are 78.32 (6) and 65.96 (7)°, respectively. The C atoms of the meth­oxy groups are all close to their respective ring planes: C13A [deviation = 0.333 (2) Å]; C20A [0.254 (2) Å]; C13B [−0.040 (2 Å)]; C20B [0.193 (2) Å].

In the crystal, weak C—H⋯O inter­actions (Table 1) link the mol­ecules.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8B—H8B⋯O2A i 0.95 2.40 3.233 (2) 147
C13B—H13E⋯O3B ii 0.98 2.46 3.374 (3) 155

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Synthesis and crystallization

The title compound was synthesized in two steps (Fig. 2) from the previously reported precursor, N 1,N 2-bis­(4-meth­oxy­phen­yl)benzene-1,2-di­amine (Xiong et al., 2018; Wang et al., 2018).

Figure 2.

Figure 2

Chemical scheme for the synthesis of the title compound.

Under an anhydrous nitro­gen atmosphere, 12 mmol of the di­amine precursor was dissolved in 400 ml of diethyl ether. An excess of tri­ethyl­amine, four equivalents, was then added. A stoichiometric amount of boron trichloride was added to this stirred solution whereupon a white precipitate composed of a mixture of tri­ethyl­ammonium chloride and the monomeric di­aza­borole chloride was formed. The volatiles were removed under reduced pressure to give a white solid. The solid was extracted in a fritted glass filter with a minimum volume of benzene, and the filtrate was evaporated under reduced pressure to give the crude di­aza­borole chloride. This crude solid was recrystallized from a toluene/hexa­nes mixture. The di­aza­borole chloride, (II), was obtained in 87% yield. The single-crystal X-ray structure of the di­aza­borole chloride has been deposited with the Cambridge Structural Database (Mallard et al., 2020).

Under an anhydrous nitro­gen atmosphere, a solution was prepared that contained 3.0 mmol of (II), four equivalents of tri­ethyl­amine, and ∼200 ml of 1,2-di­meth­oxy­ethane. This solution was then treated with half an equivalent of water (used as a 1 M solution in 1,2-di­meth­oxy­ethane). After stirring overnight, a white precipitate of the tri­ethyl­ammonium chloride formed that was then filtered and discarded. The filtrate was dried under reduced pressure to give the crude product. The solid was extracted in a fritted glass filter with a minimum volume of benzene, and the filtrate was evaporated under reduced pressure to give the title compound in 85% yield.

Single crystals suitable for X-ray analysis were obtained from a saturated solution of hexa­nes. The solution was allowed to stand overnight whereupon small colorless crystals formed.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. A small number of intense low-angle reflections are missing from this data set due to the arrangement of the instrument with a conservatively sized beam stop. The large number of reflections in the data set ensures that no particular bias has been introduced.

Table 2. Experimental details.

Crystal data
Chemical formula C40H36B2N4O5
M r 674.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 16.7584 (15), 13.6696 (14), 16.0291 (17)
β (°) 111.125 (5)
V3) 3425.2 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.17 × 0.07 × 0.05
 
Data collection
Diffractometer Bruker D8QUEST
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.696, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 46461, 6305, 4773
R int 0.063
(sin θ/λ)max−1) 0.604
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.093, 1.02
No. of reflections 6305
No. of parameters 464
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.23

Computer programs: APEX2 and SAINT (Bruker, 2016), olex2.solve (Bourhis et al., 2015), SHELXL2018/3 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314620012481/hb4361sup1.cif

x-05-x201248-sup1.cif (608.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620012481/hb4361Isup2.hkl

x-05-x201248-Isup2.hkl (345.5KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620012481/hb4361Isup4.cml

CCDC reference: 2031384

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Pennsylvania for data-collection services and both Professor Louise Dawe (Wilfrid Laurier University) and Dr Amy Sarjeant (Bristol Myers Squibb) for their patient teaching on our journey into crystallography.

full crystallographic data

Crystal data

C40H36B2N4O5 F(000) = 1416
Mr = 674.35 Dx = 1.308 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 16.7584 (15) Å Cell parameters from 9875 reflections
b = 13.6696 (14) Å θ = 2.6–25.3°
c = 16.0291 (17) Å µ = 0.09 mm1
β = 111.125 (5)° T = 100 K
V = 3425.2 (6) Å3 Plank, clear colourless
Z = 4 0.17 × 0.07 × 0.05 mm

Data collection

Bruker D8QUEST diffractometer 4773 reflections with I > 2σ(I)
ω and φ scans Rint = 0.063
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 25.4°, θmin = 2.0°
Tmin = 0.696, Tmax = 0.745 h = −20→19
46461 measured reflections k = −16→16
6305 independent reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.8558P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
6305 reflections Δρmax = 0.19 e Å3
464 parameters Δρmin = −0.23 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The hydrogen atoms were treated in calculated positions and refined in the riding model approximation with distances of C—H = 0.95 and 0.98 Å for the aryl and methyl groups, respectively. Methyl group H atoms were allowed to rotate, but not to tip, in order to find the best rotameric conformation.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.85920 (6) 0.72089 (8) 0.47878 (7) 0.0182 (3)
O2A 0.94929 (7) 0.28970 (8) 0.67336 (7) 0.0215 (3)
O2B 1.26822 (7) 0.80020 (9) 0.56662 (8) 0.0271 (3)
O3B 0.46275 (7) 0.72061 (9) 0.49287 (9) 0.0293 (3)
N2A 0.72444 (7) 0.71200 (9) 0.34165 (9) 0.0164 (3)
N1B 0.94279 (7) 0.84989 (9) 0.58254 (9) 0.0153 (3)
N2B 0.80077 (7) 0.83556 (9) 0.56577 (9) 0.0165 (3)
N1A 0.77512 (8) 0.57002 (9) 0.42085 (9) 0.0165 (3)
O3A 0.67160 (7) 1.09930 (8) 0.22224 (9) 0.0306 (3)
C8A 0.78840 (9) 0.46361 (11) 0.54824 (11) 0.0179 (3)
H8A 0.736024 0.488985 0.549372 0.022*
C1B 0.92486 (9) 0.91823 (11) 0.63878 (10) 0.0155 (3)
C4A 0.56664 (10) 0.53896 (12) 0.18616 (11) 0.0220 (4)
H4A 0.519745 0.535105 0.130943 0.026*
C14B 0.71442 (9) 0.80361 (11) 0.54539 (10) 0.0156 (3)
C19B 0.64607 (10) 0.86514 (12) 0.50179 (11) 0.0196 (4)
H19B 0.656451 0.928549 0.483657 0.024*
C11A 0.94122 (9) 0.38913 (12) 0.54478 (11) 0.0181 (4)
H11A 0.993502 0.363627 0.543511 0.022*
C7B 1.02652 (9) 0.83921 (11) 0.57765 (10) 0.0153 (3)
C12B 1.04462 (9) 0.88045 (11) 0.50785 (11) 0.0173 (3)
H12B 1.001788 0.917154 0.463646 0.021*
C9B 1.16985 (10) 0.77675 (12) 0.63780 (11) 0.0196 (4)
H9B 1.213171 0.741701 0.683007 0.024*
C2A 0.67165 (9) 0.63331 (11) 0.29705 (10) 0.0163 (3)
C8B 1.09010 (9) 0.78759 (11) 0.64347 (11) 0.0181 (3)
H8B 1.078610 0.759811 0.692302 0.022*
C7A 0.82051 (9) 0.49728 (11) 0.48451 (10) 0.0160 (3)
C12A 0.89620 (9) 0.45872 (11) 0.48261 (11) 0.0178 (3)
H12A 0.917565 0.480128 0.438260 0.021*
C11B 1.12469 (10) 0.86905 (12) 0.50128 (11) 0.0196 (4)
H11B 1.136209 0.896959 0.452520 0.024*
C10A 0.90946 (9) 0.35708 (11) 0.60870 (10) 0.0169 (3)
C9A 0.83218 (10) 0.39372 (11) 0.60967 (11) 0.0191 (4)
H9A 0.809716 0.370545 0.652606 0.023*
C10B 1.18735 (9) 0.81671 (12) 0.56643 (11) 0.0190 (4)
C2B 0.83793 (9) 0.91005 (11) 0.62841 (10) 0.0155 (3)
C5A 0.59719 (10) 0.45422 (12) 0.23465 (11) 0.0218 (4)
H5A 0.570709 0.393380 0.212281 0.026*
C15B 0.69809 (9) 0.71079 (12) 0.56962 (11) 0.0191 (4)
H15B 0.744615 0.668406 0.599301 0.023*
C4B 0.85715 (10) 1.03368 (12) 0.73819 (11) 0.0216 (4)
H4B 0.834773 1.074256 0.772644 0.026*
C6A 0.66609 (9) 0.45685 (12) 0.31563 (11) 0.0184 (4)
H6A 0.687046 0.398918 0.349096 0.022*
C18B 0.56315 (10) 0.83459 (12) 0.48467 (11) 0.0202 (4)
H18B 0.516732 0.877299 0.455501 0.024*
C15A 0.62849 (10) 0.85263 (12) 0.28888 (11) 0.0195 (4)
H15A 0.582685 0.814596 0.293193 0.023*
C13A 1.03594 (10) 0.26680 (13) 0.68586 (11) 0.0235 (4)
H13A 1.037828 0.231596 0.633340 0.035*
H13B 1.060410 0.225671 0.739098 0.035*
H13C 1.069072 0.327420 0.693708 0.035*
C16B 0.61476 (10) 0.67826 (12) 0.55134 (11) 0.0217 (4)
H16B 0.604205 0.613775 0.566929 0.026*
C17B 0.54747 (9) 0.74158 (12) 0.51001 (11) 0.0197 (4)
C17A 0.68022 (10) 1.00504 (12) 0.25366 (11) 0.0218 (4)
C5B 0.94306 (10) 1.04153 (12) 0.74906 (11) 0.0206 (4)
H5B 0.978511 1.086867 0.791098 0.025*
C19A 0.77567 (10) 0.86889 (12) 0.30786 (11) 0.0223 (4)
H19A 0.831507 0.841940 0.324531 0.027*
C3A 0.60342 (9) 0.62980 (12) 0.21689 (11) 0.0195 (4)
H3A 0.582056 0.687674 0.183498 0.023*
C14A 0.70906 (9) 0.81108 (11) 0.31211 (10) 0.0169 (3)
C3B 0.80324 (10) 0.96752 (12) 0.67782 (11) 0.0189 (4)
H3B 0.744661 0.962050 0.670814 0.023*
C6B 0.97784 (9) 0.98366 (11) 0.69901 (11) 0.0172 (3)
H6B 1.036467 0.989175 0.706222 0.021*
C1A 0.70288 (9) 0.54691 (11) 0.34553 (10) 0.0165 (3)
B1B 0.86581 (11) 0.79655 (13) 0.53674 (12) 0.0156 (4)
C16A 0.61347 (10) 0.94878 (12) 0.25942 (11) 0.0213 (4)
H16A 0.557743 0.975921 0.243290 0.026*
C18A 0.76183 (10) 0.96511 (12) 0.27972 (12) 0.0263 (4)
H18A 0.808247 1.004032 0.278184 0.032*
B1A 0.79043 (11) 0.67265 (13) 0.41912 (12) 0.0164 (4)
C13B 1.28701 (12) 0.84058 (15) 0.49346 (15) 0.0377 (5)
H13D 1.248532 0.812024 0.437283 0.057*
H13E 1.346415 0.825729 0.500977 0.057*
H13F 1.278949 0.911650 0.491983 0.057*
C20A 0.59608 (11) 1.15048 (14) 0.21765 (14) 0.0363 (5)
H20A 0.545972 1.117823 0.174811 0.055*
H20B 0.598966 1.217911 0.198158 0.055*
H20C 0.591353 1.150928 0.276835 0.055*
C20B 0.44238 (12) 0.62958 (15) 0.52332 (17) 0.0465 (6)
H20D 0.457484 0.576027 0.491127 0.070*
H20E 0.380958 0.627181 0.512244 0.070*
H20F 0.474669 0.622809 0.587577 0.070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0145 (5) 0.0188 (6) 0.0201 (6) −0.0002 (4) 0.0048 (5) −0.0043 (5)
O2A 0.0220 (6) 0.0240 (6) 0.0192 (6) 0.0064 (5) 0.0082 (5) 0.0051 (5)
O2B 0.0190 (6) 0.0296 (7) 0.0381 (8) 0.0035 (5) 0.0169 (5) 0.0044 (6)
O3B 0.0151 (6) 0.0332 (7) 0.0390 (8) −0.0048 (5) 0.0092 (5) −0.0001 (6)
N2A 0.0159 (6) 0.0148 (7) 0.0180 (7) −0.0012 (5) 0.0056 (5) −0.0014 (6)
N1B 0.0144 (6) 0.0164 (7) 0.0169 (7) −0.0012 (5) 0.0078 (5) −0.0029 (6)
N2B 0.0136 (6) 0.0184 (7) 0.0174 (7) −0.0029 (5) 0.0054 (5) −0.0025 (6)
N1A 0.0144 (6) 0.0170 (7) 0.0166 (7) 0.0009 (5) 0.0037 (5) −0.0004 (6)
O3A 0.0296 (7) 0.0184 (6) 0.0426 (8) 0.0034 (5) 0.0115 (6) 0.0083 (6)
C8A 0.0146 (8) 0.0184 (9) 0.0215 (9) 0.0006 (6) 0.0074 (7) −0.0020 (7)
C1B 0.0175 (8) 0.0163 (8) 0.0143 (8) 0.0010 (6) 0.0075 (6) 0.0024 (6)
C4A 0.0181 (8) 0.0260 (9) 0.0185 (9) −0.0018 (7) 0.0026 (7) −0.0026 (7)
C14B 0.0143 (7) 0.0201 (9) 0.0129 (8) −0.0014 (6) 0.0056 (6) −0.0031 (6)
C19B 0.0219 (8) 0.0185 (9) 0.0194 (9) −0.0011 (7) 0.0085 (7) 0.0003 (7)
C11A 0.0158 (8) 0.0206 (9) 0.0184 (9) 0.0014 (6) 0.0067 (7) −0.0016 (7)
C7B 0.0140 (7) 0.0143 (8) 0.0173 (8) −0.0023 (6) 0.0055 (6) −0.0055 (6)
C12B 0.0179 (8) 0.0156 (8) 0.0176 (9) 0.0014 (6) 0.0054 (7) 0.0004 (7)
C9B 0.0169 (8) 0.0198 (9) 0.0196 (9) 0.0018 (6) 0.0035 (7) −0.0004 (7)
C2A 0.0159 (8) 0.0167 (8) 0.0190 (9) −0.0021 (6) 0.0095 (7) −0.0026 (7)
C8B 0.0194 (8) 0.0187 (8) 0.0167 (9) −0.0031 (7) 0.0072 (7) −0.0009 (7)
C7A 0.0158 (8) 0.0135 (8) 0.0163 (8) −0.0023 (6) 0.0027 (6) −0.0024 (7)
C12A 0.0186 (8) 0.0204 (9) 0.0161 (8) −0.0013 (7) 0.0082 (7) −0.0009 (7)
C11B 0.0233 (8) 0.0182 (9) 0.0207 (9) −0.0022 (7) 0.0121 (7) −0.0006 (7)
C10A 0.0186 (8) 0.0154 (8) 0.0150 (8) −0.0001 (6) 0.0041 (7) −0.0013 (7)
C9A 0.0206 (8) 0.0210 (9) 0.0184 (9) −0.0018 (7) 0.0101 (7) −0.0004 (7)
C10B 0.0157 (8) 0.0171 (8) 0.0257 (9) −0.0008 (6) 0.0092 (7) −0.0032 (7)
C2B 0.0169 (8) 0.0141 (8) 0.0143 (8) −0.0015 (6) 0.0043 (6) 0.0018 (6)
C5A 0.0189 (8) 0.0205 (9) 0.0246 (9) −0.0062 (7) 0.0063 (7) −0.0063 (7)
C15B 0.0162 (8) 0.0204 (9) 0.0207 (9) 0.0034 (6) 0.0067 (7) 0.0020 (7)
C4B 0.0257 (9) 0.0208 (9) 0.0211 (9) 0.0021 (7) 0.0116 (7) −0.0016 (7)
C6A 0.0172 (8) 0.0171 (8) 0.0219 (9) −0.0009 (6) 0.0083 (7) 0.0004 (7)
C18B 0.0163 (8) 0.0264 (9) 0.0161 (9) 0.0054 (7) 0.0036 (7) 0.0005 (7)
C15A 0.0164 (8) 0.0207 (9) 0.0220 (9) −0.0020 (6) 0.0077 (7) −0.0003 (7)
C13A 0.0222 (9) 0.0271 (10) 0.0202 (9) 0.0070 (7) 0.0064 (7) 0.0008 (7)
C16B 0.0216 (8) 0.0177 (9) 0.0275 (10) −0.0019 (7) 0.0108 (7) −0.0002 (7)
C17B 0.0148 (8) 0.0268 (9) 0.0181 (9) −0.0042 (7) 0.0068 (7) −0.0051 (7)
C17A 0.0247 (9) 0.0160 (8) 0.0236 (9) 0.0009 (7) 0.0075 (7) 0.0005 (7)
C5B 0.0225 (8) 0.0198 (9) 0.0184 (9) −0.0041 (7) 0.0063 (7) −0.0036 (7)
C19A 0.0162 (8) 0.0212 (9) 0.0305 (10) 0.0014 (7) 0.0097 (7) 0.0009 (8)
C3A 0.0173 (8) 0.0217 (9) 0.0190 (9) 0.0010 (7) 0.0060 (7) 0.0014 (7)
C14A 0.0191 (8) 0.0159 (8) 0.0153 (8) 0.0000 (6) 0.0060 (7) −0.0025 (7)
C3B 0.0169 (8) 0.0223 (9) 0.0194 (9) −0.0008 (7) 0.0088 (7) 0.0006 (7)
C6B 0.0153 (8) 0.0178 (9) 0.0188 (9) −0.0025 (6) 0.0065 (7) 0.0004 (7)
C1A 0.0136 (7) 0.0199 (9) 0.0172 (9) −0.0006 (6) 0.0067 (7) −0.0018 (7)
B1B 0.0160 (9) 0.0152 (9) 0.0146 (9) 0.0000 (7) 0.0045 (7) 0.0011 (7)
C16A 0.0175 (8) 0.0217 (9) 0.0239 (9) 0.0034 (7) 0.0066 (7) −0.0018 (7)
C18A 0.0214 (8) 0.0222 (9) 0.0372 (11) −0.0038 (7) 0.0130 (8) 0.0027 (8)
B1A 0.0137 (8) 0.0197 (10) 0.0180 (10) −0.0005 (7) 0.0081 (7) −0.0041 (8)
C13B 0.0304 (10) 0.0370 (12) 0.0588 (14) 0.0033 (8) 0.0320 (10) 0.0105 (10)
C20A 0.0372 (11) 0.0230 (10) 0.0457 (13) 0.0108 (8) 0.0112 (9) 0.0073 (9)
C20B 0.0231 (10) 0.0426 (13) 0.0723 (17) −0.0100 (9) 0.0155 (10) 0.0125 (12)

Geometric parameters (Å, º)

O1—B1B 1.368 (2) C7A—C12A 1.384 (2)
O1—B1A 1.372 (2) C12A—H12A 0.9500
O2A—C10A 1.3673 (18) C11B—H11B 0.9500
O2A—C13A 1.4272 (18) C11B—C10B 1.384 (2)
O2B—C10B 1.3730 (18) C10A—C9A 1.394 (2)
O2B—C13B 1.430 (2) C9A—H9A 0.9500
O3B—C17B 1.3757 (18) C2B—C3B 1.384 (2)
O3B—C20B 1.422 (2) C5A—H5A 0.9500
N2A—C2A 1.4124 (19) C5A—C6A 1.392 (2)
N2A—C14A 1.427 (2) C15B—H15B 0.9500
N2A—B1A 1.437 (2) C15B—C16B 1.392 (2)
N1B—C1B 1.4040 (19) C4B—H4B 0.9500
N1B—C7B 1.4407 (19) C4B—C5B 1.391 (2)
N1B—B1B 1.432 (2) C4B—C3B 1.393 (2)
N2B—C14B 1.4322 (19) C6A—H6A 0.9500
N2B—C2B 1.4079 (19) C6A—C1A 1.383 (2)
N2B—B1B 1.433 (2) C18B—H18B 0.9500
N1A—C7A 1.431 (2) C18B—C17B 1.388 (2)
N1A—C1A 1.4034 (19) C15A—H15A 0.9500
N1A—B1A 1.428 (2) C15A—C14A 1.386 (2)
O3A—C17A 1.3720 (19) C15A—C16A 1.389 (2)
O3A—C20A 1.425 (2) C13A—H13A 0.9800
C8A—H8A 0.9500 C13A—H13B 0.9800
C8A—C7A 1.393 (2) C13A—H13C 0.9800
C8A—C9A 1.378 (2) C16B—H16B 0.9500
C1B—C2B 1.410 (2) C16B—C17B 1.386 (2)
C1B—C6B 1.379 (2) C17A—C16A 1.388 (2)
C4A—H4A 0.9500 C17A—C18A 1.390 (2)
C4A—C5A 1.386 (2) C5B—H5B 0.9500
C4A—C3A 1.395 (2) C5B—C6B 1.395 (2)
C14B—C19B 1.390 (2) C19A—H19A 0.9500
C14B—C15B 1.383 (2) C19A—C14A 1.389 (2)
C19B—H19B 0.9500 C19A—C18A 1.383 (2)
C19B—C18B 1.380 (2) C3A—H3A 0.9500
C11A—H11A 0.9500 C3B—H3B 0.9500
C11A—C12A 1.388 (2) C6B—H6B 0.9500
C11A—C10A 1.385 (2) C16A—H16A 0.9500
C7B—C12B 1.381 (2) C18A—H18A 0.9500
C7B—C8B 1.391 (2) C13B—H13D 0.9800
C12B—H12B 0.9500 C13B—H13E 0.9800
C12B—C11B 1.392 (2) C13B—H13F 0.9800
C9B—H9B 0.9500 C20A—H20A 0.9800
C9B—C8B 1.380 (2) C20A—H20B 0.9800
C9B—C10B 1.391 (2) C20A—H20C 0.9800
C2A—C3A 1.379 (2) C20B—H20D 0.9800
C2A—C1A 1.407 (2) C20B—H20E 0.9800
C8B—H8B 0.9500 C20B—H20F 0.9800
B1B—O1—B1A 132.75 (13) C5B—C4B—C3B 121.34 (15)
C10A—O2A—C13A 116.62 (12) C3B—C4B—H4B 119.3
C10B—O2B—C13B 116.33 (13) C5A—C6A—H6A 121.2
C17B—O3B—C20B 118.15 (13) C1A—C6A—C5A 117.54 (15)
C2A—N2A—C14A 123.34 (13) C1A—C6A—H6A 121.2
C2A—N2A—B1A 107.38 (13) C19B—C18B—H18B 119.9
C14A—N2A—B1A 129.26 (13) C19B—C18B—C17B 120.13 (15)
C1B—N1B—C7B 122.71 (12) C17B—C18B—H18B 119.9
C1B—N1B—B1B 107.83 (12) C14A—C15A—H15A 119.4
B1B—N1B—C7B 129.45 (13) C14A—C15A—C16A 121.25 (15)
C14B—N2B—B1B 129.55 (13) C16A—C15A—H15A 119.4
C2B—N2B—C14B 122.27 (12) O2A—C13A—H13A 109.5
C2B—N2B—B1B 107.94 (12) O2A—C13A—H13B 109.5
C1A—N1A—C7A 121.93 (13) O2A—C13A—H13C 109.5
C1A—N1A—B1A 108.04 (13) H13A—C13A—H13B 109.5
B1A—N1A—C7A 130.03 (13) H13A—C13A—H13C 109.5
C17A—O3A—C20A 117.01 (13) H13B—C13A—H13C 109.5
C7A—C8A—H8A 119.8 C15B—C16B—H16B 120.6
C9A—C8A—H8A 119.8 C17B—C16B—C15B 118.85 (15)
C9A—C8A—C7A 120.39 (14) C17B—C16B—H16B 120.6
N1B—C1B—C2B 108.82 (13) O3B—C17B—C18B 115.02 (14)
C6B—C1B—N1B 130.41 (14) O3B—C17B—C16B 124.66 (15)
C6B—C1B—C2B 120.74 (14) C16B—C17B—C18B 120.30 (14)
C5A—C4A—H4A 119.4 O3A—C17A—C16A 124.35 (14)
C5A—C4A—C3A 121.27 (15) O3A—C17A—C18A 116.17 (14)
C3A—C4A—H4A 119.4 C16A—C17A—C18A 119.47 (15)
C19B—C14B—N2B 120.81 (14) C4B—C5B—H5B 119.6
C15B—C14B—N2B 120.11 (13) C4B—C5B—C6B 120.83 (15)
C15B—C14B—C19B 119.08 (14) C6B—C5B—H5B 119.6
C14B—C19B—H19B 119.8 C14A—C19A—H19A 119.5
C18B—C19B—C14B 120.34 (15) C18A—C19A—H19A 119.5
C18B—C19B—H19B 119.8 C18A—C19A—C14A 120.92 (15)
C12A—C11A—H11A 120.2 C4A—C3A—H3A 120.9
C10A—C11A—H11A 120.2 C2A—C3A—C4A 118.20 (15)
C10A—C11A—C12A 119.59 (14) C2A—C3A—H3A 120.9
C12B—C7B—N1B 120.36 (14) C15A—C14A—N2A 121.32 (14)
C12B—C7B—C8B 119.32 (14) C15A—C14A—C19A 118.41 (15)
C8B—C7B—N1B 120.32 (14) C19A—C14A—N2A 120.25 (13)
C7B—C12B—H12B 119.5 C2B—C3B—C4B 117.73 (14)
C7B—C12B—C11B 120.99 (15) C2B—C3B—H3B 121.1
C11B—C12B—H12B 119.5 C4B—C3B—H3B 121.1
C8B—C9B—H9B 119.7 C1B—C6B—C5B 118.25 (14)
C8B—C9B—C10B 120.55 (15) C1B—C6B—H6B 120.9
C10B—C9B—H9B 119.7 C5B—C6B—H6B 120.9
C3A—C2A—N2A 130.98 (15) N1A—C1A—C2A 108.66 (13)
C3A—C2A—C1A 120.25 (14) C6A—C1A—N1A 129.58 (14)
C1A—C2A—N2A 108.63 (13) C6A—C1A—C2A 121.68 (14)
C7B—C8B—H8B 120.0 O1—B1B—N1B 124.79 (14)
C9B—C8B—C7B 119.98 (15) O1—B1B—N2B 128.08 (14)
C9B—C8B—H8B 120.0 N1B—B1B—N2B 107.10 (14)
C8A—C7A—N1A 120.37 (13) C15A—C16A—H16A 120.1
C12A—C7A—N1A 120.31 (14) C17A—C16A—C15A 119.70 (14)
C12A—C7A—C8A 119.31 (14) C17A—C16A—H16A 120.1
C11A—C12A—H12A 119.6 C17A—C18A—H18A 119.9
C7A—C12A—C11A 120.70 (15) C19A—C18A—C17A 120.19 (15)
C7A—C12A—H12A 119.6 C19A—C18A—H18A 119.9
C12B—C11B—H11B 120.3 O1—B1A—N2A 127.87 (15)
C10B—C11B—C12B 119.39 (15) O1—B1A—N1A 124.76 (15)
C10B—C11B—H11B 120.3 N1A—B1A—N2A 107.27 (13)
O2A—C10A—C11A 124.14 (14) O2B—C13B—H13D 109.5
O2A—C10A—C9A 115.80 (14) O2B—C13B—H13E 109.5
C11A—C10A—C9A 120.06 (15) O2B—C13B—H13F 109.5
C8A—C9A—C10A 119.91 (15) H13D—C13B—H13E 109.5
C8A—C9A—H9A 120.0 H13D—C13B—H13F 109.5
C10A—C9A—H9A 120.0 H13E—C13B—H13F 109.5
O2B—C10B—C9B 115.73 (14) O3A—C20A—H20A 109.5
O2B—C10B—C11B 124.52 (15) O3A—C20A—H20B 109.5
C11B—C10B—C9B 119.75 (14) O3A—C20A—H20C 109.5
N2B—C2B—C1B 108.31 (13) H20A—C20A—H20B 109.5
C3B—C2B—N2B 130.53 (14) H20A—C20A—H20C 109.5
C3B—C2B—C1B 121.12 (14) H20B—C20A—H20C 109.5
C4A—C5A—H5A 119.5 O3B—C20B—H20D 109.5
C4A—C5A—C6A 121.04 (15) O3B—C20B—H20E 109.5
C6A—C5A—H5A 119.5 O3B—C20B—H20F 109.5
C14B—C15B—H15B 119.4 H20D—C20B—H20E 109.5
C14B—C15B—C16B 121.26 (14) H20D—C20B—H20F 109.5
C16B—C15B—H15B 119.4 H20E—C20B—H20F 109.5
C5B—C4B—H4B 119.3
O2A—C10A—C9A—C8A 178.55 (14) C2B—N2B—B1B—N1B −0.61 (17)
N2A—C2A—C3A—C4A 175.54 (15) C2B—C1B—C6B—C5B −0.2 (2)
N2A—C2A—C1A—N1A 0.14 (17) C5A—C4A—C3A—C2A 0.3 (2)
N2A—C2A—C1A—C6A −177.10 (14) C5A—C6A—C1A—N1A −175.77 (15)
N1B—C1B—C2B—N2B 0.47 (17) C5A—C6A—C1A—C2A 0.8 (2)
N1B—C1B—C2B—C3B 178.43 (14) C15B—C14B—C19B—C18B 1.4 (2)
N1B—C1B—C6B—C5B −177.82 (15) C15B—C16B—C17B—O3B −176.14 (15)
N1B—C7B—C12B—C11B −178.68 (14) C15B—C16B—C17B—C18B 2.2 (2)
N1B—C7B—C8B—C9B 179.28 (14) C4B—C5B—C6B—C1B −0.3 (2)
N2B—C14B—C19B—C18B −178.20 (14) C13A—O2A—C10A—C11A 13.0 (2)
N2B—C14B—C15B—C16B 179.40 (14) C13A—O2A—C10A—C9A −167.12 (14)
N2B—C2B—C3B—C4B 177.41 (15) C5B—C4B—C3B—C2B −0.4 (2)
N1A—C7A—C12A—C11A 179.14 (14) C3A—C4A—C5A—C6A −0.3 (2)
O3A—C17A—C16A—C15A 177.38 (16) C3A—C2A—C1A—N1A 176.32 (14)
O3A—C17A—C18A—C19A −176.64 (16) C3A—C2A—C1A—C6A −0.9 (2)
C8A—C7A—C12A—C11A −1.7 (2) C14A—N2A—C2A—C3A 6.7 (3)
C1B—N1B—C7B—C12B −100.79 (18) C14A—N2A—C2A—C1A −177.71 (13)
C1B—N1B—C7B—C8B 78.92 (19) C14A—N2A—B1A—O1 −6.6 (3)
C1B—N1B—B1B—O1 −177.24 (15) C14A—N2A—B1A—N1A 177.07 (14)
C1B—N1B—B1B—N2B 0.90 (17) C14A—C15A—C16A—C17A −0.5 (3)
C1B—C2B—C3B—C4B 0.0 (2) C14A—C19A—C18A—C17A −1.1 (3)
C4A—C5A—C6A—C1A −0.2 (2) C3B—C4B—C5B—C6B 0.6 (3)
C14B—N2B—C2B—C1B 174.97 (13) C6B—C1B—C2B—N2B −177.64 (14)
C14B—N2B—C2B—C3B −2.7 (3) C6B—C1B—C2B—C3B 0.3 (2)
C14B—N2B—B1B—O1 3.1 (3) C1A—N1A—C7A—C8A −78.00 (19)
C14B—N2B—B1B—N1B −174.99 (14) C1A—N1A—C7A—C12A 101.15 (17)
C14B—C19B—C18B—C17B −0.8 (2) C1A—N1A—B1A—O1 −175.29 (15)
C14B—C15B—C16B—C17B −1.6 (2) C1A—N1A—B1A—N2A 1.21 (17)
C19B—C14B—C15B—C16B −0.2 (2) C1A—C2A—C3A—C4A 0.3 (2)
C19B—C18B—C17B—O3B 177.45 (14) B1B—O1—B1A—N2A 62.9 (3)
C19B—C18B—C17B—C16B −1.0 (2) B1B—O1—B1A—N1A −121.33 (19)
C11A—C10A—C9A—C8A −1.5 (2) B1B—N1B—C1B—C2B −0.85 (17)
C7B—N1B—C1B—C2B −179.69 (13) B1B—N1B—C1B—C6B 177.02 (16)
C7B—N1B—C1B—C6B −1.8 (2) B1B—N1B—C7B—C12B 80.6 (2)
C7B—N1B—B1B—O1 1.5 (3) B1B—N1B—C7B—C8B −99.6 (2)
C7B—N1B—B1B—N2B 179.63 (14) B1B—N2B—C14B—C19B −119.01 (18)
C7B—C12B—C11B—C10B −0.9 (2) B1B—N2B—C14B—C15B 61.4 (2)
C12B—C7B—C8B—C9B −1.0 (2) B1B—N2B—C2B—C1B 0.10 (17)
C12B—C11B—C10B—O2B 179.54 (14) B1B—N2B—C2B—C3B −177.61 (17)
C12B—C11B—C10B—C9B −0.4 (2) C16A—C15A—C14A—N2A −179.44 (15)
C2A—N2A—C14A—C15A 47.6 (2) C16A—C15A—C14A—C19A 1.9 (2)
C2A—N2A—C14A—C19A −133.79 (16) C16A—C17A—C18A—C19A 2.5 (3)
C2A—N2A—B1A—O1 175.24 (15) C18A—C17A—C16A—C15A −1.7 (3)
C2A—N2A—B1A—N1A −1.12 (17) C18A—C19A—C14A—N2A −179.75 (16)
C8B—C7B—C12B—C11B 1.6 (2) C18A—C19A—C14A—C15A −1.1 (3)
C8B—C9B—C10B—O2B −178.96 (14) B1A—O1—B1B—N1B −167.79 (16)
C8B—C9B—C10B—C11B 1.0 (2) B1A—O1—B1B—N2B 14.5 (3)
C7A—N1A—C1A—C2A 178.84 (13) B1A—N2A—C2A—C3A −175.02 (16)
C7A—N1A—C1A—C6A −4.2 (2) B1A—N2A—C2A—C1A 0.61 (17)
C7A—N1A—B1A—O1 5.1 (3) B1A—N2A—C14A—C15A −130.34 (17)
C7A—N1A—B1A—N2A −178.45 (14) B1A—N2A—C14A—C19A 48.3 (2)
C7A—C8A—C9A—C10A 0.6 (2) B1A—N1A—C7A—C8A 101.61 (19)
C12A—C11A—C10A—O2A −179.27 (14) B1A—N1A—C7A—C12A −79.2 (2)
C12A—C11A—C10A—C9A 0.8 (2) B1A—N1A—C1A—C2A −0.85 (17)
C10A—C11A—C12A—C7A 0.8 (2) B1A—N1A—C1A—C6A 176.11 (16)
C9A—C8A—C7A—N1A −179.86 (14) C13B—O2B—C10B—C9B 179.79 (15)
C9A—C8A—C7A—C12A 1.0 (2) C13B—O2B—C10B—C11B −0.2 (2)
C10B—C9B—C8B—C7B −0.3 (2) C20A—O3A—C17A—C16A 17.1 (2)
C2B—N2B—C14B—C19B 67.3 (2) C20A—O3A—C17A—C18A −163.81 (16)
C2B—N2B—C14B—C15B −112.25 (17) C20B—O3B—C17B—C18B −175.17 (17)
C2B—N2B—B1B—O1 177.44 (16) C20B—O3B—C17B—C16B 3.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8B—H8B···O2Ai 0.95 2.40 3.233 (2) 147
C13B—H13E···O3Bii 0.98 2.46 3.374 (3) 155

Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x+1, y, z.

Funding Statement

Funding for this research was provided by program manager Dr Imre Gyuk through the US Department of Energy, Office of Electricity. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Inter­national, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. The views expressed in this article do not necessarily represent the views of the US Department of Energy or the United States Government. Davidson College and the Davidson Research Institute are acknowledged for scholarships to HHM and NAR.

References

  1. Allen, A. E. & MacMillan, D. W. C. (2012). Chem. Sci. 3, 633–658. [DOI] [PMC free article] [PubMed]
  2. Bellemin-Laponnaz, S. & Dagorne, S. (2014). Chem. Rev. 114, 8747–8774. [DOI] [PubMed]
  3. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  4. Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Karunananda, M. K. & Mankad, N. P. (2017). ACS Catal. 7, 6110–6119.
  7. Lohr, T. L. & Marks, T. J. (2015). Nat. Chem. 7, 477–482. [DOI] [PubMed]
  8. Mallard, H. H., Anstey, M. R., Kennedy, N. D., Rudman, N. A., Greenwood, A. M., Angle, C. E., Nicoleau, J., Torquato, N. A., Gau, M. R. & Carroll, P. J. (2020). CSD Communication (refcode CCDC 2015021). CCDC, Cambridge, England.
  9. Power, P. P. (2010). Nature, 463, 171–177. [DOI] [PubMed]
  10. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. (2013). Chem. Rev. 113, 5322–5363. [DOI] [PMC free article] [PubMed]
  11. Pye, D. R. & Mankad, N. P. (2017). Chem. Sci. 8, 1705–1718. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Wang, Z., Chen, X., Xie, H., Wang, D., Huang, H. & Deng, G.-J. (2018). Org. Lett. 20, 5470–5473. [DOI] [PubMed]
  14. Xiong, M., Gao, Z., Liang, X., Cai, P., Zhu, H. & Pan, Y. (2018). Chem. Commun. 54, 9679–9682. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314620012481/hb4361sup1.cif

x-05-x201248-sup1.cif (608.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620012481/hb4361Isup2.hkl

x-05-x201248-Isup2.hkl (345.5KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620012481/hb4361Isup4.cml

CCDC reference: 2031384

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES