Skip to main content
IUCrData logoLink to IUCrData
. 2021 May 25;6(Pt 5):x210539. doi: 10.1107/S2414314621005393

Methyl 2-(3-chloro-2-methyl­anilino)pyridine-3-carboxyl­ate

Xing Yang a, Sihui Long a,*
Editor: W T A Harrisonb
PMCID: PMC9462340  PMID: 36338272

The title compound arose from an unexpected alcoholysis of a prodrug by the methanol solvent.

Keywords: crystal structure, intra­molecular hydrogen bonding, π–π stacking, alcoholysis

Abstract

The title compound, C14H13ClN2O2, was obtained during an attempt to grow single crystals of 4-acetyl­phenyl 2-[(3-chloro-2-methyl­phen­yl)amino]­nicotinate in methanol, and was probably generated by alcoholysis. Two intra­molecular hydrogen bonds are formed, one between the N—H group and the carbonyl O atom of the ester and the other between the ortho sp 2CH group of the benzene ring and the pyridine N atom. Aromatic π–π stacking [shortest centroid–centroid separation = 3.598 (2) Å] is observed in the extended structure. graphic file with name x-06-x210539-scheme1-3D1.jpg

Structure description

The title compound (I) was first synthesized when preparing esters of anthranilic acid as possible analgesic and anti-inflammatory agents (Velingkar et al., 2011). In our study, it was obtained during an effort to obtain single crystals of a codrug, 4-acetyl­phenyl 2-[(3-chloro-2-methyl­phen­yl)amino]­nicotinate, by slow evaporation in methanol. Colorless needles were harvested and structure determination by single-crystal X-ray diffraction revealed it to be the title compound: alcoholysis by methanol obviously led to the generation of I. The asymmetric unit of I consists of one mol­ecule with a near planar conformation as evidenced by the dihedral angle of 5.31 (1)° between the C1–C6 benzene and N2/C8–C12 pyridine rings (Fig. 1). Two intra­molecular hydrogen bonds are observed (Table 1), one between the N—H group and the carbonyl oxygen atom of the ester group with a donor–acceptor distance of 2.687 (3) Å, and the other between the ortho sp 2C—H grouping of the aniline ring and the pyridine N atom [2.895 (4) Å]: both of these close S(6) rings. The cohesion of the crystal structure is ensured by aromatic π–π stacking between the benzene and pyridine rings [shortest centroid–centroid separation = 3.598 (2) Å] and hydro­phobic inter­actions (Fig. 2).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.96 2.687 (3) 142
C6—H6⋯N2 0.93 2.28 2.895 (4) 123

Figure 2.

Figure 2

(a) Packing of the mol­ecules in the title compound viewed along [100] with the intra­molecular hydrogen bonds indicated by green dashed lines; (b) packing of the mol­ecules in the title compound viewed along [001].

Synthesis and crystallization

4-Acetyl­phenyl 2-[(3-chloro-2-methyl­phen­yl)amino]­nicotin­ate, synthesized by a condensation reaction between clonixin and paracetamol (Gupta & Moorthy, 2007), was dissolved in HPLC grade methanol to make a saturated solution. The solution underwent slow evaporation at room temperatures and colorless needle-shaped crystals of the title compound (Fig. 3) were harvested after about a week. Alcoholysis by methanol likely resulted in the formation of the title compound (Fig. 4).

Figure 3.

Figure 3

A representative crystal of I.

Figure 4.

Figure 4

Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C14H13ClN2O2
M r 276.71
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 6.919 (2), 9.653 (3), 19.319 (6)
V3) 1290.4 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.544, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7991, 4200, 2872
R int 0.031
(sin θ/λ)max−1) 0.746
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.144, 1.01
No. of reflections 4200
No. of parameters 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.39
Absolute structure Flack x determined using 963 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.02 (4)

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS (Sheldrick, 2015b ), SHELXL (Sheldrick, 2015a ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314621005393/hb4383sup1.cif

x-06-x210539-sup1.cif (249.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621005393/hb4383Isup2.hkl

x-06-x210539-Isup2.hkl (334.7KB, hkl)

Supporting information file. DOI: 10.1107/S2414314621005393/hb4383Isup3.cml

CCDC reference: 2085247

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C14H13ClN2O2 Dx = 1.424 Mg m3
Mr = 276.71 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 2539 reflections
a = 6.919 (2) Å θ = 2.4–31.0°
b = 9.653 (3) Å µ = 0.30 mm1
c = 19.319 (6) Å T = 296 K
V = 1290.4 (6) Å3 Block, yellow
Z = 4 0.2 × 0.2 × 0.1 mm
F(000) = 576

Data collection

Bruker APEXII CCD diffractometer 2872 reflections with I > 2σ(I)
φ and ω scans Rint = 0.031
Absorption correction: multi-scan (SADABS; Bruker, 2013) θmax = 32.0°, θmin = 2.1°
Tmin = 0.544, Tmax = 0.746 h = −9→10
7991 measured reflections k = −11→13
4200 independent reflections l = −14→28

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0816P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.144 (Δ/σ)max < 0.001
S = 1.01 Δρmax = 0.23 e Å3
4200 reflections Δρmin = −0.38 e Å3
174 parameters Absolute structure: Flack x determined using 963 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: −0.02 (4)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. H atoms were located in difference Fourier maps and subsequently placed in idealized positions with C—H = 0.95–0.96 and N—H = 0.86 Å: Uiso(H) values were constrained to 1.2Ueq(C,N) or 1.5Ueq(methyl C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.36941 (14) 0.30941 (9) 0.76342 (4) 0.0564 (2)
O1 0.3954 (4) −0.07829 (19) 0.49264 (10) 0.0550 (6)
O2 0.4138 (4) −0.16139 (19) 0.38542 (11) 0.0588 (7)
N1 0.3847 (4) 0.19868 (19) 0.50569 (10) 0.0375 (4)
H1 0.3865 0.1159 0.5221 0.045*
N2 0.3731 (4) 0.3270 (2) 0.40324 (11) 0.0396 (5)
C1 0.3845 (4) 0.3013 (2) 0.55605 (12) 0.0325 (4)
C2 0.3765 (4) 0.2557 (2) 0.62562 (12) 0.0330 (5)
C3 0.3778 (4) 0.3568 (3) 0.67663 (13) 0.0377 (5)
C4 0.3860 (5) 0.4979 (3) 0.66203 (15) 0.0442 (6)
H4 0.3869 0.5631 0.6975 0.053*
C5 0.3927 (5) 0.5379 (3) 0.59459 (16) 0.0468 (7)
H5 0.3978 0.6319 0.5842 0.056*
C6 0.3921 (5) 0.4434 (2) 0.54119 (14) 0.0416 (6)
H6 0.3968 0.4737 0.4955 0.050*
C7 0.3687 (6) 0.1035 (3) 0.64212 (15) 0.0439 (6)
H7A 0.2541 0.0639 0.6222 0.066*
H7B 0.3664 0.0910 0.6914 0.066*
H7C 0.4806 0.0584 0.6232 0.066*
C8 0.3826 (4) 0.2042 (2) 0.43491 (12) 0.0321 (4)
C9 0.3880 (4) 0.0779 (2) 0.39658 (12) 0.0338 (5)
C10 0.3839 (5) 0.0864 (3) 0.32512 (13) 0.0416 (6)
H10 0.3879 0.0061 0.2986 0.050*
C11 0.3739 (5) 0.2146 (3) 0.29305 (13) 0.0445 (6)
H11 0.3708 0.2224 0.2451 0.053*
C12 0.3689 (5) 0.3283 (3) 0.33432 (14) 0.0439 (6)
H12 0.3619 0.4142 0.3127 0.053*
C13 0.3982 (5) −0.0571 (3) 0.43094 (14) 0.0403 (6)
C14 0.4245 (8) −0.2972 (3) 0.4152 (2) 0.0734 (13)
H14A 0.4497 −0.3638 0.3794 0.110*
H14B 0.3041 −0.3189 0.4374 0.110*
H14C 0.5269 −0.2999 0.4487 0.110*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0711 (5) 0.0639 (5) 0.0342 (3) 0.0059 (5) 0.0011 (3) −0.0033 (3)
O1 0.0918 (18) 0.0370 (9) 0.0362 (10) −0.0004 (12) −0.0012 (12) 0.0045 (7)
O2 0.103 (2) 0.0316 (9) 0.0414 (11) 0.0015 (11) −0.0110 (12) −0.0021 (8)
N1 0.0511 (12) 0.0297 (8) 0.0318 (9) −0.0002 (12) −0.0003 (10) 0.0035 (8)
N2 0.0447 (11) 0.0365 (10) 0.0377 (11) 0.0001 (11) −0.0010 (11) 0.0080 (8)
C1 0.0316 (10) 0.0301 (10) 0.0358 (11) −0.0001 (11) −0.0004 (11) 0.0036 (9)
C2 0.0297 (11) 0.0329 (10) 0.0362 (12) 0.0010 (10) −0.0007 (11) 0.0018 (8)
C3 0.0326 (12) 0.0451 (13) 0.0353 (12) 0.0040 (12) 0.0002 (12) −0.0033 (10)
C4 0.0447 (15) 0.0384 (12) 0.0494 (15) 0.0013 (13) −0.0004 (14) −0.0085 (10)
C5 0.0550 (17) 0.0327 (11) 0.0527 (17) −0.0012 (13) 0.0016 (16) −0.0038 (11)
C6 0.0523 (15) 0.0307 (10) 0.0417 (13) 0.0001 (12) −0.0005 (14) 0.0052 (9)
C7 0.0562 (16) 0.0372 (11) 0.0383 (13) 0.0008 (14) −0.0001 (15) 0.0068 (10)
C8 0.0280 (10) 0.0353 (10) 0.0329 (10) 0.0003 (12) 0.0011 (10) 0.0026 (9)
C9 0.0319 (11) 0.0370 (10) 0.0326 (11) −0.0015 (11) −0.0012 (11) 0.0009 (9)
C10 0.0428 (14) 0.0505 (14) 0.0314 (12) 0.0037 (14) −0.0007 (12) −0.0014 (11)
C11 0.0481 (14) 0.0561 (15) 0.0292 (12) 0.0037 (16) −0.0002 (12) 0.0091 (11)
C12 0.0454 (14) 0.0450 (14) 0.0415 (14) 0.0030 (15) −0.0010 (13) 0.0122 (10)
C13 0.0482 (16) 0.0359 (11) 0.0368 (13) −0.0026 (12) −0.0025 (12) −0.0012 (10)
C14 0.129 (4) 0.0296 (13) 0.061 (2) 0.0016 (18) −0.019 (2) 0.0000 (14)

Geometric parameters (Å, º)

Cl1—C3 1.739 (3) C5—C6 1.377 (4)
O1—C13 1.210 (3) C6—H6 0.9300
O2—C13 1.341 (3) C7—H7A 0.9600
O2—C14 1.434 (3) C7—H7B 0.9600
N1—H1 0.8600 C7—H7C 0.9600
N1—C1 1.388 (3) C8—C9 1.428 (3)
N1—C8 1.369 (3) C9—C10 1.383 (3)
N2—C8 1.335 (3) C9—C13 1.464 (3)
N2—C12 1.332 (3) C10—H10 0.9300
C1—C2 1.415 (3) C10—C11 1.386 (4)
C1—C6 1.403 (3) C11—H11 0.9300
C2—C3 1.387 (3) C11—C12 1.357 (4)
C2—C7 1.504 (3) C12—H12 0.9300
C3—C4 1.391 (4) C14—H14A 0.9600
C4—H4 0.9300 C14—H14B 0.9600
C4—C5 1.360 (4) C14—H14C 0.9600
C5—H5 0.9300
C13—O2—C14 115.3 (2) H7A—C7—H7C 109.5
C1—N1—H1 113.9 H7B—C7—H7C 109.5
C8—N1—H1 113.9 N1—C8—C9 119.0 (2)
C8—N1—C1 132.2 (2) N2—C8—N1 119.5 (2)
C12—N2—C8 117.9 (2) N2—C8—C9 121.5 (2)
N1—C1—C2 116.3 (2) C8—C9—C13 121.8 (2)
N1—C1—C6 123.7 (2) C10—C9—C8 117.8 (2)
C6—C1—C2 120.0 (2) C10—C9—C13 120.4 (2)
C1—C2—C7 120.4 (2) C9—C10—H10 120.0
C3—C2—C1 117.1 (2) C9—C10—C11 120.0 (2)
C3—C2—C7 122.5 (2) C11—C10—H10 120.0
C2—C3—Cl1 119.9 (2) C10—C11—H11 121.3
C2—C3—C4 123.0 (2) C12—C11—C10 117.4 (2)
C4—C3—Cl1 117.0 (2) C12—C11—H11 121.3
C3—C4—H4 120.9 N2—C12—C11 125.4 (2)
C5—C4—C3 118.3 (2) N2—C12—H12 117.3
C5—C4—H4 120.9 C11—C12—H12 117.3
C4—C5—H5 119.0 O1—C13—O2 121.4 (2)
C4—C5—C6 122.0 (2) O1—C13—C9 126.6 (2)
C6—C5—H5 119.0 O2—C13—C9 112.0 (2)
C1—C6—H6 120.2 O2—C14—H14A 109.5
C5—C6—C1 119.6 (3) O2—C14—H14B 109.5
C5—C6—H6 120.2 O2—C14—H14C 109.5
C2—C7—H7A 109.5 H14A—C14—H14B 109.5
C2—C7—H7B 109.5 H14A—C14—H14C 109.5
C2—C7—H7C 109.5 H14B—C14—H14C 109.5
H7A—C7—H7B 109.5
Cl1—C3—C4—C5 180.0 (3) C7—C2—C3—Cl1 −0.2 (4)
N1—C1—C2—C3 179.5 (3) C7—C2—C3—C4 179.6 (3)
N1—C1—C2—C7 0.0 (4) C8—N1—C1—C2 176.7 (3)
N1—C1—C6—C5 −179.5 (3) C8—N1—C1—C6 −3.5 (5)
N1—C8—C9—C10 179.4 (3) C8—N2—C12—C11 −0.2 (5)
N1—C8—C9—C13 −0.8 (4) C8—C9—C10—C11 −0.3 (4)
N2—C8—C9—C10 0.3 (4) C8—C9—C13—O1 3.2 (5)
N2—C8—C9—C13 −179.9 (3) C8—C9—C13—O2 −176.2 (3)
C1—N1—C8—N2 −2.3 (5) C9—C10—C11—C12 0.1 (5)
C1—N1—C8—C9 178.6 (3) C10—C9—C13—O1 −177.0 (3)
C1—C2—C3—Cl1 −179.7 (2) C10—C9—C13—O2 3.6 (4)
C1—C2—C3—C4 0.2 (4) C10—C11—C12—N2 0.1 (5)
C2—C1—C6—C5 0.3 (4) C12—N2—C8—N1 −179.2 (3)
C2—C3—C4—C5 0.1 (5) C12—N2—C8—C9 0.0 (4)
C3—C4—C5—C6 −0.2 (5) C13—C9—C10—C11 179.9 (3)
C4—C5—C6—C1 0.0 (5) C14—O2—C13—O1 0.6 (5)
C6—C1—C2—C3 −0.3 (4) C14—O2—C13—C9 −180.0 (3)
C6—C1—C2—C7 −179.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 1.96 2.687 (3) 142
C6—H6···N2 0.93 2.28 2.895 (4) 123

Funding Statement

The authors thank the Natural Science Foundation of Hubei Province for financial support (2014CFB787).

References

  1. Gupta, S. P. B. N. & Moorthy, N. S. H. N. (2007). Trends Appl. Sci. Res. 2, 165–169.
  2. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  6. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  7. Velingkar, V. S., Desai, D. M. & Panda, V. S. (2011). Int. J. Drug Des. Discov. 2, 548–558.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314621005393/hb4383sup1.cif

x-06-x210539-sup1.cif (249.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621005393/hb4383Isup2.hkl

x-06-x210539-Isup2.hkl (334.7KB, hkl)

Supporting information file. DOI: 10.1107/S2414314621005393/hb4383Isup3.cml

CCDC reference: 2085247

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES