Skip to main content
IUCrData logoLink to IUCrData
. 2021 Apr 9;6(Pt 4):x210351. doi: 10.1107/S2414314621003515

Ethyl 2-amino-4-methyl­thio­phene-3-carboxyl­ate

Ghazala Khanum a, Aysha Fatima a, Pooja Sharma a, S K Srivastava a, Ray J Butcher b,*
Editor: M Boltec
PMCID: PMC9462330  PMID: 36339105

The title compound crystallizes with two mol­ecules, A and B, in the asymmetric unit. Each molecule features an intramolecular N—H⋯O hydrogen bond and the same H atom is also involved in an intermolecular N—H⋯S bond to generate A + B dimers. Further N—H⋯O hydrogen bonds link the dimers into a [010] chain.

Keywords: crystal structure, 2-amino­thio­phene derivative, hydrogen bonding

Abstract

The title compound, C8H11NO2S, crystallizes with two mol­ecules, A and B, in the asymmetric unit. Each molecule features an intramolecular N—H⋯O hydrogen bond and the same H atom is also involved in an intermolecular N—H⋯S bond to generate A + B dimers. Further N—H⋯O hydrogen bonds link the dimers into a [010] chain. graphic file with name x-06-x210351-scheme1-3D1.jpg

Structure description

Thio­phene derivatives have been reported to exhibit a broad spectrum of biological properties such as anti-inflammatory, anti­depressant, anti­microbial and anti­convulsant activities (Molvi et al., 2007; Ashalatha et al., 2007; Rai et al., 2008). Thio­phene derivatives are found to be active as allosteric enhancers at the adenosine A1 receptor, which has been linked to anti­arrhythmic and anti­lipolytic activity (Cannito et al.,1990; Lütjens et al., 2003; Göblyös & Ijzerman, 2009; Nikolakopoulos et al., 2006). Thio­phenes also possess properties that are suitable for functional materials, such as field effect transistors (MacDiarmid, 2001; Kraft, 2001) and organic light-emitting diodes (Akcelrud, 2003; Perepichka et al., 2005) because of their reversible oxidation occurring at low potentials (Nessakh et al., 1995; van Haare et al., 1995) and their semiconductor-like behaviour obtained upon p-doping (Roncali et al., 2005).

Many 2-,3-amino­thio­phene derivatives have been prepared so far and the structures of more than 25 of them have been published (see, e.g.: Çoruh et al., 2003; Nirmala et al., 2005; Bourgeaux & Skene, 2007; Akkurt et al., 2008; Zhang & Jiao, 2010; Ghorab et al., 2012). Crystal structures of several thio­phenes have been determined in which different functional groups are attached in place of NH2 at the 2-position of the ring (Yan & Liu, 2007; Mukhtar et al., 2012; de Oliveira et al., 2012; Mabkhot et al., 2013; Kaur et al., 2014). Compounds are known in which the replacement of NH2 group by iodine resulted in a cyclo­mer by the association of two monomers through a weak inter­molecular CN⋯I Lewis acid–base inter­action (Moncol et al., 2007). In the crystal structure of another compound, which is a derivative of piperidine containing amino­thio­phenes, a dimer is formed by the inter­molecular C—H⋯S inter­action between the piperidine and thio­phene rings (Al-Adiwish et al., 2012).

We report herein the synthesis, characterization and crystal structure of the title compound, 2-amino-4-methyl­thio­phene-3-carboxyl­ate (1) (Fig. 1), which crystallizes in the triclinic space group P Inline graphic with four mol­ecules in the unit cell (Z′ = 2). The two mol­ecules in the asymmetric unit are labelled as A and B. In both A and B, the thio­phene ring and the directly attached atoms are all coplanar within experimental error [for A: the r.m.s. deviation of the thio­phene moiety is 0.003 (1) Å with N1, C5, and C6 at 0.044 (3), 0.005 (3) and 0.011 (3) Å, respectively; for B the r.m.s. deviation is 0.001 (1) Å with N1, C5 and C6 at 0.009 (4), 0.009 (4), and 0.003 (3) Å, respectively]. For A the dihedral angle between the thio­phene ring and the NH2 substituent is 12.5 (18)° while for the C7, O1 and O2 moiety, this angle is 1.65 (10)°, indicating that this group is almost exactly coplanar with the ring. For B the corresponding values are 11 (2) and 2.1 (2)°.

Figure 1.

Figure 1

Diagram showing the two mol­ecules A and B with atom labelling. Inline graphic (6) inter­actions involving the NH2 and S moieties with a bifurcated hydrogen bond from H1BA to S1A and O1B links the A and B mol­ecules. Hydrogen bonds are shown with dashed lines. Atomic displacement parameters are at the 30% probability level.

A search for structures containing a 2-amino-thio­phene-3-carboxyl­ate moiety gave 45 hits, two of which are particularly relevant to the current reported structure, viz. ethyl 2-amino-4-iso­butyl­thio­phene-3-carboxyl­ate (KIKPIE; Liao et al., 2007) and ethyl 2-amino-4-phenyl­thio­phen-3-carboxyl­ate (VIWPUM; Dufresne & Skene, 2010). The only difference between these structures and that of 1 is in the substituent at the 3-position on the ring which are 2-methyl­propyl and phenyl for KIKPIE (Liao et al., 2007) and VIWPUM (Dufresne & Skene, 2010). In both cases the metrical parameters are similar as well as the planarity of the substituents.

As far as the packing of the mol­ecules is concerned, there is both intra- and inter­molecular hydrogen bonding. This links the mol­ecules into a Inline graphic (12) chain in the b-axis direction (Etter et al., 1990). In addition, there are Inline graphic (6) inter­actions involving the NH2 and S moieties with a bifurcated hydrogen bond from H1BA to S1A and O1B, which links the A and B mol­ecules (Table 1, Figs. 2 and 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1BA⋯O1B 0.82 (3) 2.14 (3) 2.734 (3) 130 (2)
N1B—H1BB⋯O1A i 0.87 (3) 2.10 (3) 2.946 (3) 163 (2)
N1A—H1AA⋯S1B ii 0.83 (3) 3.07 (3) 3.819 (2) 151 (2)
N1A—H1AA⋯O1A 0.83 (3) 2.14 (3) 2.736 (3) 129 (2)
N1A—H1AB⋯O1B 0.86 (3) 2.05 (3) 2.897 (3) 165 (2)
C7A—H7AA⋯S1A iii 0.97 3.02 3.736 (3) 131

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 2.

Figure 2

Diagram showing both intra- and inter­molecular hydrogen bonding, which links the mol­ecules into a Inline graphic (12) chain in the b-axis direction, and Inline graphic (6) inter­actions involving the NH2 and S moieties with a bifurcated hydrogen bond from H1BA to S1A and O1B which links the A and B mol­ecules. Hydrogen bonds are shown with dashed lines. Atomic displacement parameters are at the 30% probability level.

Figure 3.

Figure 3

Packing diagram viewed along the a axis. Hydrogen bonds are shown with dashed lines.

Synthesis and crystallization

The title compound (ethyl 2-amino-4-methyl­thio­phene-3-carboxyl­ate) (1) was prepared by the procedure described in the literature (Zhang et al., 2010). A mixture of acetone (0.5 mmol) and ethyl­cyano­acetate (0.5 mmol) in absolute ethanol (2 ml) was added to a solution of elemental S (0.5 mmol) and di­ethyl­amine (0.5 mmol) in absolute ethanol (2 ml) and stirred constantly for 3 h at 50°C. The reaction completion was confirmed by using pre-coated silica gel 60 F254 MERCK (20×20 cm). The reaction mixture was quenched with ice-cold water and extracted with ethyl acetate. The organic layer was separated, dried over anhydrous sodium sulfate and concentrated. The crude product was purified using silica gel column chromatography (100–200 mesh) using hexa­ne/ethyl acetate (7:3) mixture solution. Yellow crystals were obtained by slow evaporation of a saturated solution in ethyl acetate and the crystals were used for X-ray diffraction studies. Compound 1: Yield: (85%). m.p. 76–79°C. 1H NMR (400 MHz, CDCl3) δ 6.07 (s, 2H), 5.82 (s, 1H), 4.29 (q, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). 13C NMR (400 MHz, CDCl3) δ 166.13, 164.17, 136.71, 106.72, 102.85, 59.54, 18.40, 14.40. ESI–MS: m/z calculated for C8H11NO2S 185.05; found [M + H]+ 186.15.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C8H11NO2S
M r 185.24
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 7.664 (3), 9.876 (3), 13.018 (5)
α, β, γ (°) 91.602 (12), 104.301 (13), 101.729 (13)
V3) 931.7 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.48 × 0.35 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996)
T min, T max 0.565, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 27589, 5636, 3845
R int 0.062
(sin θ/λ)max−1) 0.714
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.057, 0.168, 1.03
No. of reflections 5636
No. of parameters 237
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.62, −0.39

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2002), SHELXT (Sheldrick 2015a), SHELXL2018/3 (Sheldrick, 2015b) and SHELXTL (Sheldrick 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314621003515/bt4112sup1.cif

x-06-x210351-sup1.cif (812.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621003515/bt4112Isup2.hkl

x-06-x210351-Isup2.hkl (448.2KB, hkl)

Supporting information file. DOI: 10.1107/S2414314621003515/bt4112Isup3.cml

CCDC reference: 2074848

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C8H11NO2S Z = 4
Mr = 185.24 F(000) = 392
Triclinic, P1 Dx = 1.321 Mg m3
a = 7.664 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.876 (3) Å Cell parameters from 9004 reflections
c = 13.018 (5) Å θ = 2.6–30.7°
α = 91.602 (12)° µ = 0.31 mm1
β = 104.301 (13)° T = 293 K
γ = 101.729 (13)° Plate, colourless
V = 931.7 (6) Å3 0.48 × 0.35 × 0.12 mm

Data collection

Bruker APEXII CCD diffractometer 3845 reflections with I > 2σ(I)
φ and ω scans Rint = 0.062
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) θmax = 30.5°, θmin = 2.1°
Tmin = 0.565, Tmax = 0.747 h = −10→10
27589 measured reflections k = −14→14
5636 independent reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: mixed
wR(F2) = 0.168 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0812P)2 + 0.2238P] where P = (Fo2 + 2Fc2)/3
5636 reflections (Δ/σ)max < 0.001
237 parameters Δρmax = 0.62 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The structure was solved with SHELXT (Sheldrick, 2015a) and refined with SHELXL2018/3 (Sheldrick 2015b). The amine hydrogen atoms were refined isotropically while the C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95–0.98 Å, and with 1.2Ueq(C) for H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.57912 (8) 0.63040 (5) 0.90873 (4) 0.05608 (17)
O1A 0.5956 (2) 1.07513 (14) 0.82938 (11) 0.0598 (4)
O2A 0.77241 (18) 1.13164 (13) 0.99478 (10) 0.0469 (3)
N1A 0.4678 (3) 0.7995 (2) 0.76263 (15) 0.0611 (5)
H1AA 0.478 (4) 0.878 (3) 0.741 (2) 0.074 (8)*
H1AB 0.420 (4) 0.728 (3) 0.718 (2) 0.067 (7)*
C1A 0.5667 (3) 0.79097 (18) 0.86174 (15) 0.0434 (4)
C2A 0.6638 (2) 0.89702 (17) 0.93919 (13) 0.0394 (4)
C3A 0.7481 (2) 0.84624 (19) 1.03824 (14) 0.0429 (4)
C4A 0.7121 (3) 0.7062 (2) 1.03180 (17) 0.0535 (5)
H4AA 0.754788 0.655468 1.088165 0.064*
C5A 0.8619 (3) 0.9325 (2) 1.13746 (16) 0.0580 (5)
H5AA 0.899385 0.872987 1.191859 0.087*
H5AB 0.790195 0.990278 1.160998 0.087*
H5AC 0.969117 0.989811 1.123237 0.087*
C6A 0.6715 (2) 1.03954 (17) 0.91494 (14) 0.0400 (4)
C7A 0.7865 (3) 1.27623 (18) 0.97679 (16) 0.0501 (4)
H7AA 0.664931 1.297311 0.957187 0.060*
H7AB 0.845948 1.299239 0.919940 0.060*
C8A 0.8989 (3) 1.3566 (2) 1.07851 (18) 0.0607 (5)
H8AA 0.910249 1.454059 1.070404 0.091*
H8AB 1.019220 1.335704 1.096380 0.091*
H8AC 0.839418 1.331695 1.134225 0.091*
S1B 0.35148 (12) 0.08122 (6) 0.57884 (5) 0.0809 (3)
O1B 0.3541 (2) 0.53445 (14) 0.63773 (11) 0.0620 (4)
O2B 0.2205 (2) 0.52307 (14) 0.46392 (11) 0.0538 (3)
N1B 0.4376 (3) 0.2976 (2) 0.72151 (14) 0.0639 (5)
H1BA 0.451 (3) 0.381 (3) 0.7357 (18) 0.057 (7)*
H1BB 0.484 (4) 0.242 (3) 0.765 (2) 0.076 (8)*
C1B 0.3661 (3) 0.25098 (19) 0.61927 (15) 0.0474 (4)
C2B 0.2967 (3) 0.32322 (18) 0.53404 (13) 0.0425 (4)
C3B 0.2320 (3) 0.2374 (2) 0.43493 (16) 0.0564 (5)
C4B 0.2549 (5) 0.1078 (3) 0.4495 (2) 0.0824 (8)
H4BA 0.221258 0.038177 0.394211 0.099*
C5B 0.1488 (4) 0.2818 (3) 0.32835 (17) 0.0748 (7)
H5BA 0.121058 0.205434 0.275478 0.112*
H5BB 0.234517 0.357479 0.311217 0.112*
H5BC 0.037419 0.311113 0.329922 0.112*
C6B 0.2961 (3) 0.46767 (18) 0.55163 (14) 0.0424 (4)
C7B 0.2082 (3) 0.6659 (2) 0.47361 (19) 0.0609 (5)
H7BA 0.330234 0.725322 0.498848 0.073*
H7BB 0.136218 0.679395 0.523229 0.073*
C8B 0.1157 (4) 0.6988 (3) 0.3643 (2) 0.0809 (8)
H8BA 0.089268 0.789501 0.367982 0.121*
H8BB 0.002774 0.631283 0.336545 0.121*
H8BC 0.195895 0.696714 0.318332 0.121*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0707 (4) 0.0344 (2) 0.0629 (3) 0.0106 (2) 0.0173 (3) 0.0055 (2)
O1A 0.0810 (10) 0.0432 (7) 0.0456 (7) 0.0181 (7) −0.0054 (7) 0.0073 (6)
O2A 0.0547 (8) 0.0354 (6) 0.0441 (7) 0.0084 (5) 0.0020 (6) 0.0059 (5)
N1A 0.0846 (14) 0.0431 (9) 0.0456 (9) 0.0128 (9) 0.0003 (9) −0.0027 (8)
C1A 0.0497 (10) 0.0369 (8) 0.0453 (9) 0.0108 (7) 0.0141 (8) 0.0038 (7)
C2A 0.0404 (9) 0.0366 (8) 0.0414 (8) 0.0088 (7) 0.0103 (7) 0.0065 (6)
C3A 0.0425 (9) 0.0434 (9) 0.0450 (9) 0.0116 (7) 0.0128 (7) 0.0109 (7)
C4A 0.0631 (12) 0.0458 (10) 0.0543 (11) 0.0166 (9) 0.0144 (9) 0.0176 (8)
C5A 0.0635 (13) 0.0579 (12) 0.0444 (10) 0.0124 (10) −0.0012 (9) 0.0109 (9)
C6A 0.0428 (9) 0.0378 (8) 0.0400 (8) 0.0115 (7) 0.0091 (7) 0.0055 (6)
C7A 0.0621 (12) 0.0345 (8) 0.0500 (10) 0.0116 (8) 0.0062 (9) 0.0055 (7)
C8A 0.0653 (13) 0.0454 (10) 0.0605 (13) 0.0052 (9) 0.0021 (10) −0.0021 (9)
S1B 0.1329 (7) 0.0398 (3) 0.0631 (4) 0.0278 (3) 0.0053 (4) 0.0040 (2)
O1B 0.0879 (11) 0.0431 (7) 0.0452 (7) 0.0163 (7) −0.0015 (7) −0.0043 (6)
O2B 0.0696 (9) 0.0449 (7) 0.0446 (7) 0.0190 (6) 0.0046 (6) 0.0083 (6)
N1B 0.0985 (16) 0.0499 (10) 0.0380 (8) 0.0265 (10) −0.0011 (9) 0.0056 (8)
C1B 0.0601 (11) 0.0383 (8) 0.0419 (9) 0.0129 (8) 0.0077 (8) 0.0040 (7)
C2B 0.0492 (10) 0.0395 (8) 0.0360 (8) 0.0107 (7) 0.0052 (7) 0.0015 (6)
C3B 0.0707 (13) 0.0495 (10) 0.0404 (9) 0.0104 (9) 0.0015 (9) −0.0040 (8)
C4B 0.128 (2) 0.0480 (12) 0.0570 (13) 0.0180 (14) 0.0015 (14) −0.0132 (10)
C5B 0.1004 (19) 0.0743 (15) 0.0386 (10) 0.0216 (14) −0.0035 (11) −0.0068 (10)
C6B 0.0463 (9) 0.0398 (8) 0.0399 (8) 0.0107 (7) 0.0074 (7) 0.0050 (7)
C7B 0.0672 (13) 0.0447 (10) 0.0700 (14) 0.0180 (9) 0.0105 (11) 0.0160 (9)
C8B 0.0828 (18) 0.0716 (16) 0.0840 (18) 0.0226 (14) 0.0055 (14) 0.0366 (14)

Geometric parameters (Å, º)

S1A—C4A 1.727 (2) S1B—C4B 1.715 (3)
S1A—C1A 1.7277 (19) S1B—C1B 1.716 (2)
O1A—C6A 1.220 (2) O1B—C6B 1.217 (2)
O2A—C6A 1.330 (2) O2B—C6B 1.333 (2)
O2A—C7A 1.440 (2) O2B—C7B 1.437 (2)
N1A—C1A 1.340 (3) N1B—C1B 1.337 (3)
N1A—H1AA 0.83 (3) N1B—H1BA 0.82 (3)
N1A—H1AB 0.86 (3) N1B—H1BB 0.87 (3)
C1A—C2A 1.386 (3) C1B—C2B 1.389 (2)
C2A—C6A 1.444 (2) C2B—C6B 1.440 (2)
C2A—C3A 1.445 (2) C2B—C3B 1.443 (3)
C3A—C4A 1.350 (3) C3B—C4B 1.339 (3)
C3A—C5A 1.495 (3) C3B—C5B 1.495 (3)
C4A—H4AA 0.9300 C4B—H4BA 0.9300
C5A—H5AA 0.9600 C5B—H5BA 0.9600
C5A—H5AB 0.9600 C5B—H5BB 0.9600
C5A—H5AC 0.9600 C5B—H5BC 0.9600
C7A—C8A 1.492 (3) C7B—C8B 1.502 (3)
C7A—H7AA 0.9700 C7B—H7BA 0.9700
C7A—H7AB 0.9700 C7B—H7BB 0.9700
C8A—H8AA 0.9600 C8B—H8BA 0.9600
C8A—H8AB 0.9600 C8B—H8BB 0.9600
C8A—H8AC 0.9600 C8B—H8BC 0.9600
C4A—S1A—C1A 91.37 (9) C4B—S1B—C1B 91.28 (11)
C6A—O2A—C7A 117.21 (14) C6B—O2B—C7B 117.81 (16)
C1A—N1A—H1AA 116.2 (19) C1B—N1B—H1BA 116.5 (17)
C1A—N1A—H1AB 122.2 (17) C1B—N1B—H1BB 118.1 (18)
H1AA—N1A—H1AB 120 (2) H1BA—N1B—H1BB 124 (2)
N1A—C1A—C2A 128.91 (17) N1B—C1B—C2B 128.53 (18)
N1A—C1A—S1A 119.95 (15) N1B—C1B—S1B 120.36 (15)
C2A—C1A—S1A 111.12 (14) C2B—C1B—S1B 111.12 (14)
C1A—C2A—C6A 119.56 (16) C1B—C2B—C6B 119.66 (16)
C1A—C2A—C3A 112.69 (15) C1B—C2B—C3B 112.43 (17)
C6A—C2A—C3A 127.75 (16) C6B—C2B—C3B 127.92 (17)
C4A—C3A—C2A 111.36 (17) C4B—C3B—C2B 111.01 (19)
C4A—C3A—C5A 122.25 (18) C4B—C3B—C5B 122.6 (2)
C2A—C3A—C5A 126.40 (16) C2B—C3B—C5B 126.34 (19)
C3A—C4A—S1A 113.46 (15) C3B—C4B—S1B 114.16 (17)
C3A—C4A—H4AA 123.3 C3B—C4B—H4BA 122.9
S1A—C4A—H4AA 123.3 S1B—C4B—H4BA 122.9
C3A—C5A—H5AA 109.5 C3B—C5B—H5BA 109.5
C3A—C5A—H5AB 109.5 C3B—C5B—H5BB 109.5
H5AA—C5A—H5AB 109.5 H5BA—C5B—H5BB 109.5
C3A—C5A—H5AC 109.5 C3B—C5B—H5BC 109.5
H5AA—C5A—H5AC 109.5 H5BA—C5B—H5BC 109.5
H5AB—C5A—H5AC 109.5 H5BB—C5B—H5BC 109.5
O1A—C6A—O2A 121.81 (16) O1B—C6B—O2B 121.96 (17)
O1A—C6A—C2A 124.29 (16) O1B—C6B—C2B 124.56 (17)
O2A—C6A—C2A 113.89 (15) O2B—C6B—C2B 113.46 (16)
O2A—C7A—C8A 106.65 (16) O2B—C7B—C8B 106.1 (2)
O2A—C7A—H7AA 110.4 O2B—C7B—H7BA 110.5
C8A—C7A—H7AA 110.4 C8B—C7B—H7BA 110.5
O2A—C7A—H7AB 110.4 O2B—C7B—H7BB 110.5
C8A—C7A—H7AB 110.4 C8B—C7B—H7BB 110.5
H7AA—C7A—H7AB 108.6 H7BA—C7B—H7BB 108.7
C7A—C8A—H8AA 109.5 C7B—C8B—H8BA 109.5
C7A—C8A—H8AB 109.5 C7B—C8B—H8BB 109.5
H8AA—C8A—H8AB 109.5 H8BA—C8B—H8BB 109.5
C7A—C8A—H8AC 109.5 C7B—C8B—H8BC 109.5
H8AA—C8A—H8AC 109.5 H8BA—C8B—H8BC 109.5
H8AB—C8A—H8AC 109.5 H8BB—C8B—H8BC 109.5
C4A—S1A—C1A—N1A −177.88 (18) C4B—S1B—C1B—N1B −179.6 (2)
C4A—S1A—C1A—C2A 0.54 (15) C4B—S1B—C1B—C2B 0.33 (19)
N1A—C1A—C2A—C6A −2.3 (3) N1B—C1B—C2B—C6B −0.3 (3)
S1A—C1A—C2A—C6A 179.41 (13) S1B—C1B—C2B—C6B 179.78 (15)
N1A—C1A—C2A—C3A 177.8 (2) N1B—C1B—C2B—C3B 179.7 (2)
S1A—C1A—C2A—C3A −0.5 (2) S1B—C1B—C2B—C3B −0.3 (2)
C1A—C2A—C3A—C4A 0.1 (2) C1B—C2B—C3B—C4B 0.0 (3)
C6A—C2A—C3A—C4A −179.77 (18) C6B—C2B—C3B—C4B 180.0 (2)
C1A—C2A—C3A—C5A −179.96 (18) C1B—C2B—C3B—C5B 179.7 (2)
C6A—C2A—C3A—C5A 0.2 (3) C6B—C2B—C3B—C5B −0.3 (4)
C2A—C3A—C4A—S1A 0.3 (2) C2B—C3B—C4B—S1B 0.2 (3)
C5A—C3A—C4A—S1A −179.62 (16) C5B—C3B—C4B—S1B −179.5 (2)
C1A—S1A—C4A—C3A −0.52 (17) C1B—S1B—C4B—C3B −0.3 (3)
C7A—O2A—C6A—O1A 0.9 (3) C7B—O2B—C6B—O1B −0.2 (3)
C7A—O2A—C6A—C2A −179.88 (16) C7B—O2B—C6B—C2B 178.22 (17)
C1A—C2A—C6A—O1A 0.7 (3) C1B—C2B—C6B—O1B 0.4 (3)
C3A—C2A—C6A—O1A −179.46 (18) C3B—C2B—C6B—O1B −179.5 (2)
C1A—C2A—C6A—O2A −178.48 (15) C1B—C2B—C6B—O2B −177.98 (17)
C3A—C2A—C6A—O2A 1.4 (3) C3B—C2B—C6B—O2B 2.1 (3)
C6A—O2A—C7A—C8A 177.71 (17) C6B—O2B—C7B—C8B −179.07 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1B—H1BA···O1B 0.82 (3) 2.14 (3) 2.734 (3) 130 (2)
N1B—H1BB···O1Ai 0.87 (3) 2.10 (3) 2.946 (3) 163 (2)
N1A—H1AA···S1Bii 0.83 (3) 3.07 (3) 3.819 (2) 151 (2)
N1A—H1AA···O1A 0.83 (3) 2.14 (3) 2.736 (3) 129 (2)
N1A—H1AB···O1B 0.86 (3) 2.05 (3) 2.897 (3) 165 (2)
C7A—H7AA···S1Aiii 0.97 3.02 3.736 (3) 131

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) −x+1, −y+2, −z+2.

Funding Statement

RJB wishes to acknowledge NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research.

References

  1. Akcelrud, L. (2003). Prog. Polym. Sci. 28, 875–962.
  2. Akkurt, M., Yıldırım, S. Ö., Asiri, A. M. & McKee, V. (2008). Acta Cryst. E64, o1084. [DOI] [PMC free article] [PubMed]
  3. Al-Adiwish, W. M., Adan, D., Mohamed Tahir, M. I., Yaacob, W. A. & Kassim, M. B. (2012). Acta Cryst. E68, o138. [DOI] [PMC free article] [PubMed]
  4. Ashalatha, B. V., Narayana, B., Vijaya Raj, K. K. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 719–728. [DOI] [PubMed]
  5. Bourgeaux, M. & Skene, W. G. (2007). Acta Cryst. E63, o1603–o1605.
  6. Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Cannito, A., Perrissin, M., Luu-Duc, C., Huguet, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635–639.
  9. Çoruh, U., Ustabaş, R., Tümer, F., García-Granda, S., Demir, Ü., Ekinci, D. & Yavuz, M. (2003). Acta Cryst. E59, o1339–o1341.
  10. Dufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, o3221. [DOI] [PMC free article] [PubMed]
  11. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  12. Ghorab, M. M., Al-Said, M. S., Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o2111. [DOI] [PMC free article] [PubMed]
  13. Göblyös, A. & IJzerman, A. P. (2009). Purinergic Signal. 5, 51–61. [DOI] [PMC free article] [PubMed]
  14. Haare, J. A. E. H. van, Groenendaal, L., Peerlings, H. W. I., Havinga, E. E., Vekemans, J. A. J. M., Janssen, R. A. J. & Meijer, E. W. (1995). Chem. Mater. 7, 1984–1989.
  15. Kaur, M., Jasinski, J. P., Yathirajan, H. S., Yamuna, T. S. & Byrappa, K. (2014). Acta Cryst. E70, o951–o952. [DOI] [PMC free article] [PubMed]
  16. Kraft, A. (2001). ChemPhysChem, 2, 163–165. [DOI] [PubMed]
  17. Liao, Q.-B., Huang, J., Yang, Z.-Z. & Liu, M.-G. (2007). Acta Cryst. E63, o3824.
  18. Lütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2003). J. Med. Chem. 46, 1870–1877. [DOI] [PubMed]
  19. Mabkhot, Y. N., Alatibi, F., Barakat, A., Choudhary, M. I. & Yousuf, S. (2013). Acta Cryst. E69, o1049. [DOI] [PMC free article] [PubMed]
  20. MacDiarmid, A. G. (2001). Angew. Chem. Int. Ed. 40, 2581–2590.
  21. Molvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049–1058. [DOI] [PubMed]
  22. Moncol, J., Puterová, Z. & Végh, D. (2007). Acta Cryst. E63, o3921.
  23. Mukhtar, A., Tahir, M. N., Khan, M. A., Ather, A. Q. & Khan, M. N. (2012). Acta Cryst. E68, o2042. [DOI] [PMC free article] [PubMed]
  24. Nessakh, B., Horowitz, G., Garnier, F., Deloffre, F., Srivastava, P. & Yassar, A. (1995). J. Electroanal. Chem. 399, 97–103.
  25. Nikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358–2365. [DOI] [PubMed]
  26. Nirmala, K. A., Vasu, Chopra, D., Mohan, S. & Prasad, M. R. (2005). Acta Cryst. E61, o1541–o1543.
  27. Oliveira, J. G. B. de, Mendonça Junio, F. J. B., de Lima, M., do C. A., de Simone, C. A. & Ellena, J. A. (2012). Acta Cryst. E68, o2360. [DOI] [PMC free article] [PubMed]
  28. Perepichka, I. F., Perepichka, D. F., Meng, H. & Wudl, F. (2005). Adv. Mater. 17, 2281–2305.
  29. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  30. Roncali, J., Blanchard, P. & Frère, P. (2005). J. Mater. Chem. 15, 1589–1610.
  31. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  32. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  33. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  34. Yan, F.-Y. & Liu, D.-Q. (2007). Acta Cryst. E63, o4877.
  35. Zhang, Q. & Jiao, Y.-H. (2010). Z. Kristallogr. New Cryst. Struct. 225, 283–284.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314621003515/bt4112sup1.cif

x-06-x210351-sup1.cif (812.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621003515/bt4112Isup2.hkl

x-06-x210351-Isup2.hkl (448.2KB, hkl)

Supporting information file. DOI: 10.1107/S2414314621003515/bt4112Isup3.cml

CCDC reference: 2074848

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES