Skip to main content
IUCrData logoLink to IUCrData
. 2021 Oct 21;6(Pt 10):x211096. doi: 10.1107/S2414314621010968

Di-μ-chlorido-bis­[(2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)copper(II)] bis­(tri­fluoro­methane­sulfonate)

Rafael A Adrian a,*, Jose J Duarte a, Hadi D Arman b
Editor: M Boltec
PMCID: PMC9462302  PMID: 36340990

The crystal structure of the centrosymmetric complex [Cu(terpy)2Cl2](OTF)2 consists of a CuII metal center in a distorted square-pyramidal geometry with ππ stacking inter­actions contributing to the crystal packing.

Keywords: crystal structure, terpyridine, copper, tri­fluoro­methane­sulfonate salt, bridging chloride, ππ stacking

Abstract

In the centrosymmetric title complex, [Cu2Cl2(C15H11N3)2](CF3O3S)2, the CuII metal center is fivefold coordinated by two chloride ions and three nitro­gen atoms of the terpyridine ligand in a distorted square-pyramidal geometry; two tri­fluoro­methane­sulfonate ions complete the outer coordination sphere. π–π stacking inter­actions between the pyridyl rings in adjacent mol­ecules contribute to the alignment of the complexes in columns along the a-axis. This structure represents the first example of a binuclear dication of formula [Cu(terpy)2Cl2]2+ with tri­fluoro­methane­sulfonate as counter-ions. graphic file with name x-06-x211096-scheme1-3D1.jpg

Structure description

Terpyridines are some of the most studied nitro­gen-based tridentate ligands in coordin­ation chemistry, and their metal complexes have found application in catalysis (Wei et al., 2019; Choroba et al., 2019), supra­molecular chemistry (Wei et al., 2019), and medicinal chemistry (Glišić et al., 2018; Malarz et al., 2021; Li et al., 2020). Recently, copper(II) terpyridine complexes have received much attention due to their remarkable cytotoxicity and ability to inter­act with DNA (Karges et al., 2021); herein, we report the synthesis and structure of the title copper(II) terpyridine complex.

The asymmetric unit of the title compound, depicted in Fig. 1, consists of half of a centrosymmetric dication [Cu(terpy)2Cl2]2+ and one tri­fluoro­methane­sulfonate ion completing the outer coordination sphere. The Cu—N, and Cu—Cl distances, as well as, the Cl—Cu—Cl, N—Cu—Cl and N—Cu—N angles are in good agreement with the reported values in similar copper(II) terpyridine complexes currently available in the CSD (version 5.42 with update September 2021; Rojo et al., 1987; refcode FECJEC; Valdés-Martínez et al., 2002; refcode HULZAP; Gasser et al., 2004; refcode HULZAP01). All relevant bond lengths and angles involving the Cu atom are presented in Table 1.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity. Symmetry operator for generating equivalent atoms: (i) 1 − x, 1 − y, 1 − z.

Table 1. Selected geometric parameters (Å, °).

Cu1—Cl1 2.2265 (5) Cu1—N2 1.9420 (17)
Cu1—Cl1i 2.7660 (6) Cu1—N1 2.0397 (18)
Cu1—N3 2.0278 (19)    
       
Cl1—Cu1—Cl1i 89.944 (18) N2—Cu1—N3 80.39 (7)
N3—Cu1—Cl1i 90.30 (5) N2—Cu1—N1 80.11 (7)
N3—Cu1—Cl1 99.82 (5) N1—Cu1—Cl1 99.60 (5)
N3—Cu1—N1 159.58 (7) N1—Cu1—Cl1i 95.97 (5)
N2—Cu1—Cl1i 90.83 (5) Cu1—Cl1—Cu1i 90.056 (18)
N2—Cu1—Cl1 179.20 (5)    

Symmetry code: (i) Inline graphic .

In the crystal packing of the title compound, ππ stacking inter­actions between the N1 and N3 pyridyl ring of adjacent mol­ecules are observed, with a centroid-to-centroid (CgCg) distance of 3.658 (1) Å and an offset distance of 1.723 Å. No other supra­molecuar inter­action is present in the crystal packing of the title compound.

Synthesis and crystallization

The title compound was obtained as product of the reaction of 2,2′:6′,2′′-terpyridine (0.100 g, 0.429 mmol) with copper(II) chloride dihydrate (0.073 g, 0.429 mmol) in aceto­nitrile after the addition of silver tri­fluoro­methane­sulfonate (0.110 g, 0.429 mmol) and filtration using a 0.45 µm PTFE syringe filter. Crystals suitable for X-ray diffraction of the title compound were obtained by vapor diffusion of diethyl ether over the resulting aceto­nitrile solution at 278 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were located in a difference map and refined in idealized positions using a riding model with atomic displacement parameters of U iso(H) = 1.2U eq(C) and with a C—H distance of 0.95 Å.

Table 2. Experimental details.

Crystal data
Chemical formula [Cu2Cl2(C15H11N3)2](CF3O3S)2
M r 962.65
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 98
a, b, c (Å) 7.2767 (2), 9.8394 (2), 13.1746 (3)
α, β, γ (°) 106.667 (2), 91.226 (2), 105.453 (2)
V3) 866.08 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.59
Crystal size (mm) 0.47 × 0.17 × 0.1
 
Data collection
Diffractometer XtaLAB AFC12 (RCD3): Kappa single
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.741, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 33748, 3982, 3889
R int 0.047
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.094, 1.08
No. of reflections 3982
No. of parameters 253
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.41

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314621010968/bt4119sup1.cif

x-06-x211096-sup1.cif (1,015KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621010968/bt4119Isup2.hkl

x-06-x211096-Isup2.hkl (317.4KB, hkl)

Supporting information file. DOI: 10.1107/S2414314621010968/bt4119Isup3.mol

CCDC reference: 2116881

Additional supporting information: crystallographic information; 3D view; checkCIF report

Figure 2.

Figure 2

Perspective view of the packing structure of the title complex along the crystallographic a-axis; H atoms are omitted for clarity.

Acknowledgments

We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at The University of Texas at San Antonio.

full crystallographic data

Crystal data

[Cu2Cl2(C15H11N3)2](CF3O3S)2 Z = 1
Mr = 962.65 F(000) = 482
Triclinic, P1 Dx = 1.846 Mg m3
a = 7.2767 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.8394 (2) Å Cell parameters from 14071 reflections
c = 13.1746 (3) Å θ = 3.1–29.5°
α = 106.667 (2)° µ = 1.59 mm1
β = 91.226 (2)° T = 98 K
γ = 105.453 (2)° Block, clear bluish green
V = 866.08 (4) Å3 0.47 × 0.17 × 0.1 mm

Data collection

XtaLAB AFC12 (RCD3): Kappa single diffractometer 3889 reflections with I > 2σ(I)
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source Rint = 0.047
ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) h = −9→9
Tmin = 0.741, Tmax = 1.000 k = −12→12
33748 measured reflections l = −16→17
3982 independent reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.6752P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.002
3982 reflections Δρmax = 0.55 e Å3
253 parameters Δρmin = −0.41 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. H atoms were located in a difference map and refined in idealized positions using a riding model with atomic displacement parameters of Uiso(H) = 1.2Ueq(C) and with a C—H distance of 0.95 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.49265 (4) 0.41355 (3) 0.60172 (2) 0.01772 (10)
Cl1 0.62384 (8) 0.36614 (6) 0.44902 (4) 0.02026 (13)
S1 0.50126 (8) 0.15121 (6) 0.79698 (4) 0.02142 (13)
F2 0.7785 (2) 0.02432 (18) 0.78751 (14) 0.0396 (4)
F1 0.6642 (2) 0.06787 (19) 0.93864 (12) 0.0395 (4)
F3 0.5041 (2) −0.11260 (17) 0.80642 (16) 0.0478 (4)
O1 0.6469 (2) 0.29199 (17) 0.83604 (12) 0.0239 (3)
O3 0.3333 (2) 0.1385 (2) 0.85354 (15) 0.0336 (4)
O2 0.4661 (3) 0.0941 (2) 0.68265 (13) 0.0360 (4)
N3 0.2255 (3) 0.27262 (19) 0.55326 (14) 0.0188 (4)
N2 0.3802 (3) 0.45334 (19) 0.73563 (14) 0.0168 (3)
N1 0.7290 (3) 0.55151 (19) 0.70135 (14) 0.0184 (4)
C11 0.1030 (3) 0.2851 (2) 0.62992 (16) 0.0192 (4)
C5 0.6901 (3) 0.6111 (2) 0.80261 (16) 0.0189 (4)
C10 0.1958 (3) 0.3840 (2) 0.73629 (16) 0.0186 (4)
C6 0.4902 (3) 0.5499 (2) 0.82254 (16) 0.0179 (4)
C9 0.1110 (3) 0.4087 (2) 0.83124 (17) 0.0220 (4)
H9 −0.019262 0.358669 0.833457 0.026*
C15 0.1555 (3) 0.1851 (2) 0.45439 (17) 0.0220 (4)
H15 0.240897 0.174252 0.401071 0.026*
C14 −0.0386 (3) 0.1094 (2) 0.42706 (18) 0.0238 (5)
H14 −0.084305 0.047636 0.356325 0.029*
C12 −0.0910 (3) 0.2144 (2) 0.60811 (17) 0.0212 (4)
H12 −0.173957 0.225959 0.662670 0.025*
C13 −0.1631 (3) 0.1253 (2) 0.50390 (18) 0.0231 (4)
H13 −0.296333 0.076425 0.486484 0.028*
C7 0.4138 (3) 0.5820 (2) 0.91921 (16) 0.0208 (4)
H7 0.489630 0.651756 0.981351 0.025*
C4 0.8284 (3) 0.7197 (3) 0.87846 (17) 0.0225 (4)
H4 0.798549 0.759683 0.948670 0.027*
C8 0.2229 (3) 0.5089 (3) 0.92254 (17) 0.0237 (5)
H8 0.168203 0.527811 0.988179 0.028*
C2 1.0514 (3) 0.7057 (3) 0.74756 (18) 0.0241 (5)
H2 1.176548 0.735707 0.727006 0.029*
C16 0.6177 (3) 0.0264 (3) 0.83346 (19) 0.0266 (5)
C1 0.9066 (3) 0.5979 (2) 0.67581 (17) 0.0216 (4)
H1 0.934595 0.555208 0.605681 0.026*
C3 1.0114 (3) 0.7691 (3) 0.84983 (18) 0.0254 (5)
H3 1.107711 0.845362 0.899683 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.02295 (16) 0.01815 (15) 0.01013 (14) 0.00641 (11) 0.00275 (10) 0.00076 (10)
Cl1 0.0282 (3) 0.0213 (2) 0.0128 (2) 0.0121 (2) 0.00591 (19) 0.00269 (19)
S1 0.0221 (3) 0.0223 (3) 0.0156 (3) 0.0060 (2) −0.00080 (19) −0.0002 (2)
F2 0.0382 (9) 0.0427 (9) 0.0461 (9) 0.0246 (7) 0.0131 (7) 0.0132 (7)
F1 0.0508 (10) 0.0437 (9) 0.0241 (7) 0.0128 (8) −0.0061 (7) 0.0120 (7)
F3 0.0458 (10) 0.0206 (7) 0.0667 (12) 0.0001 (7) −0.0117 (8) 0.0074 (7)
O1 0.0284 (8) 0.0199 (7) 0.0201 (8) 0.0056 (6) 0.0030 (6) 0.0021 (6)
O3 0.0230 (8) 0.0371 (10) 0.0371 (10) 0.0075 (7) 0.0075 (7) 0.0066 (8)
O2 0.0400 (10) 0.0429 (11) 0.0171 (8) 0.0111 (9) −0.0078 (7) −0.0016 (7)
N3 0.0262 (9) 0.0162 (8) 0.0132 (8) 0.0065 (7) 0.0020 (7) 0.0028 (7)
N2 0.0215 (9) 0.0152 (8) 0.0130 (8) 0.0063 (7) 0.0008 (6) 0.0021 (6)
N1 0.0239 (9) 0.0182 (8) 0.0133 (8) 0.0075 (7) 0.0024 (7) 0.0038 (7)
C11 0.0269 (11) 0.0159 (9) 0.0149 (9) 0.0073 (8) 0.0010 (8) 0.0037 (8)
C5 0.0248 (11) 0.0190 (10) 0.0141 (9) 0.0087 (8) 0.0032 (8) 0.0043 (8)
C10 0.0237 (10) 0.0167 (9) 0.0157 (10) 0.0073 (8) 0.0014 (8) 0.0039 (8)
C6 0.0234 (10) 0.0152 (9) 0.0144 (9) 0.0058 (8) 0.0014 (8) 0.0030 (8)
C9 0.0227 (11) 0.0225 (10) 0.0186 (10) 0.0053 (9) 0.0042 (8) 0.0039 (8)
C15 0.0332 (12) 0.0176 (10) 0.0144 (10) 0.0080 (9) 0.0016 (8) 0.0031 (8)
C14 0.0362 (12) 0.0149 (9) 0.0167 (10) 0.0056 (9) −0.0045 (9) 0.0011 (8)
C12 0.0247 (11) 0.0182 (10) 0.0205 (10) 0.0065 (8) 0.0017 (8) 0.0054 (8)
C13 0.0259 (11) 0.0158 (10) 0.0246 (11) 0.0040 (8) −0.0045 (9) 0.0039 (8)
C7 0.0256 (11) 0.0210 (10) 0.0122 (9) 0.0061 (9) 0.0010 (8) 0.0000 (8)
C4 0.0261 (11) 0.0241 (11) 0.0157 (10) 0.0088 (9) 0.0031 (8) 0.0020 (8)
C8 0.0282 (12) 0.0277 (11) 0.0134 (10) 0.0087 (9) 0.0055 (8) 0.0025 (8)
C2 0.0215 (11) 0.0285 (11) 0.0233 (11) 0.0074 (9) 0.0034 (8) 0.0093 (9)
C16 0.0308 (12) 0.0197 (10) 0.0240 (11) 0.0049 (9) −0.0022 (9) 0.0010 (9)
C1 0.0266 (11) 0.0250 (11) 0.0166 (10) 0.0114 (9) 0.0055 (8) 0.0075 (8)
C3 0.0256 (11) 0.0275 (11) 0.0198 (11) 0.0063 (9) −0.0014 (9) 0.0036 (9)

Geometric parameters (Å, º)

Cu1—Cl1 2.2265 (5) C10—C9 1.394 (3)
Cu1—Cl1i 2.7660 (6) C6—C7 1.387 (3)
Cu1—N3 2.0278 (19) C9—H9 0.9500
Cu1—N2 1.9420 (17) C9—C8 1.390 (3)
Cu1—N1 2.0397 (18) C15—H15 0.9500
S1—O1 1.4466 (17) C15—C14 1.394 (3)
S1—O3 1.4409 (18) C14—H14 0.9500
S1—O2 1.4392 (17) C14—C13 1.376 (3)
S1—C16 1.826 (2) C12—H12 0.9500
F2—C16 1.331 (3) C12—C13 1.401 (3)
F1—C16 1.335 (3) C13—H13 0.9500
F3—C16 1.337 (3) C7—H7 0.9500
N3—C11 1.362 (3) C7—C8 1.392 (3)
N3—C15 1.339 (3) C4—H4 0.9500
N2—C10 1.335 (3) C4—C3 1.391 (3)
N2—C6 1.336 (3) C8—H8 0.9500
N1—C5 1.364 (3) C2—H2 0.9500
N1—C1 1.336 (3) C2—C1 1.384 (3)
C11—C10 1.481 (3) C2—C3 1.386 (3)
C11—C12 1.380 (3) C1—H1 0.9500
C5—C6 1.479 (3) C3—H3 0.9500
C5—C4 1.388 (3)
Cl1—Cu1—Cl1i 89.944 (18) C8—C9—C10 117.9 (2)
N3—Cu1—Cl1i 90.30 (5) C8—C9—H9 121.0
N3—Cu1—Cl1 99.82 (5) N3—C15—H15 118.9
N3—Cu1—N1 159.58 (7) N3—C15—C14 122.2 (2)
N2—Cu1—Cl1i 90.83 (5) C14—C15—H15 118.9
N2—Cu1—Cl1 179.20 (5) C15—C14—H14 120.4
N2—Cu1—N3 80.39 (7) C13—C14—C15 119.1 (2)
N2—Cu1—N1 80.11 (7) C13—C14—H14 120.4
N1—Cu1—Cl1 99.60 (5) C11—C12—H12 120.7
N1—Cu1—Cl1i 95.97 (5) C11—C12—C13 118.7 (2)
Cu1—Cl1—Cu1i 90.056 (18) C13—C12—H12 120.7
O1—S1—C16 102.05 (10) C14—C13—C12 119.2 (2)
O3—S1—O1 114.97 (10) C14—C13—H13 120.4
O3—S1—C16 103.57 (11) C12—C13—H13 120.4
O2—S1—O1 114.19 (11) C6—C7—H7 121.0
O2—S1—O3 115.73 (12) C6—C7—C8 118.1 (2)
O2—S1—C16 103.90 (11) C8—C7—H7 121.0
C11—N3—Cu1 113.61 (14) C5—C4—H4 120.6
C15—N3—Cu1 127.30 (15) C5—C4—C3 118.8 (2)
C15—N3—C11 118.61 (19) C3—C4—H4 120.6
C10—N2—Cu1 118.38 (14) C9—C8—C7 121.0 (2)
C10—N2—C6 123.04 (18) C9—C8—H8 119.5
C6—N2—Cu1 118.58 (14) C7—C8—H8 119.5
C5—N1—Cu1 113.57 (14) C1—C2—H2 120.5
C1—N1—Cu1 127.51 (15) C1—C2—C3 119.1 (2)
C1—N1—C5 118.60 (19) C3—C2—H2 120.5
N3—C11—C10 114.06 (19) F2—C16—S1 111.78 (16)
N3—C11—C12 122.2 (2) F2—C16—F1 107.3 (2)
C12—C11—C10 123.8 (2) F2—C16—F3 107.8 (2)
N1—C5—C6 114.01 (18) F1—C16—S1 110.99 (16)
N1—C5—C4 121.9 (2) F1—C16—F3 106.5 (2)
C4—C5—C6 124.13 (19) F3—C16—S1 112.25 (17)
N2—C10—C11 113.09 (18) N1—C1—C2 122.5 (2)
N2—C10—C9 119.91 (19) N1—C1—H1 118.7
C9—C10—C11 127.0 (2) C2—C1—H1 118.7
N2—C6—C5 113.29 (18) C4—C3—H3 120.5
N2—C6—C7 120.03 (19) C2—C3—C4 119.1 (2)
C7—C6—C5 126.68 (19) C2—C3—H3 120.5
C10—C9—H9 121.0
Cu1—N3—C11—C10 −7.7 (2) N1—C5—C4—C3 0.2 (3)
Cu1—N3—C11—C12 170.55 (16) C11—N3—C15—C14 1.5 (3)
Cu1—N3—C15—C14 −170.07 (15) C11—C10—C9—C8 −178.6 (2)
Cu1—N2—C10—C11 −0.7 (2) C11—C12—C13—C14 0.8 (3)
Cu1—N2—C10—C9 179.33 (15) C5—N1—C1—C2 −1.1 (3)
Cu1—N2—C6—C5 −1.4 (2) C5—C6—C7—C8 −177.9 (2)
Cu1—N2—C6—C7 179.33 (15) C5—C4—C3—C2 −1.7 (3)
Cu1—N1—C5—C6 7.0 (2) C10—N2—C6—C5 179.27 (18)
Cu1—N1—C5—C4 −172.78 (16) C10—N2—C6—C7 0.0 (3)
Cu1—N1—C1—C2 171.97 (16) C10—C11—C12—C13 178.98 (19)
O1—S1—C16—F2 −60.24 (18) C10—C9—C8—C7 −0.1 (3)
O1—S1—C16—F1 59.49 (19) C6—N2—C10—C11 178.63 (18)
O1—S1—C16—F3 178.50 (17) C6—N2—C10—C9 −1.4 (3)
O3—S1—C16—F2 −179.95 (16) C6—C5—C4—C3 −179.6 (2)
O3—S1—C16—F1 −60.22 (19) C6—C7—C8—C9 −1.1 (3)
O3—S1—C16—F3 58.8 (2) C15—N3—C11—C10 179.69 (18)
O2—S1—C16—F2 58.73 (19) C15—N3—C11—C12 −2.1 (3)
O2—S1—C16—F1 178.47 (17) C15—C14—C13—C12 −1.5 (3)
O2—S1—C16—F3 −62.5 (2) C12—C11—C10—N2 −172.60 (19)
N3—C11—C10—N2 5.6 (3) C12—C11—C10—C9 7.4 (3)
N3—C11—C10—C9 −174.4 (2) C4—C5—C6—N2 175.9 (2)
N3—C11—C12—C13 1.0 (3) C4—C5—C6—C7 −4.9 (3)
N3—C15—C14—C13 0.3 (3) C1—N1—C5—C6 −178.99 (18)
N2—C10—C9—C8 1.4 (3) C1—N1—C5—C4 1.3 (3)
N2—C6—C7—C8 1.2 (3) C1—C2—C3—C4 1.9 (3)
N1—C5—C6—N2 −3.8 (3) C3—C2—C1—N1 −0.4 (3)
N1—C5—C6—C7 175.3 (2)

Symmetry code: (i) −x+1, −y+1, −z+1.

Funding Statement

Funding for this research was provided by: Welch Foundation (award No. BN0032).

References

  1. Choroba, K., Machura, B., Kula, S., Raposo, L. R., Fernandes, A. R., Kruszynski, R., Erfurt, K., Shul’pina, L. S., Kozlov, Y. N. & Shul’pin, G. B. (2019). Dalton Trans. 48, 12656–12673. [DOI] [PubMed]
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Gasser, G., Labat, G. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, m244–m246. [DOI] [PubMed]
  4. Glišić, B. Đ., Nikodinovic-Runic, J., Ilic-Tomic, T., Wadepohl, H., Veselinović, A., Opsenica, I. M. & Djuran, M. I. (2018). Polyhedron, 139, 313–322.
  5. Karges, J., Xiong, K., Blacque, O., Chao, H. & Gasser, G. (2021). Inorg. Chim. Acta, 516, 120137.
  6. Li, C., Xu, F., Zhao, Y., Zheng, W., Zeng, W., Luo, Q., Wang, Z., Wu, K., Du, J. & Wang, F. (2020). Front. Chem. 8, 210. [DOI] [PMC free article] [PubMed]
  7. Malarz, K., Zych, D., Gawecki, R., Kuczak, M., Musioł, R. & Mrozek-Wilczkiewicz, A. (2021). Eur. J. Med. Chem. 212, 113032. [DOI] [PubMed]
  8. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.
  9. Rojo, T., Arriortua, M. I., Ruiz, J., Darriet, J., Villeneuve, G. & Beltran-Porter, D. (1987). J. Chem. Soc. Dalton Trans. pp. 285–291.
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  12. Valdés-Martínez, J., Sal­azar-Mendoza, D. & Toscano, R. A. (2002). Acta Cryst. E58, m712–m714.
  13. Wei, C., He, Y., Shi, X. & Song, Z. (2019). Coord. Chem. Rev. 385, 1–19. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314621010968/bt4119sup1.cif

x-06-x211096-sup1.cif (1,015KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621010968/bt4119Isup2.hkl

x-06-x211096-Isup2.hkl (317.4KB, hkl)

Supporting information file. DOI: 10.1107/S2414314621010968/bt4119Isup3.mol

CCDC reference: 2116881

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES