The title compound crystallizes with two molecules, A and B, in the asymmetric unit. Each molecule features an intramolecular N—H⋯O hydrogen bond and the same H atom is also involved in an intermolecular N—H⋯S bond to generate A + B dimers. Further N—H⋯O hydrogen bonds link the dimers into a [010] chain.
Keywords: crystal structure, 2-aminothiophene derivative, hydrogen bonding
Abstract
The title compound, C8H11NO2S, crystallizes with two molecules, A and B, in the asymmetric unit. Each molecule features an intramolecular N—H⋯O hydrogen bond and the same H atom is also involved in an intermolecular N—H⋯S bond to generate A + B dimers. Further N—H⋯O hydrogen bonds link the dimers into a [010] chain.
Structure description
Thiophene derivatives have been reported to exhibit a broad spectrum of biological properties such as anti-inflammatory, antidepressant, antimicrobial and anticonvulsant activities (Molvi et al., 2007 ▸; Ashalatha et al., 2007 ▸; Rai et al., 2008 ▸). Thiophene derivatives are found to be active as allosteric enhancers at the adenosine A1 receptor, which has been linked to antiarrhythmic and antilipolytic activity (Cannito et al.,1990 ▸; Lütjens et al., 2003 ▸; Göblyös & Ijzerman, 2009 ▸; Nikolakopoulos et al., 2006 ▸). Thiophenes also possess properties that are suitable for functional materials, such as field effect transistors (MacDiarmid, 2001 ▸; Kraft, 2001 ▸) and organic light-emitting diodes (Akcelrud, 2003 ▸; Perepichka et al., 2005 ▸) because of their reversible oxidation occurring at low potentials (Nessakh et al., 1995 ▸; van Haare et al., 1995 ▸) and their semiconductor-like behaviour obtained upon p-doping (Roncali et al., 2005 ▸).
Many 2-,3-aminothiophene derivatives have been prepared so far and the structures of more than 25 of them have been published (see, e.g.: Çoruh et al., 2003 ▸; Nirmala et al., 2005 ▸; Bourgeaux & Skene, 2007 ▸; Akkurt et al., 2008 ▸; Zhang & Jiao, 2010 ▸; Ghorab et al., 2012 ▸). Crystal structures of several thiophenes have been determined in which different functional groups are attached in place of NH2 at the 2-position of the ring (Yan & Liu, 2007 ▸; Mukhtar et al., 2012 ▸; de Oliveira et al., 2012 ▸; Mabkhot et al., 2013 ▸; Kaur et al., 2014 ▸). Compounds are known in which the replacement of NH2 group by iodine resulted in a cyclomer by the association of two monomers through a weak intermolecular CN⋯I Lewis acid–base interaction (Moncol et al., 2007 ▸). In the crystal structure of another compound, which is a derivative of piperidine containing aminothiophenes, a dimer is formed by the intermolecular C—H⋯S interaction between the piperidine and thiophene rings (Al-Adiwish et al., 2012 ▸).
We report herein the synthesis, characterization and crystal structure of the title compound, 2-amino-4-methylthiophene-3-carboxylate (1) (Fig. 1 ▸), which crystallizes in the triclinic space group P
with four molecules in the unit cell (Z′ = 2). The two molecules in the asymmetric unit are labelled as A and B. In both A and B, the thiophene ring and the directly attached atoms are all coplanar within experimental error [for A: the r.m.s. deviation of the thiophene moiety is 0.003 (1) Å with N1, C5, and C6 at 0.044 (3), 0.005 (3) and 0.011 (3) Å, respectively; for B the r.m.s. deviation is 0.001 (1) Å with N1, C5 and C6 at 0.009 (4), 0.009 (4), and 0.003 (3) Å, respectively]. For A the dihedral angle between the thiophene ring and the NH2 substituent is 12.5 (18)° while for the C7, O1 and O2 moiety, this angle is 1.65 (10)°, indicating that this group is almost exactly coplanar with the ring. For B the corresponding values are 11 (2) and 2.1 (2)°.
Figure 1.
Diagram showing the two molecules A and B with atom labelling.
(6) interactions involving the NH2 and S moieties with a bifurcated hydrogen bond from H1BA to S1A and O1B links the A and B molecules. Hydrogen bonds are shown with dashed lines. Atomic displacement parameters are at the 30% probability level.
A search for structures containing a 2-amino-thiophene-3-carboxylate moiety gave 45 hits, two of which are particularly relevant to the current reported structure, viz. ethyl 2-amino-4-isobutylthiophene-3-carboxylate (KIKPIE; Liao et al., 2007 ▸) and ethyl 2-amino-4-phenylthiophen-3-carboxylate (VIWPUM; Dufresne & Skene, 2010 ▸). The only difference between these structures and that of 1 is in the substituent at the 3-position on the ring which are 2-methylpropyl and phenyl for KIKPIE (Liao et al., 2007 ▸) and VIWPUM (Dufresne & Skene, 2010 ▸). In both cases the metrical parameters are similar as well as the planarity of the substituents.
As far as the packing of the molecules is concerned, there is both intra- and intermolecular hydrogen bonding. This links the molecules into a
(12) chain in the b-axis direction (Etter et al., 1990 ▸). In addition, there are
(6) interactions involving the NH2 and S moieties with a bifurcated hydrogen bond from H1BA to S1A and O1B, which links the A and B molecules (Table 1 ▸, Figs. 2 ▸ and 3 ▸).
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
N1B—H1BA⋯O1B | 0.82 (3) | 2.14 (3) | 2.734 (3) | 130 (2) |
N1B—H1BB⋯O1A i | 0.87 (3) | 2.10 (3) | 2.946 (3) | 163 (2) |
N1A—H1AA⋯S1B ii | 0.83 (3) | 3.07 (3) | 3.819 (2) | 151 (2) |
N1A—H1AA⋯O1A | 0.83 (3) | 2.14 (3) | 2.736 (3) | 129 (2) |
N1A—H1AB⋯O1B | 0.86 (3) | 2.05 (3) | 2.897 (3) | 165 (2) |
C7A—H7AA⋯S1A iii | 0.97 | 3.02 | 3.736 (3) | 131 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Figure 2.
Diagram showing both intra- and intermolecular hydrogen bonding, which links the molecules into a
(12) chain in the b-axis direction, and
(6) interactions involving the NH2 and S moieties with a bifurcated hydrogen bond from H1BA to S1A and O1B which links the A and B molecules. Hydrogen bonds are shown with dashed lines. Atomic displacement parameters are at the 30% probability level.
Figure 3.
Packing diagram viewed along the a axis. Hydrogen bonds are shown with dashed lines.
Synthesis and crystallization
The title compound (ethyl 2-amino-4-methylthiophene-3-carboxylate) (1) was prepared by the procedure described in the literature (Zhang et al., 2010 ▸). A mixture of acetone (0.5 mmol) and ethylcyanoacetate (0.5 mmol) in absolute ethanol (2 ml) was added to a solution of elemental S (0.5 mmol) and diethylamine (0.5 mmol) in absolute ethanol (2 ml) and stirred constantly for 3 h at 50°C. The reaction completion was confirmed by using pre-coated silica gel 60 F254 MERCK (20×20 cm). The reaction mixture was quenched with ice-cold water and extracted with ethyl acetate. The organic layer was separated, dried over anhydrous sodium sulfate and concentrated. The crude product was purified using silica gel column chromatography (100–200 mesh) using hexane/ethyl acetate (7:3) mixture solution. Yellow crystals were obtained by slow evaporation of a saturated solution in ethyl acetate and the crystals were used for X-ray diffraction studies. Compound 1: Yield: (85%). m.p. 76–79°C. 1H NMR (400 MHz, CDCl3) δ 6.07 (s, 2H), 5.82 (s, 1H), 4.29 (q, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). 13C NMR (400 MHz, CDCl3) δ 166.13, 164.17, 136.71, 106.72, 102.85, 59.54, 18.40, 14.40. ESI–MS: m/z calculated for C8H11NO2S 185.05; found [M + H]+ 186.15.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸.
Table 2. Experimental details.
Crystal data | |
Chemical formula | C8H11NO2S |
M r | 185.24 |
Crystal system, space group | Triclinic, P
![]() |
Temperature (K) | 293 |
a, b, c (Å) | 7.664 (3), 9.876 (3), 13.018 (5) |
α, β, γ (°) | 91.602 (12), 104.301 (13), 101.729 (13) |
V (Å3) | 931.7 (6) |
Z | 4 |
Radiation type | Mo Kα |
μ (mm−1) | 0.31 |
Crystal size (mm) | 0.48 × 0.35 × 0.12 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996 ▸) |
T min, T max | 0.565, 0.747 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27589, 5636, 3845 |
R int | 0.062 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.057, 0.168, 1.03 |
No. of reflections | 5636 |
No. of parameters | 237 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.62, −0.39 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314621003515/bt4112sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621003515/bt4112Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314621003515/bt4112Isup3.cml
CCDC reference: 2074848
Additional supporting information: crystallographic information; 3D view; checkCIF report
full crystallographic data
Crystal data
C8H11NO2S | Z = 4 |
Mr = 185.24 | F(000) = 392 |
Triclinic, P1 | Dx = 1.321 Mg m−3 |
a = 7.664 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.876 (3) Å | Cell parameters from 9004 reflections |
c = 13.018 (5) Å | θ = 2.6–30.7° |
α = 91.602 (12)° | µ = 0.31 mm−1 |
β = 104.301 (13)° | T = 293 K |
γ = 101.729 (13)° | Plate, colourless |
V = 931.7 (6) Å3 | 0.48 × 0.35 × 0.12 mm |
Data collection
Bruker APEXII CCD diffractometer | 3845 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.062 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | θmax = 30.5°, θmin = 2.1° |
Tmin = 0.565, Tmax = 0.747 | h = −10→10 |
27589 measured reflections | k = −14→14 |
5636 independent reflections | l = −18→18 |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: mixed |
wR(F2) = 0.168 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0812P)2 + 0.2238P] where P = (Fo2 + 2Fc2)/3 |
5636 reflections | (Δ/σ)max < 0.001 |
237 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure was solved with SHELXT (Sheldrick, 2015a) and refined with SHELXL2018/3 (Sheldrick 2015b). The amine hydrogen atoms were refined isotropically while the C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95–0.98 Å, and with 1.2Ueq(C) for H atoms. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
S1A | 0.57912 (8) | 0.63040 (5) | 0.90873 (4) | 0.05608 (17) | |
O1A | 0.5956 (2) | 1.07513 (14) | 0.82938 (11) | 0.0598 (4) | |
O2A | 0.77241 (18) | 1.13164 (13) | 0.99478 (10) | 0.0469 (3) | |
N1A | 0.4678 (3) | 0.7995 (2) | 0.76263 (15) | 0.0611 (5) | |
H1AA | 0.478 (4) | 0.878 (3) | 0.741 (2) | 0.074 (8)* | |
H1AB | 0.420 (4) | 0.728 (3) | 0.718 (2) | 0.067 (7)* | |
C1A | 0.5667 (3) | 0.79097 (18) | 0.86174 (15) | 0.0434 (4) | |
C2A | 0.6638 (2) | 0.89702 (17) | 0.93919 (13) | 0.0394 (4) | |
C3A | 0.7481 (2) | 0.84624 (19) | 1.03824 (14) | 0.0429 (4) | |
C4A | 0.7121 (3) | 0.7062 (2) | 1.03180 (17) | 0.0535 (5) | |
H4AA | 0.754788 | 0.655468 | 1.088165 | 0.064* | |
C5A | 0.8619 (3) | 0.9325 (2) | 1.13746 (16) | 0.0580 (5) | |
H5AA | 0.899385 | 0.872987 | 1.191859 | 0.087* | |
H5AB | 0.790195 | 0.990278 | 1.160998 | 0.087* | |
H5AC | 0.969117 | 0.989811 | 1.123237 | 0.087* | |
C6A | 0.6715 (2) | 1.03954 (17) | 0.91494 (14) | 0.0400 (4) | |
C7A | 0.7865 (3) | 1.27623 (18) | 0.97679 (16) | 0.0501 (4) | |
H7AA | 0.664931 | 1.297311 | 0.957187 | 0.060* | |
H7AB | 0.845948 | 1.299239 | 0.919940 | 0.060* | |
C8A | 0.8989 (3) | 1.3566 (2) | 1.07851 (18) | 0.0607 (5) | |
H8AA | 0.910249 | 1.454059 | 1.070404 | 0.091* | |
H8AB | 1.019220 | 1.335704 | 1.096380 | 0.091* | |
H8AC | 0.839418 | 1.331695 | 1.134225 | 0.091* | |
S1B | 0.35148 (12) | 0.08122 (6) | 0.57884 (5) | 0.0809 (3) | |
O1B | 0.3541 (2) | 0.53445 (14) | 0.63773 (11) | 0.0620 (4) | |
O2B | 0.2205 (2) | 0.52307 (14) | 0.46392 (11) | 0.0538 (3) | |
N1B | 0.4376 (3) | 0.2976 (2) | 0.72151 (14) | 0.0639 (5) | |
H1BA | 0.451 (3) | 0.381 (3) | 0.7357 (18) | 0.057 (7)* | |
H1BB | 0.484 (4) | 0.242 (3) | 0.765 (2) | 0.076 (8)* | |
C1B | 0.3661 (3) | 0.25098 (19) | 0.61927 (15) | 0.0474 (4) | |
C2B | 0.2967 (3) | 0.32322 (18) | 0.53404 (13) | 0.0425 (4) | |
C3B | 0.2320 (3) | 0.2374 (2) | 0.43493 (16) | 0.0564 (5) | |
C4B | 0.2549 (5) | 0.1078 (3) | 0.4495 (2) | 0.0824 (8) | |
H4BA | 0.221258 | 0.038177 | 0.394211 | 0.099* | |
C5B | 0.1488 (4) | 0.2818 (3) | 0.32835 (17) | 0.0748 (7) | |
H5BA | 0.121058 | 0.205434 | 0.275478 | 0.112* | |
H5BB | 0.234517 | 0.357479 | 0.311217 | 0.112* | |
H5BC | 0.037419 | 0.311113 | 0.329922 | 0.112* | |
C6B | 0.2961 (3) | 0.46767 (18) | 0.55163 (14) | 0.0424 (4) | |
C7B | 0.2082 (3) | 0.6659 (2) | 0.47361 (19) | 0.0609 (5) | |
H7BA | 0.330234 | 0.725322 | 0.498848 | 0.073* | |
H7BB | 0.136218 | 0.679395 | 0.523229 | 0.073* | |
C8B | 0.1157 (4) | 0.6988 (3) | 0.3643 (2) | 0.0809 (8) | |
H8BA | 0.089268 | 0.789501 | 0.367982 | 0.121* | |
H8BB | 0.002774 | 0.631283 | 0.336545 | 0.121* | |
H8BC | 0.195895 | 0.696714 | 0.318332 | 0.121* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
S1A | 0.0707 (4) | 0.0344 (2) | 0.0629 (3) | 0.0106 (2) | 0.0173 (3) | 0.0055 (2) |
O1A | 0.0810 (10) | 0.0432 (7) | 0.0456 (7) | 0.0181 (7) | −0.0054 (7) | 0.0073 (6) |
O2A | 0.0547 (8) | 0.0354 (6) | 0.0441 (7) | 0.0084 (5) | 0.0020 (6) | 0.0059 (5) |
N1A | 0.0846 (14) | 0.0431 (9) | 0.0456 (9) | 0.0128 (9) | 0.0003 (9) | −0.0027 (8) |
C1A | 0.0497 (10) | 0.0369 (8) | 0.0453 (9) | 0.0108 (7) | 0.0141 (8) | 0.0038 (7) |
C2A | 0.0404 (9) | 0.0366 (8) | 0.0414 (8) | 0.0088 (7) | 0.0103 (7) | 0.0065 (6) |
C3A | 0.0425 (9) | 0.0434 (9) | 0.0450 (9) | 0.0116 (7) | 0.0128 (7) | 0.0109 (7) |
C4A | 0.0631 (12) | 0.0458 (10) | 0.0543 (11) | 0.0166 (9) | 0.0144 (9) | 0.0176 (8) |
C5A | 0.0635 (13) | 0.0579 (12) | 0.0444 (10) | 0.0124 (10) | −0.0012 (9) | 0.0109 (9) |
C6A | 0.0428 (9) | 0.0378 (8) | 0.0400 (8) | 0.0115 (7) | 0.0091 (7) | 0.0055 (6) |
C7A | 0.0621 (12) | 0.0345 (8) | 0.0500 (10) | 0.0116 (8) | 0.0062 (9) | 0.0055 (7) |
C8A | 0.0653 (13) | 0.0454 (10) | 0.0605 (13) | 0.0052 (9) | 0.0021 (10) | −0.0021 (9) |
S1B | 0.1329 (7) | 0.0398 (3) | 0.0631 (4) | 0.0278 (3) | 0.0053 (4) | 0.0040 (2) |
O1B | 0.0879 (11) | 0.0431 (7) | 0.0452 (7) | 0.0163 (7) | −0.0015 (7) | −0.0043 (6) |
O2B | 0.0696 (9) | 0.0449 (7) | 0.0446 (7) | 0.0190 (6) | 0.0046 (6) | 0.0083 (6) |
N1B | 0.0985 (16) | 0.0499 (10) | 0.0380 (8) | 0.0265 (10) | −0.0011 (9) | 0.0056 (8) |
C1B | 0.0601 (11) | 0.0383 (8) | 0.0419 (9) | 0.0129 (8) | 0.0077 (8) | 0.0040 (7) |
C2B | 0.0492 (10) | 0.0395 (8) | 0.0360 (8) | 0.0107 (7) | 0.0052 (7) | 0.0015 (6) |
C3B | 0.0707 (13) | 0.0495 (10) | 0.0404 (9) | 0.0104 (9) | 0.0015 (9) | −0.0040 (8) |
C4B | 0.128 (2) | 0.0480 (12) | 0.0570 (13) | 0.0180 (14) | 0.0015 (14) | −0.0132 (10) |
C5B | 0.1004 (19) | 0.0743 (15) | 0.0386 (10) | 0.0216 (14) | −0.0035 (11) | −0.0068 (10) |
C6B | 0.0463 (9) | 0.0398 (8) | 0.0399 (8) | 0.0107 (7) | 0.0074 (7) | 0.0050 (7) |
C7B | 0.0672 (13) | 0.0447 (10) | 0.0700 (14) | 0.0180 (9) | 0.0105 (11) | 0.0160 (9) |
C8B | 0.0828 (18) | 0.0716 (16) | 0.0840 (18) | 0.0226 (14) | 0.0055 (14) | 0.0366 (14) |
Geometric parameters (Å, º)
S1A—C4A | 1.727 (2) | S1B—C4B | 1.715 (3) |
S1A—C1A | 1.7277 (19) | S1B—C1B | 1.716 (2) |
O1A—C6A | 1.220 (2) | O1B—C6B | 1.217 (2) |
O2A—C6A | 1.330 (2) | O2B—C6B | 1.333 (2) |
O2A—C7A | 1.440 (2) | O2B—C7B | 1.437 (2) |
N1A—C1A | 1.340 (3) | N1B—C1B | 1.337 (3) |
N1A—H1AA | 0.83 (3) | N1B—H1BA | 0.82 (3) |
N1A—H1AB | 0.86 (3) | N1B—H1BB | 0.87 (3) |
C1A—C2A | 1.386 (3) | C1B—C2B | 1.389 (2) |
C2A—C6A | 1.444 (2) | C2B—C6B | 1.440 (2) |
C2A—C3A | 1.445 (2) | C2B—C3B | 1.443 (3) |
C3A—C4A | 1.350 (3) | C3B—C4B | 1.339 (3) |
C3A—C5A | 1.495 (3) | C3B—C5B | 1.495 (3) |
C4A—H4AA | 0.9300 | C4B—H4BA | 0.9300 |
C5A—H5AA | 0.9600 | C5B—H5BA | 0.9600 |
C5A—H5AB | 0.9600 | C5B—H5BB | 0.9600 |
C5A—H5AC | 0.9600 | C5B—H5BC | 0.9600 |
C7A—C8A | 1.492 (3) | C7B—C8B | 1.502 (3) |
C7A—H7AA | 0.9700 | C7B—H7BA | 0.9700 |
C7A—H7AB | 0.9700 | C7B—H7BB | 0.9700 |
C8A—H8AA | 0.9600 | C8B—H8BA | 0.9600 |
C8A—H8AB | 0.9600 | C8B—H8BB | 0.9600 |
C8A—H8AC | 0.9600 | C8B—H8BC | 0.9600 |
C4A—S1A—C1A | 91.37 (9) | C4B—S1B—C1B | 91.28 (11) |
C6A—O2A—C7A | 117.21 (14) | C6B—O2B—C7B | 117.81 (16) |
C1A—N1A—H1AA | 116.2 (19) | C1B—N1B—H1BA | 116.5 (17) |
C1A—N1A—H1AB | 122.2 (17) | C1B—N1B—H1BB | 118.1 (18) |
H1AA—N1A—H1AB | 120 (2) | H1BA—N1B—H1BB | 124 (2) |
N1A—C1A—C2A | 128.91 (17) | N1B—C1B—C2B | 128.53 (18) |
N1A—C1A—S1A | 119.95 (15) | N1B—C1B—S1B | 120.36 (15) |
C2A—C1A—S1A | 111.12 (14) | C2B—C1B—S1B | 111.12 (14) |
C1A—C2A—C6A | 119.56 (16) | C1B—C2B—C6B | 119.66 (16) |
C1A—C2A—C3A | 112.69 (15) | C1B—C2B—C3B | 112.43 (17) |
C6A—C2A—C3A | 127.75 (16) | C6B—C2B—C3B | 127.92 (17) |
C4A—C3A—C2A | 111.36 (17) | C4B—C3B—C2B | 111.01 (19) |
C4A—C3A—C5A | 122.25 (18) | C4B—C3B—C5B | 122.6 (2) |
C2A—C3A—C5A | 126.40 (16) | C2B—C3B—C5B | 126.34 (19) |
C3A—C4A—S1A | 113.46 (15) | C3B—C4B—S1B | 114.16 (17) |
C3A—C4A—H4AA | 123.3 | C3B—C4B—H4BA | 122.9 |
S1A—C4A—H4AA | 123.3 | S1B—C4B—H4BA | 122.9 |
C3A—C5A—H5AA | 109.5 | C3B—C5B—H5BA | 109.5 |
C3A—C5A—H5AB | 109.5 | C3B—C5B—H5BB | 109.5 |
H5AA—C5A—H5AB | 109.5 | H5BA—C5B—H5BB | 109.5 |
C3A—C5A—H5AC | 109.5 | C3B—C5B—H5BC | 109.5 |
H5AA—C5A—H5AC | 109.5 | H5BA—C5B—H5BC | 109.5 |
H5AB—C5A—H5AC | 109.5 | H5BB—C5B—H5BC | 109.5 |
O1A—C6A—O2A | 121.81 (16) | O1B—C6B—O2B | 121.96 (17) |
O1A—C6A—C2A | 124.29 (16) | O1B—C6B—C2B | 124.56 (17) |
O2A—C6A—C2A | 113.89 (15) | O2B—C6B—C2B | 113.46 (16) |
O2A—C7A—C8A | 106.65 (16) | O2B—C7B—C8B | 106.1 (2) |
O2A—C7A—H7AA | 110.4 | O2B—C7B—H7BA | 110.5 |
C8A—C7A—H7AA | 110.4 | C8B—C7B—H7BA | 110.5 |
O2A—C7A—H7AB | 110.4 | O2B—C7B—H7BB | 110.5 |
C8A—C7A—H7AB | 110.4 | C8B—C7B—H7BB | 110.5 |
H7AA—C7A—H7AB | 108.6 | H7BA—C7B—H7BB | 108.7 |
C7A—C8A—H8AA | 109.5 | C7B—C8B—H8BA | 109.5 |
C7A—C8A—H8AB | 109.5 | C7B—C8B—H8BB | 109.5 |
H8AA—C8A—H8AB | 109.5 | H8BA—C8B—H8BB | 109.5 |
C7A—C8A—H8AC | 109.5 | C7B—C8B—H8BC | 109.5 |
H8AA—C8A—H8AC | 109.5 | H8BA—C8B—H8BC | 109.5 |
H8AB—C8A—H8AC | 109.5 | H8BB—C8B—H8BC | 109.5 |
C4A—S1A—C1A—N1A | −177.88 (18) | C4B—S1B—C1B—N1B | −179.6 (2) |
C4A—S1A—C1A—C2A | 0.54 (15) | C4B—S1B—C1B—C2B | 0.33 (19) |
N1A—C1A—C2A—C6A | −2.3 (3) | N1B—C1B—C2B—C6B | −0.3 (3) |
S1A—C1A—C2A—C6A | 179.41 (13) | S1B—C1B—C2B—C6B | 179.78 (15) |
N1A—C1A—C2A—C3A | 177.8 (2) | N1B—C1B—C2B—C3B | 179.7 (2) |
S1A—C1A—C2A—C3A | −0.5 (2) | S1B—C1B—C2B—C3B | −0.3 (2) |
C1A—C2A—C3A—C4A | 0.1 (2) | C1B—C2B—C3B—C4B | 0.0 (3) |
C6A—C2A—C3A—C4A | −179.77 (18) | C6B—C2B—C3B—C4B | 180.0 (2) |
C1A—C2A—C3A—C5A | −179.96 (18) | C1B—C2B—C3B—C5B | 179.7 (2) |
C6A—C2A—C3A—C5A | 0.2 (3) | C6B—C2B—C3B—C5B | −0.3 (4) |
C2A—C3A—C4A—S1A | 0.3 (2) | C2B—C3B—C4B—S1B | 0.2 (3) |
C5A—C3A—C4A—S1A | −179.62 (16) | C5B—C3B—C4B—S1B | −179.5 (2) |
C1A—S1A—C4A—C3A | −0.52 (17) | C1B—S1B—C4B—C3B | −0.3 (3) |
C7A—O2A—C6A—O1A | 0.9 (3) | C7B—O2B—C6B—O1B | −0.2 (3) |
C7A—O2A—C6A—C2A | −179.88 (16) | C7B—O2B—C6B—C2B | 178.22 (17) |
C1A—C2A—C6A—O1A | 0.7 (3) | C1B—C2B—C6B—O1B | 0.4 (3) |
C3A—C2A—C6A—O1A | −179.46 (18) | C3B—C2B—C6B—O1B | −179.5 (2) |
C1A—C2A—C6A—O2A | −178.48 (15) | C1B—C2B—C6B—O2B | −177.98 (17) |
C3A—C2A—C6A—O2A | 1.4 (3) | C3B—C2B—C6B—O2B | 2.1 (3) |
C6A—O2A—C7A—C8A | 177.71 (17) | C6B—O2B—C7B—C8B | −179.07 (18) |
Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H1BA···O1B | 0.82 (3) | 2.14 (3) | 2.734 (3) | 130 (2) |
N1B—H1BB···O1Ai | 0.87 (3) | 2.10 (3) | 2.946 (3) | 163 (2) |
N1A—H1AA···S1Bii | 0.83 (3) | 3.07 (3) | 3.819 (2) | 151 (2) |
N1A—H1AA···O1A | 0.83 (3) | 2.14 (3) | 2.736 (3) | 129 (2) |
N1A—H1AB···O1B | 0.86 (3) | 2.05 (3) | 2.897 (3) | 165 (2) |
C7A—H7AA···S1Aiii | 0.97 | 3.02 | 3.736 (3) | 131 |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) −x+1, −y+2, −z+2.
Funding Statement
RJB wishes to acknowledge NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research.
References
- Akcelrud, L. (2003). Prog. Polym. Sci. 28, 875–962.
- Akkurt, M., Yıldırım, S. Ö., Asiri, A. M. & McKee, V. (2008). Acta Cryst. E64, o1084. [DOI] [PMC free article] [PubMed]
- Al-Adiwish, W. M., Adan, D., Mohamed Tahir, M. I., Yaacob, W. A. & Kassim, M. B. (2012). Acta Cryst. E68, o138. [DOI] [PMC free article] [PubMed]
- Ashalatha, B. V., Narayana, B., Vijaya Raj, K. K. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 719–728. [DOI] [PubMed]
- Bourgeaux, M. & Skene, W. G. (2007). Acta Cryst. E63, o1603–o1605.
- Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cannito, A., Perrissin, M., Luu-Duc, C., Huguet, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635–639.
- Çoruh, U., Ustabaş, R., Tümer, F., García-Granda, S., Demir, Ü., Ekinci, D. & Yavuz, M. (2003). Acta Cryst. E59, o1339–o1341.
- Dufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, o3221. [DOI] [PMC free article] [PubMed]
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
- Ghorab, M. M., Al-Said, M. S., Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o2111. [DOI] [PMC free article] [PubMed]
- Göblyös, A. & IJzerman, A. P. (2009). Purinergic Signal. 5, 51–61. [DOI] [PMC free article] [PubMed]
- Haare, J. A. E. H. van, Groenendaal, L., Peerlings, H. W. I., Havinga, E. E., Vekemans, J. A. J. M., Janssen, R. A. J. & Meijer, E. W. (1995). Chem. Mater. 7, 1984–1989.
- Kaur, M., Jasinski, J. P., Yathirajan, H. S., Yamuna, T. S. & Byrappa, K. (2014). Acta Cryst. E70, o951–o952. [DOI] [PMC free article] [PubMed]
- Kraft, A. (2001). ChemPhysChem, 2, 163–165. [DOI] [PubMed]
- Liao, Q.-B., Huang, J., Yang, Z.-Z. & Liu, M.-G. (2007). Acta Cryst. E63, o3824.
- Lütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2003). J. Med. Chem. 46, 1870–1877. [DOI] [PubMed]
- Mabkhot, Y. N., Alatibi, F., Barakat, A., Choudhary, M. I. & Yousuf, S. (2013). Acta Cryst. E69, o1049. [DOI] [PMC free article] [PubMed]
- MacDiarmid, A. G. (2001). Angew. Chem. Int. Ed. 40, 2581–2590.
- Molvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049–1058. [DOI] [PubMed]
- Moncol, J., Puterová, Z. & Végh, D. (2007). Acta Cryst. E63, o3921.
- Mukhtar, A., Tahir, M. N., Khan, M. A., Ather, A. Q. & Khan, M. N. (2012). Acta Cryst. E68, o2042. [DOI] [PMC free article] [PubMed]
- Nessakh, B., Horowitz, G., Garnier, F., Deloffre, F., Srivastava, P. & Yassar, A. (1995). J. Electroanal. Chem. 399, 97–103.
- Nikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358–2365. [DOI] [PubMed]
- Nirmala, K. A., Vasu, Chopra, D., Mohan, S. & Prasad, M. R. (2005). Acta Cryst. E61, o1541–o1543.
- Oliveira, J. G. B. de, Mendonça Junio, F. J. B., de Lima, M., do C. A., de Simone, C. A. & Ellena, J. A. (2012). Acta Cryst. E68, o2360. [DOI] [PMC free article] [PubMed]
- Perepichka, I. F., Perepichka, D. F., Meng, H. & Wudl, F. (2005). Adv. Mater. 17, 2281–2305.
- Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
- Roncali, J., Blanchard, P. & Frère, P. (2005). J. Mater. Chem. 15, 1589–1610.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
- Yan, F.-Y. & Liu, D.-Q. (2007). Acta Cryst. E63, o4877.
- Zhang, Q. & Jiao, Y.-H. (2010). Z. Kristallogr. New Cryst. Struct. 225, 283–284.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314621003515/bt4112sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621003515/bt4112Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314621003515/bt4112Isup3.cml
CCDC reference: 2074848
Additional supporting information: crystallographic information; 3D view; checkCIF report