Skip to main content
IUCrData logoLink to IUCrData
. 2021 Dec 9;6(Pt 12):x211295. doi: 10.1107/S2414314621012955

(μ-2,2′,2′′,2′′′-{[Pyrazine-2,3,5,6-tetra­yltetra­kis(methyl­ene)]tetra­kis(sulfanedi­yl)}tetra­acetato)bis­[aqua­nickel(II)] hepta­hydrate

Jessica Pacifico a, Helen Stoeckli-Evans b,*
Editor: W Imhofc
PMCID: PMC9462308  PMID: 36337591

In the binuclear nickel(II) title compound, the ligand 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetic acid coordinates two NiII cations in a bis-penta­dentate manner and the sixfold coordination sphere of each nickel(II) atom is completed by a water mol­ecule.

Keywords: crystal structure, pyrazine, carboxyl­ate, nickel(II), anti­ferromagnetic, hydrogen bonding

Abstract

Reaction of the ligand 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetic acid (H4L1), with NiCl2 leads to the formation of a binuclear complex, (μ-2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetato-κ5 O,S,N 1,S′,O′:κ5 O′′,S′′,N 4,S′′′,O′′′)bis[aqua­nickel(II)] hepta­hydrate, {[Ni2(C16H16N2O8S4)(H2O)2]·7H2O} (I). It crystallizes with two half mol­ecules in the asymmetric unit. The complete mol­ecules are generated by inversion symmetry, with the center of the pyrazine rings being located at crystallographic centres of inversion. The ligand coordinates two NiII ions in a bis-penta­dentate manner and the sixfold coordination sphere of each nickel(II) atom (NiS2O3N) is completed by a water mol­ecule. The complex crystallized as a hepta-hydrate. The binuclear complexes are linked by Owater—H⋯Ocarbon­yl hydrogen bonds, forming layers parallel to the (101) plane. This layered structure is additionally stabilized by weak C—H⋯O hydrogen bonds. Further O—H⋯O hydrogen bonds involving binuclear complexes and solvent water mol­ecules, together with weak C—H⋯S hydrogen bonds, link the layers to form a supra­molecular framework. graphic file with name x-06-x211295-scheme1-3D1.jpg

Structure description

The tetra­kis-substituted pyrazine carb­oxy­lic acid ligand, 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetic acid (H4L1), is one of a series of tetra­kis-substituted pyrazine ligands containing N x S4 and N2S4O8 donor atoms synthesized to study their coordination behaviour with various first-row transition metals and the magnetic exchange properties of the complexes (Pacifico, 2003). Crystal structures of two polymorphs of the tetra­propionic acid analogue of the title ligand, 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­propionic acid (H4L2), and of two potassium–organic frameworks have been reported (Pacifico & Stoeckli-Evans, 2021).

Reaction of H4L1 with NiCl2 yielded the binuclear complex I, with the ligand coordinating two NiII ions in a bis-penta­dentate manner. Complex I was shown to exhibit a weak anti­ferromagnetic coupling between the Ni centres via the pyrazine ring with a J value of −1.78 cm−1 (Pacifico, 2003).

A similar ligand, 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)] tetra­kis­(sulfanedi­yl)}tetra­kis­(ethan-1-amine) (H4L3; CSD refcode PUXJUQ for the tetra­perchlorate salt: Pacifico & Stoeckli-Evans, 2020), has also been shown to form binuclear nickel(II) complexes (TAGTUU and EHUBOB) with similar anti­ferromagnetic couplings (J = −1.78 cm−1; Pacifico, 2003).

Reaction of H4L1 with nickel(II) chloride leads to the formation of the binuclear title compound I, which crystallizes with two half mol­ecules in the asymmetric unit (Fig. 1 and Table 1). The complete mol­ecules are generated by inversion symmetry, with the centres of the pyrazine rings being located at crystallographic centres of inversion.

Figure 1.

Figure 1

The mol­ecular structure of the two independent mol­ecules of complex I, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x, −y + 1, −z].

Table 1. Selected geometric parameters (Å, °).

Ni1—O1W 2.0276 (19) Ni2—O2W 2.033 (2)
Ni1—O2 2.0423 (18) Ni2—O6 2.0440 (19)
Ni1—O4 2.0158 (19) Ni2—O8 2.0287 (19)
Ni1—N1 2.081 (2) Ni2—N2 2.057 (2)
Ni1—S1 2.3775 (7) Ni2—S4 2.3674 (7)
Ni1—S2 2.3883 (8) Ni2—S3 2.3685 (7)
       
N1—C1—C2—S1 −20.9 (3) N2—C13—C14—S4 −1.3 (3)
N1—C5—C6—S2 −14.8 (3) N2—C9—C10—S3 −7.0 (3)
S1—C3—C4—O2 −0.1 (3) S4—C15—C16—O8 −21.9 (3)
S2—C7—C8—O4 −6.7 (4) S3—C11—C12—O6 −27.6 (4)

The best fit for the mol­ecular overlap of the two mol­ecules is shown in Fig. 2. The r.m.s. deviation is 0.3168 Å, with a maximum deviation of 0.7435 Å (Mercury; Macrae et al., 2020), The two mol­ecules differ essentially in the conformations of the four chelate rings as shown by the torsion angles given in Table 1. The calculation of the mean planes of the chelate rings (PLATON; Spek, 2020) indicate that: ring Ni1/N1/C1/C2/S1 is twisted on the S1—C2 bond compared to ring Ni2/N2/C13//14/S4, which is flat; ring Ni1/N1/C5/C6/S2 has an envelope conformation with atom S2 as the flap, while ring Ni2/N2/C9/C10/S3 is flat; ring Ni1/S1/C3/C4/O2 is flat compared to ring N12/S4/C15/C16 /O8, which has an envelope conformation with atom S4 as the flap, finally ring Ni1/S2/C7/C8/O4 is twisted on the Ni1—S2 bond, compared to ring Ni2/S3/C11/C12/O6, which is twisted on the S3—C11 bond.

Figure 2.

Figure 2

Mol­ecular overlap of the two independent complex mol­ecules of I (Mercury; Macrae et al., 2020). (Mol­ecule 1 involving atom Ni1 is in blue; Mol­ecule 2 involving atom Ni2 is in red.)

The ligand coordinates two NiII ions in a bis-penta­dentate manner and the sixfold coordination sphere of each nickel(II) atom (NiS2O3N) is completed by a water mol­ecule. The complex crystallized as a hepta-hydrate. Selected bond lengths involving the nickel atoms of the two mol­ecules are given in Table 1. There is a slight difference in the Ni—N bond lengths [Ni1—N1 = 2.081 (2) Å, Ni2—N2 = 2.057 (2) Å; Table 1], otherwise the bond lengths involving the nickel atoms are similar and close to those reported for the complex aqua­(2,2′-{(pyridine-2,6-di­yl)bis­[methyl­ene(sulfanedi­yl)]}di­propano­ato)nickel(II) (CSD refcode DUYFOU; Rheingold, 2015).

In the crystal structure of I, binuclear nickel(II) complexes are linked by Owater—H⋯Ocarbon­yl hydrogen bonds, forming layers parallel to the (101) plane (Fig. 3, Table 2). Within the layers, weak C—H⋯O hydrogen bonds are present (Table 2). Solvent water mol­ecules are linked by O—Hwater⋯O water hydrogen bonds to form ribbons propagating along the b-axis direction that consist of eight and twenty-four membered rings of the Inline graphic (8) and Inline graphic (24) types (Fig. 4 and Table 2). Additional O—Hwater⋯Ocarbon­yl hydrogen bonds involving the binuclear complexes and solvent water mol­ecules, together with weak C—H⋯S hydrogen bonds, link the layers to form a supra­molecular framework (Fig. 5).

Figure 3.

Figure 3

A view normal to the (101) plane of the crystal packing of the two independent mol­ecules of complex I (atom Ni1 light-green ball; atom Ni2 dark-green ball). Hydrogen bonds (see Table 2) are shown as dashed lines. For clarity, solvent water mol­ecules and C-bound H atoms have been omitted.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1i 0.90 (5) 1.78 (5) 2.672 (3) 174 (4)
O1W—H1WB⋯O5W 0.83 (5) 1.85 (5) 2.677 (3) 170 (5)
O2W—H2WA⋯O5ii 0.88 (5) 1.80 (5) 2.673 (3) 168 (4)
O2W—H2WB⋯O1iii 0.88 (6) 1.88 (6) 2.742 (3) 168 (6)
O3W—H3WA⋯O2 0.87 (4) 2.02 (4) 2.842 (3) 157 (4)
O3W—H3WB⋯O8W i 0.98 (7) 1.87 (7) 2.785 (4) 154 (6)
O4W—H4WA⋯O8iv 0.91 (5) 1.83 (5) 2.733 (3) 172 (4)
O4W—H4WB⋯O6W 0.86 (5) 1.88 (5) 2.724 (3) 166 (5)
O5W—H5WA⋯O7W 0.97 (7) 1.88 (7) 2.785 (3) 154 (6)
O5W—H5WB⋯O5v 0.80 (5) 2.06 (5) 2.776 (3) 149 (5)
O6W—H6WA⋯O7 0.83 (5) 1.98 (5) 2.814 (3) 178 (4)
O6W—H6WB⋯O3W iii 0.87 (6) 1.98 (6) 2.849 (4) 173 (5)
O7W—H7WA⋯O9W 0.86 (2) 1.85 (2) 2.698 (3) 169 (5)
O7W—H7WB⋯O6vi 0.97 (6) 1.94 (6) 2.899 (3) 174 (5)
O8W—H8WA⋯O7W 0.85 (2) 2.32 (2) 3.159 (5) 173 (6)
O8W—H8WB⋯O3W iv 0.86 (8) 2.19 (8) 3.019 (4) 164 (7)
O9W—H9WA⋯O4 0.82 (6) 1.93 (6) 2.752 (3) 174 (6)
O9W—H9WB⋯O4W 0.84 (5) 1.90 (5) 2.731 (3) 171 (5)
C2—H2A⋯O4W vii 0.99 2.35 3.324 (3) 167
C2—H2B⋯O6W 0.99 2.55 3.308 (4) 133
C3—H3A⋯O8W viii 0.99 2.55 3.488 (4) 159
C6—H6A⋯O4W ix 0.99 2.43 3.413 (3) 173
C6—H6B⋯O3W 0.99 2.60 3.365 (4) 134
C6—H6B⋯O6W iii 0.99 2.58 3.334 (3) 133
C10—H10B⋯O3v 0.99 2.27 3.150 (4) 148
C11—H11B⋯O5W x 0.99 2.52 3.303 (4) 136
C11—H11B⋯O7W x 0.99 2.58 3.516 (4) 158
C14—H14A⋯O9W vi 0.99 2.45 3.260 (4) 139
C14—H14B⋯O3 0.99 2.29 3.169 (4) 148
C15—H15A⋯S3iv 0.99 2.84 3.609 (3) 135

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic ; (vii) Inline graphic ; (viii) Inline graphic ; (ix) Inline graphic ; (x) Inline graphic .

Figure 4.

Figure 4

A view along the c axis of the hydrogen-bonded network of solvent water mol­ecules (see Table 2).

Figure 5.

Figure 5

A view along the b axis of the crystal packing of complex I. Hydrogen bonds (see Table 2) are shown as dashed lines. For clarity, C-bound H atoms have been omitted. (atom Ni1 light-green ball; atom Ni2 dark-green ball).

Synthesis and crystallization

The synthesis and crystal structure of the reagent tetra-2,3,5,6-bromo­methyl-pyrazine (TBr) have been reported [Ferigo et al., 1994; Assoumatine & Stoeckli-Evans, 2014 (CSD refcode: TOJXUN)].

Synthesis of ligand 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yl­tetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetic acid (H4L1): Thio­glycolic acid (1.6313 g, 1.77 mol, 4 eq) was dissolved in 50 ml of THF, then NaOH (1.4166 g, 3.54 mol, 8 eq), dissolved in a minimum amount of water (a few ml) was added. The volume was increased to 100 ml adding THF and then the reaction was left to stir under reflux for 1 h. TBr (2 g, 4.42 mol, 1 eq) dissolved in 50 ml of THF, was then added dropwise using an addition funnel. The mixture was stirred under reflux for 6 h. After evaporation of the solvent, the mixture was dissolved in 50 ml of deionized water, and HCl (puriss.) was added dropwise until a clearly acidic pH was obtained. The mixture was then stirred at room temperature for at least 1–2 h. The yellow precipitate that slowly formed was filtered off and washed with a minimum amount of water and then with CHCl3. The solid obtained (H4L1) was dried in vacuo and was then recrystallized from methanol.

Spectroscopic data for H4L1: 1H-NMR(CD3OD, 400 MHz, p.p.m.): 4.13 (s, 8H, H2); 3.37 (s, 8H, H3). 13C-NMR(CD3OD, 50 MHz, p.p.m.): 172.82 (4 C, C4); 150.01 (4 C, C1); 34.31 (4 C, C3); 33.26 (4 C, C2).

Analysis for C16H20N2O8S4, M W = 496.60 g/mol: Calculated (%) C 38.70, H 4.06, N5.64, Found (%) C 37.35, H 3.99, N 5.4.

ESI-MS: 534.97[M + K] + ; 519.00[M+Na]+; 497.02[M + H]+; 422.86, 407.04, 247.88.

IR (KBr disc, cm−1) ν: 2984(s), 2922(s), 1690(s), 1431(s), 1395(s), 1321(s), 1289(s), 1202(s), 1181(s).

Synthesis of complex [(H2O)Ni(L1)Ni(H2O)]·7H2O (I): NiCl2·6 H2O (38.3 mg, 0.161 mmol, 2 eq) and H4L1 (40 mg, 0.080 mmol, 1 eq) were mixed together in 20 ml of degassed water. The mixture was left at 353 K under stirring and nitro­gen conditions for 2.5 h. The mixture was then filtered and left to evaporate in air for two weeks, yielding purple needle-like crystals of complex I (m.p. 553 K decomposition).

Analysis for (C16H20N2Ni2O10S4)·7 (H2O), M w = 772.10 g mol−1. Calculated (%) C 24.89, H 4.44, N 3.63. Found (%) C 28.17, H 3.90, N 4.18. Deviation due to the probable loss of water mol­ecules of crystallization, for example, loss of five water mol­ecules gives calculated (%) C 28.18, H 3.55, N 4.11.

ESI–MS: 703, 663, 615[M − 2H2O], 601, 579, 565, 511, 499, 477, 461, 433, 165.

IR (KBr disc, cm−1) ν: 3364(s), 2921(m), 1713(m), 1575(s), 1404(s), 1237(m), 1208(m), 1155(m), 1137(m), 928(m), 704(m).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. For complex I, the average HKL measurement multiplicity was low at 2.6, hence an empirical absorption correction was applied.

Table 3. Experimental details.

Crystal data
Chemical formula [Ni2(C16H16N2O8S4)(H2O)2]·7H2O
M r 772.11
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 153
a, b, c (Å) 8.6799 (8), 11.4092 (10), 14.7210 (13)
α, β, γ (°) 90.308 (7), 103.619 (7), 93.801 (7)
V3) 1413.4 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.71
Crystal size (mm) 0.49 × 0.06 × 0.06
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Empirical (using intensity measurements) (ShxAbs; Spek, 2020)
T min, T max 0.261, 0.714
No. of measured, independent and observed [I > 2σ(I)] reflections 19974, 7779, 6120
R int 0.052
(sin θ/λ)max−1) 0.693
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.096, 1.02
No. of reflections 7779
No. of parameters 443
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.74, −0.64

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020), Mercury (Macrae et al., 2020), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2414314621012955/im4014sup1.cif

x-06-x211295-sup1.cif (682.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621012955/im4014Isup2.hkl

x-06-x211295-Isup2.hkl (617.7KB, hkl)

CCDC reference: 2126552

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are extremely grateful to Professor Joan Ribas and members of his group at the Universitat de Barcelona, Departamento de Química Inorgánica, for the magnetic measurements, help in their inter­pretation and valuable discussions. HSE is grateful to the University of Neuchâtel for their support over the years.

full crystallographic data

Crystal data

[Ni2(C16H16N2O8S4)(H2O)2]·7H2O Z = 2
Mr = 772.11 F(000) = 800
Triclinic, P1 Dx = 1.814 Mg m3
a = 8.6799 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.4092 (10) Å Cell parameters from 19267 reflections
c = 14.7210 (13) Å θ = 2.3–25.9°
α = 90.308 (7)° µ = 1.71 mm1
β = 103.619 (7)° T = 153 K
γ = 93.801 (7)° Needle, purple
V = 1413.4 (2) Å3 0.49 × 0.06 × 0.06 mm

Data collection

STOE IPDS 2 diffractometer 7779 independent reflections
Radiation source: fine-focus sealed tube 6120 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.052
φ + ω scans θmax = 29.5°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements) (ShxAbs; Spek, 2020) h = −12→11
Tmin = 0.261, Tmax = 0.714 k = −15→13
19974 measured reflections l = −20→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0462P)2 + 1.0506P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
7779 reflections Δρmax = 0.74 e Å3
443 parameters Δρmin = −0.64 e Å3
2 restraints Extinction correction: (SHELXL-2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0029 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. H atoms of coordinated and non-coordinated water molecules were all located from difference-Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.97 - 0.99 Å with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.53221 (4) 0.24084 (3) 0.38618 (2) 0.01578 (8)
S1 0.80929 (7) 0.27577 (5) 0.45193 (4) 0.01770 (12)
S2 0.25256 (8) 0.24883 (6) 0.32588 (5) 0.01966 (13)
O1 0.6527 (3) 0.09177 (18) 0.64400 (14) 0.0260 (4)
O2 0.5239 (2) 0.15751 (16) 0.50754 (13) 0.0189 (3)
O3 0.4421 (3) 0.4074 (2) 0.13485 (16) 0.0374 (5)
O4 0.5504 (2) 0.31920 (17) 0.26639 (13) 0.0218 (4)
O1W 0.5614 (2) 0.07971 (17) 0.33656 (14) 0.0214 (4)
H1WA 0.493 (5) 0.021 (4) 0.347 (3) 0.044 (12)*
H1WB 0.562 (5) 0.074 (4) 0.280 (4) 0.049 (13)*
N1 0.5120 (2) 0.39964 (18) 0.45117 (14) 0.0150 (4)
C1 0.6427 (3) 0.4640 (2) 0.49454 (16) 0.0150 (4)
C2 0.8013 (3) 0.4274 (2) 0.48542 (19) 0.0187 (5)
H2A 0.878607 0.443243 0.546080 0.022*
H2B 0.836746 0.477764 0.438614 0.022*
C3 0.8088 (3) 0.1985 (2) 0.5586 (2) 0.0243 (5)
H3A 0.881017 0.134074 0.562820 0.029*
H3B 0.854011 0.253460 0.611882 0.029*
C4 0.6478 (3) 0.1460 (2) 0.57012 (18) 0.0186 (5)
C5 0.3695 (3) 0.4333 (2) 0.45563 (17) 0.0157 (4)
C6 0.2232 (3) 0.3583 (2) 0.40844 (18) 0.0191 (5)
H6A 0.142444 0.410319 0.375290 0.023*
H6B 0.179663 0.317800 0.457218 0.023*
C7 0.2684 (3) 0.3386 (3) 0.22634 (19) 0.0267 (6)
H7A 0.195741 0.302037 0.169739 0.032*
H7B 0.230429 0.416684 0.235880 0.032*
C8 0.4334 (3) 0.3569 (3) 0.20767 (19) 0.0233 (5)
Ni2 0.08393 (4) 0.76880 (3) 0.11162 (2) 0.01682 (8)
S3 −0.17445 (8) 0.74194 (6) 0.13855 (4) 0.01891 (13)
S4 0.33203 (7) 0.76930 (6) 0.07086 (4) 0.01819 (12)
O5 −0.2463 (2) 0.9086 (2) −0.09705 (16) 0.0298 (5)
O6 −0.0227 (2) 0.85094 (17) −0.00750 (13) 0.0211 (4)
O7 0.4137 (2) 0.62254 (19) 0.31716 (15) 0.0272 (4)
O8 0.1895 (2) 0.67823 (17) 0.22496 (13) 0.0208 (4)
O2W 0.1272 (3) 0.92039 (18) 0.18933 (14) 0.0230 (4)
H2WA 0.159 (6) 0.984 (4) 0.162 (3) 0.052 (13)*
H2WB 0.187 (7) 0.910 (5) 0.245 (4) 0.078 (18)*
N2 0.0311 (2) 0.60923 (18) 0.04172 (14) 0.0161 (4)
C9 −0.1108 (3) 0.5517 (2) 0.03476 (17) 0.0161 (4)
C10 −0.2367 (3) 0.6057 (2) 0.07259 (18) 0.0191 (5)
H10A −0.276242 0.548113 0.113293 0.023*
H10B −0.326835 0.620196 0.019548 0.023*
C11 −0.2527 (4) 0.8505 (3) 0.0556 (2) 0.0288 (6)
H11A −0.365699 0.826762 0.027239 0.035*
H11B −0.249215 0.926009 0.089668 0.035*
C12 −0.1675 (3) 0.8705 (2) −0.02232 (19) 0.0209 (5)
C13 0.1429 (3) 0.5602 (2) 0.00845 (17) 0.0162 (4)
C14 0.3030 (3) 0.6239 (2) 0.01658 (19) 0.0201 (5)
H14A 0.321931 0.630870 −0.046967 0.024*
H14B 0.384762 0.574769 0.052830 0.024*
C15 0.4378 (3) 0.7395 (3) 0.18853 (18) 0.0231 (5)
H15A 0.528662 0.692942 0.185131 0.028*
H15B 0.481816 0.815165 0.220452 0.028*
C16 0.3408 (3) 0.6741 (2) 0.24832 (18) 0.0189 (5)
O3W 0.2116 (3) 0.1139 (2) 0.53431 (19) 0.0364 (5)
H3WA 0.310 (5) 0.107 (3) 0.531 (3) 0.030 (9)*
H3WB 0.186 (8) 0.056 (6) 0.578 (5) 0.09 (2)*
O4W 0.9679 (3) 0.5567 (2) 0.29921 (16) 0.0274 (4)
H4WA 1.041 (6) 0.603 (4) 0.278 (3) 0.047 (12)*
H4WB 0.893 (6) 0.597 (4) 0.310 (4) 0.058 (14)*
O5W 0.5598 (3) 0.0350 (2) 0.15764 (15) 0.0283 (4)
H5WA 0.649 (8) 0.081 (6) 0.143 (4) 0.09 (2)*
H5WB 0.487 (6) 0.068 (4) 0.129 (4) 0.054 (14)*
O6W 0.7456 (3) 0.6695 (2) 0.36273 (17) 0.0315 (5)
H6WA 0.648 (6) 0.654 (4) 0.349 (3) 0.042 (12)*
H6WB 0.763 (6) 0.738 (5) 0.391 (4) 0.068 (16)*
O7W 0.8648 (3) 0.1299 (2) 0.16038 (19) 0.0370 (5)
H7WA 0.867 (6) 0.202 (2) 0.178 (3) 0.050 (13)*
H7WB 0.923 (7) 0.132 (5) 0.112 (4) 0.078 (17)*
O8W 0.9536 (3) 0.0333 (3) 0.3655 (3) 0.0467 (7)
H8WA 0.939 (8) 0.059 (6) 0.310 (2) 0.10 (2)*
H8WB 1.022 (9) 0.070 (7) 0.410 (5) 0.11 (3)*
O9W 0.8291 (3) 0.3532 (2) 0.20860 (18) 0.0339 (5)
H9WA 0.745 (7) 0.338 (5) 0.224 (4) 0.065 (16)*
H9WB 0.878 (6) 0.411 (4) 0.241 (3) 0.048 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01756 (15) 0.01571 (15) 0.01319 (15) 0.00010 (11) 0.00220 (11) −0.00087 (11)
S1 0.0181 (3) 0.0171 (3) 0.0182 (3) 0.0016 (2) 0.0048 (2) −0.0015 (2)
S2 0.0195 (3) 0.0176 (3) 0.0199 (3) −0.0013 (2) 0.0015 (2) −0.0045 (2)
O1 0.0324 (10) 0.0244 (10) 0.0177 (9) −0.0046 (8) 0.0007 (8) 0.0025 (8)
O2 0.0206 (8) 0.0201 (9) 0.0149 (8) −0.0013 (7) 0.0026 (7) 0.0003 (7)
O3 0.0421 (13) 0.0489 (14) 0.0205 (10) 0.0069 (11) 0.0048 (9) 0.0131 (10)
O4 0.0244 (9) 0.0253 (9) 0.0157 (8) 0.0010 (7) 0.0050 (7) 0.0047 (7)
O1W 0.0266 (9) 0.0174 (9) 0.0198 (9) −0.0006 (7) 0.0052 (8) −0.0035 (7)
N1 0.0163 (9) 0.0135 (9) 0.0143 (9) −0.0011 (7) 0.0027 (7) −0.0014 (7)
C1 0.0169 (10) 0.0150 (10) 0.0127 (10) 0.0012 (8) 0.0026 (8) 0.0007 (8)
C2 0.0157 (11) 0.0177 (11) 0.0223 (12) 0.0001 (9) 0.0040 (9) −0.0017 (9)
C3 0.0232 (13) 0.0220 (12) 0.0256 (13) 0.0001 (10) 0.0021 (10) 0.0045 (10)
C4 0.0230 (12) 0.0168 (11) 0.0144 (11) −0.0009 (9) 0.0021 (9) −0.0011 (9)
C5 0.0173 (10) 0.0153 (10) 0.0136 (10) −0.0011 (8) 0.0025 (8) 0.0000 (8)
C6 0.0190 (11) 0.0203 (12) 0.0167 (11) −0.0003 (9) 0.0020 (9) −0.0029 (9)
C7 0.0271 (13) 0.0351 (15) 0.0164 (12) 0.0059 (11) 0.0011 (10) −0.0008 (11)
C8 0.0281 (13) 0.0262 (13) 0.0142 (11) 0.0017 (10) 0.0020 (10) 0.0005 (10)
Ni2 0.01780 (15) 0.01761 (16) 0.01431 (15) 0.00035 (11) 0.00256 (11) −0.00098 (11)
S3 0.0210 (3) 0.0200 (3) 0.0168 (3) 0.0014 (2) 0.0069 (2) −0.0016 (2)
S4 0.0185 (3) 0.0189 (3) 0.0162 (3) −0.0023 (2) 0.0031 (2) −0.0005 (2)
O5 0.0248 (10) 0.0340 (11) 0.0279 (11) 0.0016 (8) 0.0008 (8) 0.0106 (9)
O6 0.0209 (9) 0.0234 (9) 0.0189 (9) 0.0030 (7) 0.0040 (7) 0.0032 (7)
O7 0.0284 (10) 0.0290 (10) 0.0222 (10) 0.0049 (8) 0.0008 (8) 0.0059 (8)
O8 0.0205 (9) 0.0243 (9) 0.0164 (8) −0.0017 (7) 0.0026 (7) 0.0015 (7)
O2W 0.0312 (10) 0.0183 (9) 0.0177 (9) −0.0001 (8) 0.0025 (8) −0.0027 (7)
N2 0.0165 (9) 0.0170 (9) 0.0140 (9) 0.0007 (7) 0.0019 (7) −0.0008 (8)
C9 0.0165 (10) 0.0179 (11) 0.0128 (10) −0.0002 (8) 0.0017 (8) −0.0002 (9)
C10 0.0170 (11) 0.0212 (12) 0.0192 (11) 0.0003 (9) 0.0046 (9) −0.0045 (9)
C11 0.0299 (14) 0.0270 (14) 0.0347 (16) 0.0108 (11) 0.0155 (12) 0.0101 (12)
C12 0.0229 (12) 0.0168 (11) 0.0228 (12) 0.0009 (9) 0.0047 (10) 0.0044 (10)
C13 0.0170 (10) 0.0175 (11) 0.0135 (10) 0.0007 (8) 0.0024 (8) −0.0004 (9)
C14 0.0190 (11) 0.0215 (12) 0.0197 (12) −0.0032 (9) 0.0056 (9) −0.0053 (10)
C15 0.0184 (11) 0.0314 (14) 0.0170 (12) −0.0032 (10) 0.0009 (9) −0.0020 (10)
C16 0.0213 (11) 0.0191 (11) 0.0145 (11) 0.0004 (9) 0.0009 (9) −0.0024 (9)
O3W 0.0268 (11) 0.0366 (13) 0.0473 (14) 0.0028 (9) 0.0113 (10) 0.0092 (11)
O4W 0.0258 (10) 0.0272 (10) 0.0281 (11) −0.0019 (8) 0.0052 (8) 0.0017 (8)
O5W 0.0287 (11) 0.0321 (11) 0.0239 (10) 0.0034 (9) 0.0058 (8) −0.0033 (9)
O6W 0.0272 (11) 0.0402 (13) 0.0276 (11) 0.0041 (9) 0.0066 (9) 0.0044 (10)
O7W 0.0386 (13) 0.0311 (12) 0.0462 (14) −0.0009 (10) 0.0208 (11) −0.0050 (11)
O8W 0.0367 (14) 0.0421 (15) 0.061 (2) −0.0031 (11) 0.0130 (14) 0.0098 (14)
O9W 0.0352 (12) 0.0336 (12) 0.0345 (12) −0.0043 (10) 0.0132 (10) −0.0071 (10)

Geometric parameters (Å, º)

Ni1—O1W 2.0276 (19) S3—C10 1.810 (3)
Ni1—O2 2.0423 (18) S4—C15 1.805 (3)
Ni1—O4 2.0158 (19) S4—C14 1.814 (3)
Ni1—N1 2.081 (2) O5—C12 1.248 (3)
Ni1—S1 2.3775 (7) O6—C12 1.260 (3)
Ni1—S2 2.3883 (8) O7—C16 1.236 (3)
S1—C3 1.805 (3) O8—C16 1.281 (3)
S1—C2 1.806 (3) O2W—H2WA 0.88 (5)
S2—C6 1.809 (3) O2W—H2WB 0.88 (6)
S2—C7 1.819 (3) N2—C13 1.337 (3)
O1—C4 1.248 (3) N2—C9 1.338 (3)
O2—C4 1.255 (3) C9—C13ii 1.405 (3)
O3—C8 1.235 (3) C9—C10 1.502 (3)
O4—C8 1.270 (3) C10—H10A 0.9900
O1W—H1WA 0.90 (5) C10—H10B 0.9900
O1W—H1WB 0.83 (5) C11—C12 1.515 (4)
N1—C1 1.333 (3) C11—H11A 0.9900
N1—C5 1.335 (3) C11—H11B 0.9900
C1—C5i 1.403 (3) C13—C14 1.503 (3)
C1—C2 1.500 (3) C14—H14A 0.9900
C2—H2A 0.9900 C14—H14B 0.9900
C2—H2B 0.9900 C15—C16 1.521 (4)
C3—C4 1.531 (4) C15—H15A 0.9900
C3—H3A 0.9900 C15—H15B 0.9900
C3—H3B 0.9900 O3W—H3WA 0.87 (4)
C5—C6 1.503 (3) O3W—H3WB 0.98 (7)
C6—H6A 0.9900 O4W—H4WA 0.91 (5)
C6—H6B 0.9900 O4W—H4WB 0.86 (5)
C7—C8 1.523 (4) O5W—H5WA 0.97 (7)
C7—H7A 0.9900 O5W—H5WB 0.80 (5)
C7—H7B 0.9900 O6W—H6WA 0.83 (5)
Ni2—O2W 2.033 (2) O6W—H6WB 0.87 (6)
Ni2—O6 2.0440 (19) O7W—H7WA 0.857 (19)
Ni2—O8 2.0287 (19) O7W—H7WB 0.97 (6)
Ni2—N2 2.057 (2) O8W—H8WA 0.85 (2)
Ni2—S4 2.3674 (7) O8W—H8WB 0.86 (8)
Ni2—S3 2.3685 (7) O9W—H9WA 0.82 (6)
S3—C11 1.795 (3) O9W—H9WB 0.84 (5)
O4—Ni1—O1W 92.71 (8) O2W—Ni2—N2 175.03 (9)
O4—Ni1—O2 177.15 (8) O6—Ni2—N2 89.81 (8)
O1W—Ni1—O2 85.47 (8) O8—Ni2—S4 85.30 (6)
O4—Ni1—N1 92.73 (8) O2W—Ni2—S4 97.60 (6)
O1W—Ni1—N1 173.94 (8) O6—Ni2—S4 93.64 (6)
O2—Ni1—N1 88.99 (8) N2—Ni2—S4 86.11 (6)
O4—Ni1—S1 91.86 (6) O8—Ni2—S3 94.92 (6)
O1W—Ni1—S1 92.11 (6) O2W—Ni2—S3 91.04 (6)
O2—Ni1—S1 86.03 (6) O6—Ni2—S3 85.63 (6)
N1—Ni1—S1 85.03 (6) N2—Ni2—S3 85.28 (6)
O4—Ni1—S2 84.80 (6) S4—Ni2—S3 171.37 (3)
O1W—Ni1—S2 99.55 (6) C11—S3—C10 102.65 (14)
O2—Ni1—S2 97.65 (6) C11—S3—Ni2 93.29 (10)
N1—Ni1—S2 83.62 (6) C10—S3—Ni2 98.05 (8)
S1—Ni1—S2 167.99 (3) C15—S4—C14 101.74 (13)
C3—S1—C2 103.12 (13) C15—S4—Ni2 93.14 (9)
C3—S1—Ni1 95.52 (9) C14—S4—Ni2 97.06 (8)
C2—S1—Ni1 96.06 (8) C12—O6—Ni2 119.89 (17)
C6—S2—C7 101.48 (13) C16—O8—Ni2 120.83 (17)
C6—S2—Ni1 96.67 (9) Ni2—O2W—H2WA 117 (3)
C7—S2—Ni1 95.58 (10) Ni2—O2W—H2WB 112 (4)
C4—O2—Ni1 121.22 (17) H2WA—O2W—H2WB 113 (5)
C8—O4—Ni1 123.77 (18) C13—N2—C9 120.3 (2)
Ni1—O1W—H1WA 116 (3) C13—N2—Ni2 119.43 (17)
Ni1—O1W—H1WB 117 (3) C9—N2—Ni2 120.15 (16)
H1WA—O1W—H1WB 106 (4) N2—C9—C13ii 119.9 (2)
C1—N1—C5 119.7 (2) N2—C9—C10 120.7 (2)
C1—N1—Ni1 119.71 (16) C13ii—C9—C10 119.5 (2)
C5—N1—Ni1 120.41 (16) C9—C10—S3 115.48 (18)
N1—C1—C5i 120.2 (2) C9—C10—H10A 108.4
N1—C1—C2 118.9 (2) S3—C10—H10A 108.4
C5i—C1—C2 120.9 (2) C9—C10—H10B 108.4
C1—C2—S1 116.34 (18) S3—C10—H10B 108.4
C1—C2—H2A 108.2 H10A—C10—H10B 107.5
S1—C2—H2A 108.2 C12—C11—S3 115.45 (19)
C1—C2—H2B 108.2 C12—C11—H11A 108.4
S1—C2—H2B 108.2 S3—C11—H11A 108.4
H2A—C2—H2B 107.4 C12—C11—H11B 108.4
C4—C3—S1 116.69 (19) S3—C11—H11B 108.4
C4—C3—H3A 108.1 H11A—C11—H11B 107.5
S1—C3—H3A 108.1 O5—C12—O6 124.2 (3)
C4—C3—H3B 108.1 O5—C12—C11 116.9 (2)
S1—C3—H3B 108.1 O6—C12—C11 118.9 (2)
H3A—C3—H3B 107.3 N2—C13—C9ii 119.8 (2)
O1—C4—O2 124.7 (2) N2—C13—C14 120.6 (2)
O1—C4—C3 114.8 (2) C9ii—C13—C14 119.5 (2)
O2—C4—C3 120.5 (2) C13—C14—S4 116.43 (18)
N1—C5—C1i 120.1 (2) C13—C14—H14A 108.2
N1—C5—C6 119.1 (2) S4—C14—H14A 108.2
C1i—C5—C6 120.7 (2) C13—C14—H14B 108.2
C5—C6—S2 115.43 (17) S4—C14—H14B 108.2
C5—C6—H6A 108.4 H14A—C14—H14B 107.3
S2—C6—H6A 108.4 C16—C15—S4 115.77 (18)
C5—C6—H6B 108.4 C16—C15—H15A 108.3
S2—C6—H6B 108.4 S4—C15—H15A 108.3
H6A—C6—H6B 107.5 C16—C15—H15B 108.3
C8—C7—S2 116.14 (19) S4—C15—H15B 108.3
C8—C7—H7A 108.3 H15A—C15—H15B 107.4
S2—C7—H7A 108.3 O7—C16—O8 124.6 (3)
C8—C7—H7B 108.3 O7—C16—C15 117.7 (2)
S2—C7—H7B 108.3 O8—C16—C15 117.8 (2)
H7A—C7—H7B 107.4 H3WA—O3W—H3WB 108 (4)
O3—C8—O4 124.9 (3) H4WA—O4W—H4WB 111 (4)
O3—C8—C7 116.4 (3) H5WA—O5W—H5WB 101 (5)
O4—C8—C7 118.7 (2) H6WA—O6W—H6WB 107 (4)
O8—Ni2—O2W 90.24 (8) H7WA—O7W—H7WB 104 (5)
O8—Ni2—O6 176.47 (8) H8WA—O8W—H8WB 120 (7)
O2W—Ni2—O6 93.24 (8) H9WA—O9W—H9WB 109 (5)
O8—Ni2—N2 86.76 (8)
N1—C1—C2—S1 −20.9 (3) Ni1—S2—C7—C8 9.7 (2)
N1—C5—C6—S2 −14.8 (3) Ni1—O4—C8—O3 178.4 (2)
S1—C3—C4—O2 −0.1 (3) Ni1—O4—C8—C7 −2.2 (4)
S2—C7—C8—O4 −6.7 (4) S2—C7—C8—O3 172.7 (2)
N2—C13—C14—S4 −1.3 (3) C13—N2—C9—C13ii −0.6 (4)
N2—C9—C10—S3 −7.0 (3) Ni2—N2—C9—C13ii −176.41 (18)
S4—C15—C16—O8 −21.9 (3) C13—N2—C9—C10 179.5 (2)
S3—C11—C12—O6 −27.6 (4) Ni2—N2—C9—C10 3.7 (3)
C5—N1—C1—C5i −0.2 (4) C13ii—C9—C10—S3 173.09 (19)
Ni1—N1—C1—C5i −175.32 (17) C11—S3—C10—C9 101.2 (2)
C5—N1—C1—C2 −177.5 (2) Ni2—S3—C10—C9 6.0 (2)
Ni1—N1—C1—C2 7.4 (3) C10—S3—C11—C12 −72.7 (3)
C5i—C1—C2—S1 161.87 (19) Ni2—S3—C11—C12 26.3 (2)
C3—S1—C2—C1 −76.6 (2) Ni2—O6—C12—O5 −172.1 (2)
Ni1—S1—C2—C1 20.51 (19) Ni2—O6—C12—C11 9.8 (3)
C2—S1—C3—C4 96.0 (2) S3—C11—C12—O5 154.2 (2)
Ni1—S1—C3—C4 −1.6 (2) C9—N2—C13—C9ii 0.6 (4)
Ni1—O2—C4—O1 −176.6 (2) Ni2—N2—C13—C9ii 176.44 (18)
Ni1—O2—C4—C3 2.3 (3) C9—N2—C13—C14 −179.6 (2)
S1—C3—C4—O1 178.92 (19) Ni2—N2—C13—C14 −3.7 (3)
C1—N1—C5—C1i 0.2 (4) C9ii—C13—C14—S4 178.57 (19)
Ni1—N1—C5—C1i 175.29 (17) C15—S4—C14—C13 99.1 (2)
C1—N1—C5—C6 −178.5 (2) Ni2—S4—C14—C13 4.4 (2)
Ni1—N1—C5—C6 −3.4 (3) C14—S4—C15—C16 −71.2 (2)
C1i—C5—C6—S2 166.52 (19) Ni2—S4—C15—C16 26.7 (2)
C7—S2—C6—C5 −75.9 (2) Ni2—O8—C16—O7 178.7 (2)
Ni1—S2—C6—C5 21.24 (19) Ni2—O8—C16—C15 0.2 (3)
C6—S2—C7—C8 107.7 (2) S4—C15—C16—O7 159.5 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O1iii 0.90 (5) 1.78 (5) 2.672 (3) 174 (4)
O1W—H1WB···O5W 0.83 (5) 1.85 (5) 2.677 (3) 170 (5)
O2W—H2WA···O5iv 0.88 (5) 1.80 (5) 2.673 (3) 168 (4)
O2W—H2WB···O1i 0.88 (6) 1.88 (6) 2.742 (3) 168 (6)
O3W—H3WA···O2 0.87 (4) 2.02 (4) 2.842 (3) 157 (4)
O3W—H3WB···O8Wiii 0.98 (7) 1.87 (7) 2.785 (4) 154 (6)
O4W—H4WA···O8v 0.91 (5) 1.83 (5) 2.733 (3) 172 (4)
O4W—H4WB···O6W 0.86 (5) 1.88 (5) 2.724 (3) 166 (5)
O5W—H5WA···O7W 0.97 (7) 1.88 (7) 2.785 (3) 154 (6)
O5W—H5WB···O5ii 0.80 (5) 2.06 (5) 2.776 (3) 149 (5)
O6W—H6WA···O7 0.83 (5) 1.98 (5) 2.814 (3) 178 (4)
O6W—H6WB···O3Wi 0.87 (6) 1.98 (6) 2.849 (4) 173 (5)
O7W—H7WA···O9W 0.86 (2) 1.85 (2) 2.698 (3) 169 (5)
O7W—H7WB···O6vi 0.97 (6) 1.94 (6) 2.899 (3) 174 (5)
O8W—H8WA···O7W 0.85 (2) 2.32 (2) 3.159 (5) 173 (6)
O8W—H8WB···O3Wv 0.86 (8) 2.19 (8) 3.019 (4) 164 (7)
O9W—H9WA···O4 0.82 (6) 1.93 (6) 2.752 (3) 174 (6)
O9W—H9WB···O4W 0.84 (5) 1.90 (5) 2.731 (3) 171 (5)
C2—H2A···O4Wvii 0.99 2.35 3.324 (3) 167
C2—H2B···O6W 0.99 2.55 3.308 (4) 133
C3—H3A···O8Wviii 0.99 2.55 3.488 (4) 159
C6—H6A···O4Wix 0.99 2.43 3.413 (3) 173
C6—H6B···O3W 0.99 2.60 3.365 (4) 134
C6—H6B···O6Wi 0.99 2.58 3.334 (3) 133
C10—H10B···O3ii 0.99 2.27 3.150 (4) 148
C11—H11B···O5Wx 0.99 2.52 3.303 (4) 136
C11—H11B···O7Wx 0.99 2.58 3.516 (4) 158
C14—H14A···O9Wvi 0.99 2.45 3.260 (4) 139
C14—H14B···O3 0.99 2.29 3.169 (4) 148
C15—H15A···S3v 0.99 2.84 3.609 (3) 135

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z; (iii) −x+1, −y, −z+1; (iv) −x, −y+2, −z; (v) x+1, y, z; (vi) −x+1, −y+1, −z; (vii) −x+2, −y+1, −z+1; (viii) −x+2, −y, −z+1; (ix) x−1, y, z; (x) x−1, y+1, z.

Funding Statement

Funding for this research was provided by: Swiss National Science Foundation; University of Neuchâtel.

References

  1. Assoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51–53. [DOI] [PMC free article] [PubMed]
  2. Ferigo, M., Bonhôte, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549–1554.
  3. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  4. Pacifico, J. (2003). PhD thesis, University of Neuchâtel, Switzerland.
  5. Pacifico, J. & Stoeckli-Evans, H. (2020). Private communications [CCDC 2036276 (H4L3: tetraperchlorate salt; CSD refcode PUXJUQ), CCDC 2041654 (TAGTUU) and CCDC 2041655 (EHUBOB)]. CCDC, Cambridge, England.
  6. Pacifico, J. & Stoeckli-Evans, H. (2021). Acta Cryst. E77, 480–490. [DOI] [PMC free article] [PubMed]
  7. Rheingold, A. L. (2015). Private communication [CCDC 2036276 (CSD refcode DUYFOU)]. CCDC, Cambridge, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  10. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2414314621012955/im4014sup1.cif

x-06-x211295-sup1.cif (682.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621012955/im4014Isup2.hkl

x-06-x211295-Isup2.hkl (617.7KB, hkl)

CCDC reference: 2126552

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES