Skip to main content
IUCrData logoLink to IUCrData
. 2020 Sep 8;5(Pt 9):x201209. doi: 10.1107/S2414314620012092

3-(2-Meth­oxy­phen­yl)-2,3-di­hydro-1H-benzo[f]chromen-1-one

Jiha Sung a,*
Editor: W T A Harrisonb
PMCID: PMC9462287  PMID: 36338917

In the title flavanone, the mol­ecules are linked by weak C—H⋯O inter­actions into [101] chains.

Keywords: crystal structure, flavanone, C—H⋯O hydrogen bonds

Abstract

In the title compound, C20H16O3, the 2-meth­oxy­phenyl ring is tilted by 50.67 (3)° with respect to the naphthyl ring system. The central pyran ring has an envelope conformation with the C atom bearing the pendant ring system as the flap. The meth­oxy group attached to the benzene ring is slightly twisted [C—C—O—C = −15.2 (1)°] from the ring. In the crystal, weak C—HO inter­actions link the mol­ecules into C(7) chains propagating along [101]. graphic file with name x-05-x201209-scheme1-3D1.jpg

Structure description

Flavanones are widely used as health-care products because they are found at high concentrations in natural sources (Lichota et al., 2019). Flavanones possess a chromane ring as a common structural feature, but they show a broad spectrum of biological activities depending on the placement of the hydroxyl or meth­oxy group substituents at different positions of the flavanone skeleton (Lee et al., 2016; Singh et al., 2014). Compounds in which the phenyl group in the chromane ring system is replaced by a naphthyl ring system have shown versatile biological activities and physiochemical properties (Kumar et al., 2017; Shin et al., 2014). Therefore, the naphthyl ring system-containing title flavanone compound, C20H16O3, was synthesized and its crystal structure was determined.

The mol­ecular structure of the title compound is shown in Fig. 1. The dihedral angle between the C2–C11 naphthyl ring system (r.m.s. deviation = 0.026 Å) and the C14–C19 2-meth­oxy­phenyl ring is 50.67 (3)°. The central pyran ring (C1/C2/C11/O2/C12/C13) has an envelope conformation with atom C12 as the flap, which is displaced by 0.691 (2) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.023 Å). In the arbitrarily chosen asymmetric mol­ecule, C12 has an R configuration but crystal symmetry generates a racemic mixture. The hydrogen atom H12 attached to C12 forms a trans diaxial conformation with one of H atoms of the C13 methyl­ene group (H12—C12—C13—H13A = 179°] and a gauche conformation with the other methyl­ene H atom H13B (H12—C12—C13—H13B = 61°). The meth­oxy group in the benzene ring is slightly tilted [C16—C15—O3—C20 = −15.2 (2)°] from the ring.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

In the crystal, weak C—H⋯O inter­actions link the mol­ecules into C(7) chains propagating along [101] (Table 1, Fig. 2) with adjacent mol­ecules in the chain related by n-glide symmetry.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.94 2.60 3.3973 (17) 142

Symmetry code: (i) Inline graphic .

Figure 2.

Figure 2

Part of the crystal structure of the title compound, showing the weak C—H⋯O hydrogen bonds as blue lines. H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

The synthetic scheme for the preparation of the title compound is shown in Fig. 3: 2-hy­droxy-1-aceto­naphthone (I, 372 mg, 2 mmol) and 2-meth­oxy­benzaldehyde (II, 272 mg, 2 mmol) were dissolved in ethanol (20 ml) and the temperature was adjusted to around 276–277 K in an ice-bath. To the cooled reaction mixture was added 1.5 ml of 50% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 24 h. The mixture was poured into iced water (80 ml) and was acidified with 6 N HCl solution. The mixture was extracted with ethyl acetate (3 × 40 ml) and the combined organic layers were dried with MgSO4. Filtration and evaporation of the filtrate gave a solid product of chalcone (III), which was used for next reaction: the solid was dissolved in DMSO and a catalytic amount of conc. HCl was added. After stirring for 10 h, the reaction mixture was poured into iced water to give a solid product of the title flavanone and yellow blocks were recovered by recrystallization from ethanol solution.

Figure 3.

Figure 3

A synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C20H16O3
M r 304.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 223
a, b, c (Å) 12.4519 (5), 7.8785 (3), 15.6680 (7)
β (°) 105.2534 (16)
V3) 1482.92 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.21 × 0.14 × 0.10
 
Data collection
Diffractometer PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.691, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 40884, 3704, 2879
R int 0.049
(sin θ/λ)max−1) 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.113, 1.03
No. of reflections 3704
No. of parameters 209
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.20

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015)and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620012092/hb4362sup1.cif

x-05-x201209-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620012092/hb4362Isup2.hkl

x-05-x201209-Isup2.hkl (295.5KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620012092/hb4362Isup3.cml

CCDC reference: 2026731

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C20H16O3 F(000) = 640
Mr = 304.33 Dx = 1.363 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 12.4519 (5) Å Cell parameters from 9975 reflections
b = 7.8785 (3) Å θ = 2.7–28.3°
c = 15.6680 (7) Å µ = 0.09 mm1
β = 105.2534 (16)° T = 223 K
V = 1482.92 (11) Å3 Block, yellow
Z = 4 0.21 × 0.14 × 0.10 mm

Data collection

PHOTON 100 CMOS diffractometer 2879 reflections with I > 2σ(I)
φ and ω scans Rint = 0.049
Absorption correction: multi-scan (SADABS; Bruker, 2012) θmax = 28.4°, θmin = 2.7°
Tmin = 0.691, Tmax = 0.746 h = −16→16
40884 measured reflections k = −10→10
3704 independent reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.6269P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3704 reflections Δρmax = 0.32 e Å3
209 parameters Δρmin = −0.20 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.02968 (9) 0.67451 (14) 0.13018 (7) 0.0408 (3)
C1 0.96744 (11) 0.55251 (17) 0.11882 (8) 0.0277 (3)
C2 0.87200 (10) 0.52818 (17) 0.04044 (8) 0.0254 (3)
C3 0.83775 (10) 0.65224 (17) −0.02963 (8) 0.0256 (3)
C4 0.88498 (11) 0.81647 (18) −0.02699 (9) 0.0319 (3)
H4 0.9442 0.8475 0.0214 0.038*
C5 0.84549 (12) 0.93097 (19) −0.09406 (10) 0.0373 (3)
H5 0.8778 1.0394 −0.0906 0.045*
C6 0.75818 (12) 0.8889 (2) −0.16720 (10) 0.0383 (3)
H6 0.7318 0.9687 −0.2125 0.046*
C7 0.71140 (12) 0.7314 (2) −0.17257 (9) 0.0344 (3)
H7 0.6531 0.7029 −0.2221 0.041*
C8 0.74920 (11) 0.61053 (18) −0.10475 (8) 0.0279 (3)
C9 0.69968 (11) 0.44738 (19) −0.11078 (9) 0.0312 (3)
H9 0.6434 0.4186 −0.1616 0.037*
C10 0.73167 (11) 0.33232 (18) −0.04500 (9) 0.0308 (3)
H10 0.6983 0.2245 −0.0504 0.037*
C11 0.81568 (11) 0.37503 (17) 0.03210 (8) 0.0268 (3)
O2 0.83415 (8) 0.25362 (12) 0.09597 (6) 0.0327 (2)
C12 0.88068 (11) 0.31806 (18) 0.18418 (8) 0.0284 (3)
H12 0.8275 0.4002 0.1981 0.034*
C13 0.98756 (11) 0.41041 (18) 0.18597 (9) 0.0301 (3)
H13A 1.0414 0.3302 0.1732 0.036*
H13B 1.0193 0.4572 0.2452 0.036*
C14 0.89365 (11) 0.17138 (18) 0.24762 (9) 0.0290 (3)
C15 0.89304 (11) 0.20426 (18) 0.33543 (9) 0.0301 (3)
C16 0.90122 (12) 0.0723 (2) 0.39537 (10) 0.0352 (3)
H16 0.9000 0.0947 0.4540 0.042*
C17 0.91114 (12) −0.0927 (2) 0.36806 (10) 0.0381 (3)
H17 0.9166 −0.1824 0.4086 0.046*
C18 0.91317 (13) −0.1273 (2) 0.28268 (11) 0.0398 (3)
H18 0.9203 −0.2397 0.2649 0.048*
C19 0.90462 (12) 0.00531 (19) 0.22271 (10) 0.0358 (3)
H19 0.9063 −0.0184 0.1643 0.043*
O3 0.88502 (9) 0.37221 (13) 0.35620 (7) 0.0398 (3)
C20 0.85783 (17) 0.4093 (2) 0.43593 (11) 0.0520 (5)
H20A 0.7929 0.3441 0.4391 0.078*
H20B 0.8418 0.5295 0.4381 0.078*
H20C 0.9200 0.3799 0.4855 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0417 (6) 0.0414 (6) 0.0332 (6) −0.0146 (5) −0.0011 (4) 0.0012 (5)
C1 0.0279 (6) 0.0315 (7) 0.0237 (6) −0.0012 (5) 0.0070 (5) −0.0024 (5)
C2 0.0248 (6) 0.0290 (7) 0.0224 (6) −0.0004 (5) 0.0063 (5) −0.0012 (5)
C3 0.0255 (6) 0.0289 (7) 0.0237 (6) 0.0009 (5) 0.0086 (5) −0.0009 (5)
C4 0.0314 (7) 0.0320 (7) 0.0317 (7) −0.0033 (6) 0.0072 (5) −0.0011 (6)
C5 0.0384 (8) 0.0297 (7) 0.0447 (8) −0.0017 (6) 0.0124 (6) 0.0056 (6)
C6 0.0364 (8) 0.0393 (8) 0.0391 (8) 0.0066 (6) 0.0094 (6) 0.0141 (7)
C7 0.0299 (7) 0.0422 (8) 0.0289 (7) 0.0034 (6) 0.0036 (5) 0.0060 (6)
C8 0.0258 (6) 0.0338 (7) 0.0242 (6) 0.0011 (5) 0.0066 (5) 0.0008 (5)
C9 0.0289 (7) 0.0384 (8) 0.0235 (6) −0.0041 (6) 0.0022 (5) −0.0024 (6)
C10 0.0317 (7) 0.0315 (7) 0.0280 (7) −0.0075 (5) 0.0059 (5) −0.0031 (6)
C11 0.0287 (6) 0.0288 (6) 0.0233 (6) 0.0001 (5) 0.0078 (5) 0.0012 (5)
O2 0.0403 (5) 0.0299 (5) 0.0248 (5) −0.0056 (4) 0.0033 (4) 0.0037 (4)
C12 0.0297 (6) 0.0319 (7) 0.0228 (6) 0.0005 (5) 0.0054 (5) 0.0019 (5)
C13 0.0273 (6) 0.0369 (7) 0.0248 (6) 0.0000 (6) 0.0044 (5) 0.0019 (5)
C14 0.0257 (6) 0.0322 (7) 0.0286 (7) 0.0021 (5) 0.0064 (5) 0.0051 (6)
C15 0.0274 (6) 0.0326 (7) 0.0305 (7) 0.0004 (5) 0.0083 (5) 0.0036 (6)
C16 0.0352 (7) 0.0413 (8) 0.0285 (7) −0.0005 (6) 0.0073 (6) 0.0078 (6)
C17 0.0354 (7) 0.0359 (8) 0.0419 (8) 0.0025 (6) 0.0083 (6) 0.0143 (7)
C18 0.0409 (8) 0.0316 (7) 0.0465 (9) 0.0056 (6) 0.0110 (7) 0.0039 (7)
C19 0.0380 (8) 0.0365 (8) 0.0329 (7) 0.0045 (6) 0.0095 (6) 0.0019 (6)
O3 0.0562 (7) 0.0342 (6) 0.0333 (6) 0.0010 (5) 0.0192 (5) 0.0029 (4)
C20 0.0748 (12) 0.0454 (10) 0.0433 (9) 0.0065 (9) 0.0290 (9) −0.0019 (8)

Geometric parameters (Å, º)

O1—C1 1.2180 (16) O2—C12 1.4430 (16)
C1—C2 1.4796 (17) C12—C14 1.5050 (18)
C1—C13 1.5114 (18) C12—C13 1.5105 (18)
C2—C11 1.3844 (18) C12—H12 0.9900
C2—C3 1.4478 (18) C13—H13A 0.9800
C3—C4 1.4173 (19) C13—H13B 0.9800
C3—C8 1.4235 (18) C14—C19 1.382 (2)
C4—C5 1.374 (2) C14—C15 1.4020 (19)
C4—H4 0.9400 C15—O3 1.3725 (17)
C5—C6 1.396 (2) C15—C16 1.3869 (19)
C5—H5 0.9400 C16—C17 1.384 (2)
C6—C7 1.364 (2) C16—H16 0.9400
C6—H6 0.9400 C17—C18 1.372 (2)
C7—C8 1.4123 (19) C17—H17 0.9400
C7—H7 0.9400 C18—C19 1.390 (2)
C8—C9 1.4179 (19) C18—H18 0.9400
C9—C10 1.3515 (19) C19—H19 0.9400
C9—H9 0.9400 O3—C20 1.4083 (18)
C10—C11 1.4149 (18) C20—H20A 0.9700
C10—H10 0.9400 C20—H20B 0.9700
C11—O2 1.3595 (15) C20—H20C 0.9700
O1—C1—C2 124.39 (12) C14—C12—C13 114.63 (11)
O1—C1—C13 120.01 (12) O2—C12—H12 108.5
C2—C1—C13 115.57 (11) C14—C12—H12 108.5
C11—C2—C3 118.42 (11) C13—C12—H12 108.5
C11—C2—C1 117.88 (12) C12—C13—C1 111.10 (11)
C3—C2—C1 123.64 (12) C12—C13—H13A 109.4
C4—C3—C8 117.39 (12) C1—C13—H13A 109.4
C4—C3—C2 123.84 (12) C12—C13—H13B 109.4
C8—C3—C2 118.73 (12) C1—C13—H13B 109.4
C5—C4—C3 120.98 (13) H13A—C13—H13B 108.0
C5—C4—H4 119.5 C19—C14—C15 118.58 (13)
C3—C4—H4 119.5 C19—C14—C12 122.80 (12)
C4—C5—C6 121.10 (14) C15—C14—C12 118.61 (12)
C4—C5—H5 119.4 O3—C15—C16 124.01 (13)
C6—C5—H5 119.4 O3—C15—C14 115.49 (12)
C7—C6—C5 119.62 (14) C16—C15—C14 120.50 (13)
C7—C6—H6 120.2 C17—C16—C15 119.44 (14)
C5—C6—H6 120.2 C17—C16—H16 120.3
C6—C7—C8 120.98 (13) C15—C16—H16 120.3
C6—C7—H7 119.5 C18—C17—C16 120.90 (14)
C8—C7—H7 119.5 C18—C17—H17 119.5
C7—C8—C9 120.54 (12) C16—C17—H17 119.5
C7—C8—C3 119.91 (13) C17—C18—C19 119.50 (15)
C9—C8—C3 119.54 (12) C17—C18—H18 120.2
C10—C9—C8 121.43 (12) C19—C18—H18 120.2
C10—C9—H9 119.3 C14—C19—C18 121.06 (14)
C8—C9—H9 119.3 C14—C19—H19 119.5
C9—C10—C11 119.67 (13) C18—C19—H19 119.5
C9—C10—H10 120.2 C15—O3—C20 117.37 (12)
C11—C10—H10 120.2 O3—C20—H20A 109.5
O2—C11—C2 124.08 (12) O3—C20—H20B 109.5
O2—C11—C10 113.89 (12) H20A—C20—H20B 109.5
C2—C11—C10 122.02 (12) O3—C20—H20C 109.5
C11—O2—C12 113.89 (10) H20A—C20—H20C 109.5
O2—C12—C14 107.98 (11) H20B—C20—H20C 109.5
O2—C12—C13 108.49 (10)
O1—C1—C2—C11 173.33 (13) C9—C10—C11—C2 −4.2 (2)
C13—C1—C2—C11 −4.76 (17) C2—C11—O2—C12 24.36 (17)
O1—C1—C2—C3 −3.7 (2) C10—C11—O2—C12 −155.02 (11)
C13—C1—C2—C3 178.17 (11) C11—O2—C12—C14 178.52 (10)
C11—C2—C3—C4 176.81 (12) C11—O2—C12—C13 −56.70 (14)
C1—C2—C3—C4 −6.14 (19) O2—C12—C13—C1 57.80 (14)
C11—C2—C3—C8 −1.15 (18) C14—C12—C13—C1 178.55 (11)
C1—C2—C3—C8 175.91 (12) O1—C1—C13—C12 154.04 (13)
C8—C3—C4—C5 0.76 (19) C2—C1—C13—C12 −27.78 (16)
C2—C3—C4—C5 −177.22 (13) O2—C12—C14—C19 24.76 (17)
C3—C4—C5—C6 −0.4 (2) C13—C12—C14—C19 −96.26 (16)
C4—C5—C6—C7 −0.3 (2) O2—C12—C14—C15 −154.33 (12)
C5—C6—C7—C8 0.6 (2) C13—C12—C14—C15 84.64 (15)
C6—C7—C8—C9 179.72 (14) C19—C14—C15—O3 178.25 (12)
C6—C7—C8—C3 −0.3 (2) C12—C14—C15—O3 −2.62 (18)
C4—C3—C8—C7 −0.40 (18) C19—C14—C15—C16 −1.2 (2)
C2—C3—C8—C7 177.69 (12) C12—C14—C15—C16 177.95 (12)
C4—C3—C8—C9 179.58 (12) O3—C15—C16—C17 −178.74 (13)
C2—C3—C8—C9 −2.33 (18) C14—C15—C16—C17 0.6 (2)
C7—C8—C9—C10 −177.34 (13) C15—C16—C17—C18 0.1 (2)
C3—C8—C9—C10 2.7 (2) C16—C17—C18—C19 −0.3 (2)
C8—C9—C10—C11 0.5 (2) C15—C14—C19—C18 1.0 (2)
C3—C2—C11—O2 −174.87 (11) C12—C14—C19—C18 −178.10 (13)
C1—C2—C11—O2 7.90 (19) C17—C18—C19—C14 −0.3 (2)
C3—C2—C11—C10 4.46 (19) C16—C15—O3—C20 −15.2 (2)
C1—C2—C11—C10 −172.76 (12) C14—C15—O3—C20 165.38 (14)
C9—C10—C11—O2 175.16 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7···O1i 0.94 2.60 3.3973 (17) 142

Symmetry code: (i) x−1/2, −y+3/2, z−1/2.

Funding Statement

This work was supported by a Dongduk Women’s University grant.

References

  1. Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.
  2. Kumar, D., Sharma, P., Singh, H., Nepali, K., Gupta, G. K., Jain, S. K. M. & Ntie-Kang, F. (2017). RSC Adv. 7, 36977.
  3. Lee, Y., Kim, B., Ahn, S., Koh, D., Lee, Y. H., Shin, S. Y. & Lim, H. (2016). Bioorg. Chem. 68, 166–176. [DOI] [PubMed]
  4. Lichota, A., Gwozdzinski, L. & Gwozdzinski, K. (2019). Eur. J. Med. Chem. 176, 68–91. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  7. Shin, S. Y., Yoon, H., Ahn, S., Kim, D. W., Bae, D. H., Koh, D., Lee, Y. H. & Lim, Y. (2014). Int. J. Mol. Sci. 14, 16970–16985. [DOI] [PMC free article] [PubMed]
  8. Singh, M., Kaur, M. & Silakari, O. (2014). Eur. J. Med. Chem. 84, 206–239. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620012092/hb4362sup1.cif

x-05-x201209-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620012092/hb4362Isup2.hkl

x-05-x201209-Isup2.hkl (295.5KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620012092/hb4362Isup3.cml

CCDC reference: 2026731

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES