Skip to main content
IUCrData logoLink to IUCrData
. 2021 May 11;6(Pt 5):x210451. doi: 10.1107/S241431462100451X

8-Hy­droxy-6-meth­oxy-7-(3-methyl­but-2-en­yloxy)coumarin (capensine)

Azimjon Mamadrakhimov a, Luqmonjon Mutalliyev a,b, Sirojiddin Abdullaev a,b, Khamid Khodjaniyazov a,b, Lidiya Izotova a,*, Haji Akber Aisa c
Editor: M Zellerd
PMCID: PMC9462336  PMID: 36338269

The title coumarin derivative was isolated from the plants of Sophora japonica. In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds into chains along the [101] direction.

Keywords: crystal structure, coumarin, capensin, isolation, natural product, hydrogen bonding

Abstract

The title coumarin derivative, C15H16O5, was isolated from the roots of Sophora japonica. The coumarin (2H-chromen-2-one) fragment is almost planar, with an r.m.s. deviation of 0.0356 Å. The carbon atom of the meth­oxy substituent is coplanar with the benzo­pyran oxa-heterocycle. The 3-methyl­but-2-en­yloxy group is disordered over two sets of sites with occupation factors of 0.920 (3) and 0.080 (3). In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds into chains propagating along the [101] direction. graphic file with name x-06-x210451-scheme1-3D1.jpg

Structure description

Coumarin derivatives constitute the core structure of various natural products and are a pharmacophore of numerous medicinal agents with anti­microbial, anti­fungal or anti­oxidant properties (Hulushe et al., 2020; Mladenović et al., 2009; Al-Ayed, 2011). The properties of coumarin derivatives are also of inter­est as targets for synthetic organic chemists and serve as inter­mediates in the synthesis of new biologically active compounds. In addition, certain derivatives of coumarins are known to induce apoptosis by cytochrome C release and caspase activation (Johansson et al., 2003). A number of articles report coumarin derivative such as 7-hy­droxy-coumarin (Gourdeau et al., 2004), 7,8-diacet­oxy-4-methyl­coumarin or 7,8-diacet­oxy-4-methyl-coumarin (Skommer et al., 2006; Patchett et al., 2000) with selective cytotoxicity towards cancer cells, which inhibit the growth of certain types of lung cancer cells.

The title compound, the coumarin capensine, was first isolated from Haplofyllum obtusifolium and its atomic connectivity has been established by chemical and spectroscopic methods (Matkarimov et al., 1980; Vdovin et al., 1987). The same coumarin was isolated from the roots of Sophora japonica. Slow evaporation from a solution in methanol yielded monoclinic crystals with space group P21/n with one crystallographically independent mol­ecule. The mol­ecular structure of the title compound is presented in Fig. 1. The benzo­pyran ring system is practically planar, the r.m.s. deviation from planarity being 0.0356 Å. The meth­oxy substituent at atom C8 lies almost within the plane of the benzo­pyran oxa-heterocycle. The torsion angle C7—C6—O3—C10 is 178.18 (3). The 3-methyl­but-2-en­yloxy substituent at atom C7 is disordered over two sets of sites by a rotation around the C11—C12 bond. The two orientations are not equivalent – the site occupation factors are 0.920 (3) and 0.080 (3).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The hydroxyl group O5—H at C8 participates in a bifurcated hydrogen bond: intra­molecular and inter­molecular (Table 1). The intra­molecular hydrogen bond O5—H5⋯O4 [2.758 (1) Å, 111°] closes a five-membered ring with an S(5) graph-set motif (Etter, 1990). The same hydroxyl H atom also bonds towards the ester keto oxygen atom O2 in a neighboring mol­ecule (at − Inline graphic  + x, Inline graphic  − y, − Inline graphic  + z), which, in turn, is hydrogen-bonded to the C11B (C12A) atoms of the 3-methyl­but-2-en­yloxy substituent at atom C7 of the first mol­ecule via C11B—H11D⋯O2i and C12A—H12A⋯O2i hydrogen bonds (Table 1), thus connecting mol­ecules into chains propagating along the [101] direction (Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4 0.82 2.35 2.7580 (13) 111
O5—H5A⋯O2i 0.82 2.09 2.8484 (13) 153
C11B—H11D⋯O2i 0.97 2.41 3.19 (3) 137
C12A—H12A⋯O2i 0.93 2.54 3.3468 (19) 145

Symmetry code: (i) Inline graphic .

Figure 2.

Figure 2

Crystal structure of the title compound in a projection on the (101) plane. Inter­molecular hydrogen bonds are shown as dashed lines. The figure shows only the major occupancy component of the disordered 3-methyl­but-2-en­yloxy substituent at atom C7.

Synthesis and crystallization

The title compound was isolated from the roots of Sophora japonica. The roots (2.5 kg) of S. japonica were extracted with ethanol at room temperature, which afforded a light-yellow residue (228.1 g) after solvent evaporation under reduced pressure. The residue was diluted with water (1:1), washed with non-polar solvents (hexane, petroleum ether, gasoline) to remove lipophilic substances, and then subjected to sequential liquid–liquid extraction with chloro­form, ethyl acetate, and n-butanol. The obtained chloro­form fraction (30.4 g) was subjected to column chromatography on silica gel in gradient solvent systems; coumarins were isolated from the eluates obtained by repeated chromatography on a polyamide sorbent, preparative TLC on Silufol UV-254 in the following system: chloro­form–petroleum ether–ethanol (8:2:2), R f = 0.74 and fractional crystallization from chloro­form. The yield of capensine was 55 mg (0.0022%), m.p. 139–141°C. Suitable crystals for X-ray structural analysis were obtained by slow evaporation from a solution in methanol at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Disorder was observed for the 7-(3-methyl­but-2-en­yloxy)group. The disordered atoms C11–C15 were modelled over two positions. The geometries of the two moieties were restrained to be similar to each other (SAME command of SHELXL, e.s.d. used was 0.02 Å). Uij components of disordered atoms were restrained to be similar for atoms closer to each other than 2.0 Å (SIMU restraint of SHELXL, e.s.d. used was 0.01 Å2). The occupancy ratio refined to 0.920 (3):0.080 (3).

Table 2. Experimental details.

Crystal data
Chemical formula C15H16O5
M r 276.28
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 11.4373 (2), 9.2045 (1), 13.9862 (2)
β (°) 112.030 (2)
V3) 1364.89 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.84
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020)
T min, T max 0.707, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12421, 2826, 2658
R int 0.026
(sin θ/λ)max−1) 0.629
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.129, 1.06
No. of reflections 2826
No. of parameters 233
No. of restraints 152
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.25

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and XP (Siemens, 1994).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S241431462100451X/zl4043sup1.cif

x-06-x210451-sup1.cif (388.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S241431462100451X/zl4043Isup2.hkl

x-06-x210451-Isup2.hkl (226.1KB, hkl)

CCDC reference: 2080647

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Professor Erkin Botirov and Dr Abdurashid M. Karimov (Coumarins and Teprenoids Laboratory of S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan), for their methodological recommendations on the isolation of capensine.

full crystallographic data

Crystal data

C15H16O5 F(000) = 584
Mr = 276.28 Dx = 1.344 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 11.4373 (2) Å Cell parameters from 7342 reflections
b = 9.2045 (1) Å θ = 4.2–76.0°
c = 13.9862 (2) Å µ = 0.84 mm1
β = 112.030 (2)° T = 293 K
V = 1364.89 (4) Å3 Prism, colourless
Z = 4 0.30 × 0.25 × 0.20 mm

Data collection

Rigaku Oxford Diffraction Xcalibur, Ruby diffractometer Rint = 0.026
Radiation source: Enhance (Cu) X-ray Source θmax = 76.0°, θmin = 5.9°
/ω scans h = −13→14
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) k = −11→11
Tmin = 0.707, Tmax = 1.000 l = −17→16
12421 measured reflections 3 standard reflections every 100 reflections
2826 independent reflections intensity decay: 2.6%
2658 reflections with I > 2σ(I)

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0784P)2 + 0.2588P] where P = (Fo2 + 2Fc2)/3
2826 reflections (Δ/σ)max = 0.001
233 parameters Δρmax = 0.24 e Å3
152 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All hydrogen atoms were placed in idealized positions and refined as riding. Methyl and hydroxyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C) with 1.5 for CH3 and OH, and 1.2 for C—H and CH2 units, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.59277 (8) 0.31729 (9) 0.90699 (6) 0.0387 (2)
O2 0.71917 (11) 0.16510 (11) 1.02027 (8) 0.0581 (3)
O3 0.41699 (11) 0.86743 (10) 0.76809 (7) 0.0528 (3)
O4 0.34926 (8) 0.63380 (10) 0.63957 (6) 0.0394 (2)
O5 0.42264 (9) 0.35773 (10) 0.71482 (7) 0.0455 (3)
H5A 0.361972 0.380320 0.663022 0.068*
C1 0.68442 (12) 0.29021 (14) 1.00155 (10) 0.0408 (3)
C2 0.73150 (12) 0.41184 (15) 1.07060 (10) 0.0435 (3)
H2A 0.793928 0.396102 1.135298 0.052*
C3 0.68748 (11) 0.54680 (14) 1.04379 (9) 0.0384 (3)
H3A 0.717941 0.622790 1.090374 0.046*
C4 0.59337 (11) 0.57447 (13) 0.94328 (9) 0.0332 (3)
C5 0.54701 (12) 0.71408 (13) 0.90989 (9) 0.0372 (3)
H5B 0.572267 0.792182 0.955223 0.045*
C6 0.46380 (12) 0.73575 (13) 0.80966 (10) 0.0377 (3)
C7 0.42467 (11) 0.61589 (13) 0.74204 (9) 0.0352 (3)
C8 0.46321 (11) 0.47571 (13) 0.77651 (9) 0.0341 (3)
C9 0.55012 (11) 0.45657 (12) 0.87717 (9) 0.0323 (3)
C10 0.4522 (2) 0.98950 (16) 0.83649 (13) 0.0673 (5)
H10B 0.415653 1.076267 0.799159 0.101*
H10C 0.542443 0.998598 0.864752 0.101*
H10D 0.422271 0.975472 0.891400 0.101*
C11A 0.4264 (2) 0.6569 (3) 0.57834 (14) 0.0551 (5) 0.920 (3)
H11A 0.495799 0.588214 0.598800 0.066* 0.920 (3)
H11B 0.461255 0.754337 0.589740 0.066* 0.920 (3)
C12A 0.34670 (15) 0.63675 (18) 0.46744 (11) 0.0470 (4) 0.920 (3)
H12A 0.296120 0.554266 0.449743 0.056* 0.920 (3)
C13A 0.3414 (5) 0.7259 (3) 0.39174 (16) 0.0518 (6) 0.920 (3)
C14A 0.4154 (3) 0.8638 (3) 0.4076 (2) 0.0904 (8) 0.920 (3)
H14A 0.453102 0.870756 0.356890 0.136* 0.920 (3)
H14B 0.480385 0.863960 0.475330 0.136* 0.920 (3)
H14C 0.360338 0.945127 0.400707 0.136* 0.920 (3)
C15A 0.2580 (2) 0.6955 (5) 0.28248 (15) 0.0918 (9) 0.920 (3)
H15A 0.308261 0.688163 0.241029 0.138* 0.920 (3)
H15B 0.198125 0.772994 0.257010 0.138* 0.920 (3)
H15C 0.213889 0.605708 0.279173 0.138* 0.920 (3)
C11B 0.412 (3) 0.601 (2) 0.5635 (18) 0.047 (3) 0.080 (3)
H11C 0.500724 0.579784 0.600430 0.057* 0.080 (3)
H11D 0.372932 0.515912 0.522606 0.057* 0.080 (3)
C12B 0.3977 (19) 0.726 (2) 0.4962 (13) 0.058 (3) 0.080 (3)
H12B 0.438259 0.811199 0.527301 0.070* 0.080 (3)
C13B 0.333 (7) 0.732 (4) 0.3955 (17) 0.061 (4) 0.080 (3)
C14B 0.280 (2) 0.610 (3) 0.3204 (19) 0.068 (4) 0.080 (3)
H14D 0.327570 0.600656 0.276911 0.102* 0.080 (3)
H14E 0.193447 0.630179 0.278768 0.102* 0.080 (3)
H14F 0.285031 0.520783 0.357461 0.102* 0.080 (3)
C15B 0.340 (3) 0.874 (3) 0.345 (2) 0.083 (5) 0.080 (3)
H15D 0.261923 0.925182 0.328773 0.124* 0.080 (3)
H15E 0.355021 0.855862 0.283156 0.124* 0.080 (3)
H15F 0.407753 0.931049 0.391619 0.124* 0.080 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0444 (5) 0.0305 (4) 0.0309 (4) 0.0043 (3) 0.0022 (4) −0.0006 (3)
O2 0.0673 (7) 0.0397 (5) 0.0455 (6) 0.0162 (5) −0.0036 (5) 0.0023 (4)
O3 0.0732 (7) 0.0304 (5) 0.0369 (5) 0.0063 (4) 0.0001 (5) 0.0015 (4)
O4 0.0415 (5) 0.0409 (5) 0.0271 (4) 0.0033 (3) 0.0030 (3) 0.0017 (3)
O5 0.0540 (6) 0.0333 (5) 0.0322 (5) 0.0014 (4) −0.0034 (4) −0.0061 (3)
C1 0.0414 (6) 0.0386 (6) 0.0334 (6) 0.0074 (5) 0.0039 (5) 0.0036 (5)
C2 0.0403 (6) 0.0451 (7) 0.0312 (6) 0.0027 (5) −0.0024 (5) 0.0007 (5)
C3 0.0385 (6) 0.0379 (6) 0.0306 (6) −0.0043 (5) 0.0034 (5) −0.0041 (5)
C4 0.0343 (6) 0.0331 (6) 0.0280 (5) −0.0024 (4) 0.0067 (4) −0.0009 (4)
C5 0.0443 (6) 0.0307 (6) 0.0307 (6) −0.0030 (5) 0.0072 (5) −0.0033 (4)
C6 0.0442 (6) 0.0295 (6) 0.0335 (6) 0.0008 (5) 0.0080 (5) 0.0017 (4)
C7 0.0370 (6) 0.0357 (6) 0.0265 (5) 0.0008 (5) 0.0044 (4) 0.0008 (4)
C8 0.0363 (6) 0.0325 (6) 0.0278 (6) −0.0012 (4) 0.0054 (5) −0.0038 (4)
C9 0.0347 (6) 0.0289 (5) 0.0290 (6) 0.0012 (4) 0.0072 (4) 0.0006 (4)
C10 0.1004 (14) 0.0298 (7) 0.0472 (8) 0.0073 (7) −0.0003 (8) −0.0003 (6)
C11A 0.0470 (9) 0.0785 (14) 0.0333 (9) −0.0019 (10) 0.0077 (7) 0.0064 (9)
C12A 0.0507 (8) 0.0515 (8) 0.0348 (7) −0.0030 (6) 0.0115 (6) −0.0035 (6)
C13A 0.0497 (12) 0.0699 (11) 0.0369 (8) 0.0131 (8) 0.0174 (7) 0.0060 (8)
C14A 0.118 (2) 0.0772 (15) 0.0821 (16) −0.0091 (14) 0.0441 (16) 0.0170 (12)
C15A 0.0702 (13) 0.170 (3) 0.0332 (9) 0.0054 (16) 0.0166 (9) 0.0043 (13)
C11B 0.043 (5) 0.060 (6) 0.039 (5) 0.002 (5) 0.016 (4) −0.006 (5)
C12B 0.056 (4) 0.068 (5) 0.045 (4) 0.005 (4) 0.014 (4) 0.000 (4)
C13B 0.058 (5) 0.075 (5) 0.046 (5) 0.007 (5) 0.014 (5) 0.001 (5)
C14B 0.056 (8) 0.092 (9) 0.059 (8) 0.013 (8) 0.025 (7) 0.009 (8)
C15B 0.072 (9) 0.098 (9) 0.067 (9) 0.012 (8) 0.014 (8) −0.008 (8)

Geometric parameters (Å, º)

O1—C1 1.3675 (15) C11A—H11A 0.9700
O1—C9 1.3794 (14) C11A—H11B 0.9700
O2—C1 1.2143 (16) C12A—C13A 1.323 (3)
O3—C6 1.3639 (14) C12A—H12A 0.9300
O3—C10 1.4321 (17) C13A—C15A 1.493 (3)
O4—C7 1.3776 (13) C13A—C14A 1.495 (4)
O4—C11A 1.457 (2) C14A—H14A 0.9600
O4—C11B 1.52 (3) C14A—H14B 0.9600
O5—C8 1.3560 (14) C14A—H14C 0.9600
O5—H5A 0.8200 C15A—H15A 0.9600
C1—C2 1.4442 (18) C15A—H15B 0.9600
C2—C3 1.3400 (19) C15A—H15C 0.9600
C2—H2A 0.9300 C11B—C12B 1.462 (17)
C3—C4 1.4368 (16) C11B—H11C 0.9700
C3—H3A 0.9300 C11B—H11D 0.9700
C4—C9 1.3907 (16) C12B—C13B 1.323 (18)
C4—C5 1.4017 (17) C12B—H12B 0.9300
C5—C6 1.3819 (17) C13B—C14B 1.50 (2)
C5—H5B 0.9300 C13B—C15B 1.50 (2)
C6—C7 1.4122 (17) C14B—H14D 0.9600
C7—C8 1.3900 (16) C14B—H14E 0.9600
C8—C9 1.3968 (15) C14B—H14F 0.9600
C10—H10B 0.9600 C15B—H15D 0.9600
C10—H10C 0.9600 C15B—H15E 0.9600
C10—H10D 0.9600 C15B—H15F 0.9600
C11A—C12A 1.487 (2)
C1—O1—C9 121.18 (10) H11A—C11A—H11B 108.3
C6—O3—C10 116.44 (10) C13A—C12A—C11A 125.7 (2)
C7—O4—C11A 110.36 (11) C13A—C12A—H12A 117.2
C7—O4—C11B 115.4 (9) C11A—C12A—H12A 117.2
C8—O5—H5A 109.5 C12A—C13A—C15A 121.5 (3)
O2—C1—O1 116.84 (12) C12A—C13A—C14A 123.7 (2)
O2—C1—C2 125.54 (12) C15A—C13A—C14A 114.8 (2)
O1—C1—C2 117.62 (11) C13A—C14A—H14A 109.5
C3—C2—C1 121.65 (11) C13A—C14A—H14B 109.5
C3—C2—H2A 119.2 H14A—C14A—H14B 109.5
C1—C2—H2A 119.2 C13A—C14A—H14C 109.5
C2—C3—C4 120.20 (11) H14A—C14A—H14C 109.5
C2—C3—H3A 119.9 H14B—C14A—H14C 109.5
C4—C3—H3A 119.9 C13A—C15A—H15A 109.5
C9—C4—C5 119.87 (11) C13A—C15A—H15B 109.5
C9—C4—C3 117.47 (11) H15A—C15A—H15B 109.5
C5—C4—C3 122.64 (11) C13A—C15A—H15C 109.5
C6—C5—C4 120.05 (11) H15A—C15A—H15C 109.5
C6—C5—H5B 120.0 H15B—C15A—H15C 109.5
C4—C5—H5B 120.0 C12B—C11B—O4 108.9 (17)
O3—C6—C5 124.86 (11) C12B—C11B—H11C 109.9
O3—C6—C7 115.70 (11) O4—C11B—H11C 109.9
C5—C6—C7 119.42 (11) C12B—C11B—H11D 109.9
O4—C7—C8 117.73 (10) O4—C11B—H11D 109.9
O4—C7—C6 121.38 (10) H11C—C11B—H11D 108.3
C8—C7—C6 120.89 (11) C13B—C12B—C11B 127 (2)
O5—C8—C7 122.30 (10) C13B—C12B—H12B 116.6
O5—C8—C9 118.99 (10) C11B—C12B—H12B 116.6
C7—C8—C9 118.67 (10) C12B—C13B—C14B 129 (2)
O1—C9—C4 121.79 (10) C12B—C13B—C15B 115 (2)
O1—C9—C8 117.34 (10) C14B—C13B—C15B 114 (2)
C4—C9—C8 120.85 (11) C13B—C14B—H14D 109.5
O3—C10—H10B 109.5 C13B—C14B—H14E 109.5
O3—C10—H10C 109.5 H14D—C14B—H14E 109.5
H10B—C10—H10C 109.5 C13B—C14B—H14F 109.5
O3—C10—H10D 109.5 H14D—C14B—H14F 109.5
H10B—C10—H10D 109.5 H14E—C14B—H14F 109.5
H10C—C10—H10D 109.5 C13B—C15B—H15D 109.5
O4—C11A—C12A 108.98 (15) C13B—C15B—H15E 109.5
O4—C11A—H11A 109.9 H15D—C15B—H15E 109.5
C12A—C11A—H11A 109.9 C13B—C15B—H15F 109.5
O4—C11A—H11B 109.9 H15D—C15B—H15F 109.5
C12A—C11A—H11B 109.9 H15E—C15B—H15F 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5A···O4 0.82 2.35 2.7580 (13) 111
O5—H5A···O2i 0.82 2.09 2.8484 (13) 153
C11B—H11D···O2i 0.97 2.41 3.19 (3) 137
C12A—H12A···O2i 0.93 2.54 3.3468 (19) 145

Symmetry code: (i) x−1/2, −y+1/2, z−1/2.

Funding Statement

Funding for this research was provided by: Central Asian Drug Discovery and Development Center (grant CAM 201907).

References

  1. Al-Ayed, A. (2011). Molecules, 16, 10292–10302. [DOI] [PMC free article] [PubMed]
  2. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  3. Gourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375–1384. [PubMed]
  4. Hulushe, S. T., Manyeruke, M. H., Hosten, E. C. & Kaye, P. T. (2020). Z. Kristallogr. 235, 221–222.
  5. Johansson, A. C., Steen, H., Ollinger, K. & Roberg, K. (2003). Cell Death Differ. 10, 1253–1259. [DOI] [PubMed]
  6. Matkarimov, A. D., Batirov, E. Kh., Malikov, V. M. & Seitmuratov, E. (1980). Khim. Prir. Soedin. 565–569.
  7. Mladenović, M., Vuković, N., Nićiforović, N., Sukdolak, S. & Solujić, S. (2009). Molecules, 14, 1495–1512. [DOI] [PMC free article] [PubMed]
  8. Patchett, A. A. & Nargund, R. P. (2000). Annu. Rep. Med. Chem. 35, 289–298.
  9. Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  12. Siemens (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
  13. Skommer, J., Wlodkowic, D., Mättö, M., Eray, M. & Pelkonen, J. (2006). Leuk. Res. 30, 322–331. [DOI] [PubMed]
  14. Vdovin, A. D., Batirov, E. Kh., Matkarimov, A. D., Yagudaev, M. R. & Malikov, V. M. (1987). Khim. Prir. Soedin. 6, 796–799.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S241431462100451X/zl4043sup1.cif

x-06-x210451-sup1.cif (388.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S241431462100451X/zl4043Isup2.hkl

x-06-x210451-Isup2.hkl (226.1KB, hkl)

CCDC reference: 2080647

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES