Skip to main content
IUCrData logoLink to IUCrData
. 2021 Oct 13;6(Pt 10):x211043. doi: 10.1107/S2414314621010439

Dimethyl 4,5-di­chloro­phthalate

Daniel D Hickstein a, Eric W Reinheimer b, Adam R Johnson c, Daniel J O’Leary a,*
Editor: R J Butcherd
PMCID: PMC9462297  PMID: 36340982

The solid-state structure of dimethyl 4,5-di­chloro­phthalate is presented. One of the carbonyl-containing ester groups is nearly co-planar with the aromatic ring while the second deviates considerably from the least-squares plane of its chlorine-derivatized aromatic ring. Solid-state integrity is maintained by both electrostatic inter­actions and C—HO hydrogen bonds.

Keywords: crystal structure, carbon­yl, ester, metathesis, catalyst

Abstract

While endeavoring to synthesize new chlorinated ligands for ruthenium-based metathesis catalysts, the title compound dimethyl 4,5-di­chloro­phthalate, C10H8Cl2O4, was prepared from commercially available 4,5-di­chloro­phthalic acid in ∼77% yield. The title mol­ecule, which also finds utility as a precursor mol­ecule for the synthesis of drugs used in the treatment of Alzheimer’s disease, shows one carbonyl-containing methyl ester moiety lying nearly co-planar with the chlorine-derivatized aromatic ring while the second methyl ester shows a significant deviation of 101.05 (12)° from the least-squares plane of the aromatic ring. Within the crystal, structural integrity is maintained by the concerted effects of electrostatic inter­actions involving the electron-deficient carbonyl carbon atom and the electron-rich aromatic ring along the a-axis direction and C—HO hydrogen bonds between neighboring mol­ecules parallel to b. graphic file with name x-06-x211043-scheme1-3D1.jpg

Structure description

While endeavoring to synthesize new chlorinated ligands for ruthenium-based metathesis catalysts (Anderson et al., 2006), the title compound, 1, was prepared from commercially available 4,5-di­chloro­phthalic acid in ∼77% yield. The title mol­ecule also finds utility as a precursor mol­ecule for the synthesis of drugs used in the treatment of Alzheimer’s disease (Hennessy & Buchwald, 2005).

Compound 1 crystallizes in the centrosymmetric triclinic space group P Inline graphic with a full mol­ecule of the title compound as the contents of asymmetric unit (Fig. 1, Table 1). Within the structure of 1, one of the carbonyl-containing ester groups is nearly co-planar with the aromatic ring demonstrating a deviation of 3.41 (12)° from the least-squares plane of the chlorine-derivatized aromatic ring. The second ester group reveals a much larger deviation from planarity as the dihedral angle involving the second carbonyl group is 101.05 (12)°.

Figure 1.

Figure 1

Anisotropic displacement ellipsoid plot of 1 with ellipsoids set to the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.33 3.2327 (15) 159
C10—H10B⋯O3ii 0.98 2.68 3.5380 (16) 147

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Looking down the a-axis, and involving a second mol­ecule of 1 related by inversion, the centroid of the electron-rich, chlorine-derivatized aromatic ring of the first mol­ecule lies above the electron-deficient carbonyl carbon atom of the second at a distance of 3.4600 (12) Å, suggesting the presence of electrostatic inter­actions (Fig. 2). In addition to the electrostatic inter­actions, when looking into the bc-plane, between H5 on the aromatic ring and O1 from the carbonyl that is nearly co-planar with the aromatic ring, a C—H⋯O [d(C5⋯O1) = 3.23 Å; Θ(C5—H5—O1) = 159°] hydrogen bond was observed (Fig. 3, Table 2). A one-dimensional array of symmetry-equivalent mol­ecules of 1 linked by C—H⋯O hydrogen bonds results along the b-axis direction when looking into the bc-plane (Fig. 3). While there are no additional inter­actions between neighboring, co-planar one-dimensional arrays parallel to one another along c, weak C—H⋯O [d(C10⋯O3) = 3.54 Å; Θ(C10—H10B—O3) = 147°] inter­actions with a neighboring layer having the symmetry code (1 − x, −y, −z) yielded a centrosymmetric dimer (Fig. 4, Table 2) having the Inline graphic (10) graph-set notation (Bernstein et al., 1995).

Figure 2.

Figure 2

Solid-state expansion of 1 showing the superposition of the electron-rich aromatic ring centroid and the electron-deficient carbonyl carbon atom. Anisotropic displacement ellipsoids have been set to the 50% probability level.

Figure 3.

Figure 3

Projection of 1 within the bc-plane showing the C—H⋯O hydrogen bonding between neighboring mol­ecules along b to form one-dimensional arrays. Anisotropic displacement ellipsoids have been set to the 50% probability level. Dashed lines represent hydrogen bonds.

Table 2. Experimental details.

Crystal data
Chemical formula C10H8Cl2O4
M r 263.06
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 173
a, b, c (Å) 7.0204 (6), 7.7661 (6), 10.5392 (8)
α, β, γ (°) 97.733 (1), 109.293 (1), 90.217 (1)
V3) 536.69 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.60
Crystal size (mm) 0.35 × 0.29 × 0.28
 
Data collection
Diffractometer Bruker APEX CCD area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.838, 0.927
No. of measured, independent and observed [I > 2σ(I)] reflections 5934, 2582, 2417
R int 0.031
(sin θ/λ)max−1) 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.073, 1.04
No. of reflections 2582
No. of parameters 147
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.21

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2014/7 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Figure 4.

Figure 4

Projection of 1 within the ac-plane showing the formation of the Inline graphic (10) centrosymmetric dimer facilitated by weak C—H⋯O inter­actions between layers. Anisotropic displacement ellipsoids have been set to the 50% probability level. Dashed lines represent the C—H⋯O inter­actions.

Synthesis and crystallization

Compound 1 was synthesized by adding 4,5-di­chloro­phthalic acid (23.68 mmol, 5.566 g) to 70 ml of CH3OH in a 200 ml flask. While stirring, 1.0 ml H2SO4 (98%) was added dropwise and the mixture was allowed to reflux at 70°C overnight. The product was extracted with ethyl acetate, and washed with water, concentrated NaHCO3, 10% NaHCO3, and then a saturated solution of NaCl. After filtering through Na2SO4 to remove trace moisture, the solvent was removed in vacuo to yield a clear oil, which later crystallized into small rods. Recrystallization from the mixed solvents of isopropyl alcohol and di­chloro­methane produced X-ray quality crystals of 1 up to 2 mm.

Refinement

Crystal data, data collection and structure refinement details for 1 are summarized in Table 2. The choice of the space group P Inline graphic for 1 was unambiguously verified by PLATON (Spek, 2003; Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314621010439/bv4041sup1.cif

x-06-x211043-sup1.cif (188KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621010439/bv4041Isup2.hkl

x-06-x211043-Isup2.hkl (206.6KB, hkl)

Supporting information file. DOI: 10.1107/S2414314621010439/bv4041Isup3.cml

CCDC reference: 720360

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C10H8Cl2O4 Z = 2
Mr = 263.06 F(000) = 268
Triclinic, P1 Dx = 1.628 Mg m3
a = 7.0204 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.7661 (6) Å Cell parameters from 548 reflections
c = 10.5392 (8) Å θ = 2.4–27.7°
α = 97.733 (1)° µ = 0.60 mm1
β = 109.293 (1)° T = 173 K
γ = 90.217 (1)° Irregular, colorless
V = 536.69 (7) Å3 0.35 × 0.29 × 0.28 mm

Data collection

Bruker APEX CCD area detector diffractometer 2582 independent reflections
Radiation source: Fine-focus sealed tube 2417 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
phi and ω scans θmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −9→9
Tmin = 0.838, Tmax = 0.927 k = −10→10
5934 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.1955P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
2582 reflections Δρmax = 0.45 e Å3
147 parameters Δρmin = −0.21 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All non-hydrogen atoms were refined anisotropically. H atoms bound to C atoms were constrained to ride on the atoms onto which they are bonded, where C—H = 0.95 (aromatic) or 0.98 Å (methyl) with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.81953 (5) 0.48342 (4) 0.83259 (3) 0.02349 (9)
Cl2 0.74478 (5) 0.08068 (4) 0.71750 (3) 0.02487 (9)
O1 0.76916 (17) 0.76700 (12) 0.40055 (10) 0.0310 (2)
O2 0.69277 (14) 0.55617 (11) 0.22210 (9) 0.02121 (18)
O3 0.50933 (14) 0.17388 (12) 0.16137 (9) 0.02470 (19)
O4 0.84744 (13) 0.20884 (11) 0.21752 (8) 0.02113 (18)
C1 0.73795 (16) 0.47447 (14) 0.43804 (11) 0.0158 (2)
C2 0.77075 (17) 0.53010 (15) 0.57530 (12) 0.0170 (2)
H2 0.7904 0.6508 0.6094 0.020*
C3 0.77483 (17) 0.41014 (15) 0.66231 (11) 0.0172 (2)
C4 0.74445 (17) 0.23318 (15) 0.61230 (12) 0.0181 (2)
C5 0.71216 (18) 0.17662 (15) 0.47593 (12) 0.0185 (2)
H5 0.6921 0.0558 0.4423 0.022*
C6 0.70903 (17) 0.29623 (14) 0.38820 (11) 0.0159 (2)
C7 0.73570 (17) 0.61539 (15) 0.35369 (12) 0.0179 (2)
C8 0.6829 (2) 0.68909 (17) 0.13612 (13) 0.0247 (3)
H8A 0.6390 0.6352 0.0408 0.037*
H8B 0.8168 0.7473 0.1603 0.037*
H8C 0.5863 0.7746 0.1491 0.037*
C9 0.67274 (18) 0.22206 (14) 0.24202 (12) 0.0175 (2)
C10 0.8297 (2) 0.14662 (17) 0.07783 (12) 0.0249 (3)
H10A 0.7640 0.2330 0.0200 0.037*
H10B 0.7485 0.0365 0.0474 0.037*
H10C 0.9646 0.1283 0.0717 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02835 (16) 0.02741 (16) 0.01490 (15) −0.00009 (11) 0.00920 (12) −0.00131 (11)
Cl2 0.03392 (18) 0.02289 (16) 0.01804 (15) −0.00098 (12) 0.00730 (12) 0.00740 (11)
O1 0.0505 (6) 0.0152 (4) 0.0266 (5) 0.0004 (4) 0.0124 (4) 0.0022 (3)
O2 0.0281 (4) 0.0181 (4) 0.0175 (4) −0.0002 (3) 0.0066 (3) 0.0052 (3)
O3 0.0253 (5) 0.0269 (4) 0.0174 (4) −0.0058 (3) 0.0021 (3) 0.0010 (3)
O4 0.0235 (4) 0.0248 (4) 0.0136 (4) 0.0029 (3) 0.0056 (3) −0.0005 (3)
C1 0.0142 (5) 0.0158 (5) 0.0169 (5) 0.0010 (4) 0.0045 (4) 0.0026 (4)
C2 0.0152 (5) 0.0161 (5) 0.0188 (5) 0.0008 (4) 0.0056 (4) −0.0004 (4)
C3 0.0156 (5) 0.0217 (5) 0.0139 (5) 0.0011 (4) 0.0052 (4) 0.0000 (4)
C4 0.0183 (5) 0.0196 (5) 0.0164 (5) 0.0003 (4) 0.0049 (4) 0.0050 (4)
C5 0.0216 (5) 0.0155 (5) 0.0171 (5) −0.0003 (4) 0.0048 (4) 0.0019 (4)
C6 0.0155 (5) 0.0165 (5) 0.0143 (5) 0.0002 (4) 0.0034 (4) 0.0011 (4)
C7 0.0168 (5) 0.0167 (5) 0.0204 (5) 0.0019 (4) 0.0059 (4) 0.0036 (4)
C8 0.0292 (6) 0.0237 (6) 0.0243 (6) 0.0038 (5) 0.0098 (5) 0.0115 (5)
C9 0.0242 (6) 0.0125 (5) 0.0150 (5) 0.0009 (4) 0.0049 (4) 0.0030 (4)
C10 0.0342 (7) 0.0261 (6) 0.0147 (5) 0.0029 (5) 0.0097 (5) −0.0001 (4)

Geometric parameters (Å, º)

Cl1—C3 1.7305 (12) C2—C3 1.3865 (16)
Cl2—C4 1.7272 (12) C3—C4 1.3931 (16)
O1—C7 1.2042 (15) C4—C5 1.3871 (16)
O2—C7 1.3330 (15) C5—H5 0.9500
O2—C8 1.4500 (14) C5—C6 1.3915 (15)
O3—C9 1.2022 (15) C6—C9 1.5069 (16)
O4—C9 1.3359 (15) C8—H8A 0.9800
O4—C10 1.4503 (14) C8—H8B 0.9800
C1—C2 1.3940 (16) C8—H8C 0.9800
C1—C6 1.4018 (15) C10—H10A 0.9800
C1—C7 1.4969 (15) C10—H10B 0.9800
C2—H2 0.9500 C10—H10C 0.9800
C7—O2—C8 115.05 (9) C5—C6—C9 116.26 (10)
C9—O4—C10 115.31 (10) O1—C7—O2 123.60 (11)
C2—C1—C6 119.63 (10) O1—C7—C1 123.11 (11)
C2—C1—C7 115.67 (10) O2—C7—C1 113.29 (9)
C6—C1—C7 124.70 (10) O2—C8—H8A 109.5
C1—C2—H2 119.8 O2—C8—H8B 109.5
C3—C2—C1 120.33 (10) O2—C8—H8C 109.5
C3—C2—H2 119.8 H8A—C8—H8B 109.5
C2—C3—Cl1 119.14 (9) H8A—C8—H8C 109.5
C2—C3—C4 119.92 (10) H8B—C8—H8C 109.5
C4—C3—Cl1 120.94 (9) O3—C9—O4 125.21 (11)
C3—C4—Cl2 121.06 (9) O3—C9—C6 124.09 (11)
C5—C4—Cl2 118.80 (9) O4—C9—C6 110.60 (10)
C5—C4—C3 120.14 (10) O4—C10—H10A 109.5
C4—C5—H5 119.9 O4—C10—H10B 109.5
C4—C5—C6 120.23 (10) O4—C10—H10C 109.5
C6—C5—H5 119.9 H10A—C10—H10B 109.5
C1—C6—C9 124.00 (10) H10A—C10—H10C 109.5
C5—C6—C1 119.74 (10) H10B—C10—H10C 109.5
Cl1—C3—C4—Cl2 1.42 (14) C4—C5—C6—C1 −0.23 (17)
Cl1—C3—C4—C5 −178.93 (9) C4—C5—C6—C9 −179.96 (10)
Cl2—C4—C5—C6 179.38 (9) C5—C6—C9—O3 78.67 (15)
C1—C2—C3—Cl1 179.08 (9) C5—C6—C9—O4 −97.92 (12)
C1—C2—C3—C4 −0.50 (17) C6—C1—C2—C3 0.00 (17)
C1—C6—C9—O3 −101.05 (14) C6—C1—C7—O1 −176.90 (12)
C1—C6—C9—O4 82.36 (13) C6—C1—C7—O2 3.20 (16)
C2—C1—C6—C5 0.37 (17) C7—C1—C2—C3 179.72 (10)
C2—C1—C6—C9 −179.92 (10) C7—C1—C6—C5 −179.33 (10)
C2—C1—C7—O1 3.39 (17) C7—C1—C6—C9 0.38 (18)
C2—C1—C7—O2 −176.51 (10) C8—O2—C7—O1 −1.71 (17)
C2—C3—C4—Cl2 −179.00 (8) C8—O2—C7—C1 178.18 (9)
C2—C3—C4—C5 0.65 (17) C10—O4—C9—O3 6.33 (17)
C3—C4—C5—C6 −0.28 (18) C10—O4—C9—C6 −177.12 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O1i 0.95 2.33 3.2327 (15) 159
C10—H10B···O3ii 0.98 2.68 3.5380 (16) 147

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z.

Funding Statement

Funding for this research was provided by: Pomona College; Harvey Mudd College.

References

  1. Anderson, D. R., Hickstein, D. D., O’Leary, D. J. & Grubbs, R. H. (2006). J. Am. Chem. Soc. 128, 8386–8387. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Hennessy, E. J. & Buchwald, S. L. (2005). J. Org. Chem. 70, 7371–7375. [DOI] [PubMed]
  6. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  9. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
  10. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314621010439/bv4041sup1.cif

x-06-x211043-sup1.cif (188KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621010439/bv4041Isup2.hkl

x-06-x211043-Isup2.hkl (206.6KB, hkl)

Supporting information file. DOI: 10.1107/S2414314621010439/bv4041Isup3.cml

CCDC reference: 720360

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES