Skip to main content
IUCrData logoLink to IUCrData
. 2021 Aug 6;6(Pt 8):x210778. doi: 10.1107/S2414314621007781

Bis(2,4-dioxo­pentan-3-ido-κ2 O,O′)dioxidomolyb­denum(VI): a redetermination

Dean H Johnston a,*, Calvin King a, Aileen Seitz a, Mia Sethi a
Editor: M Weilb
PMCID: PMC9462362  PMID: 36339452

The crystal structure of cis-[MoO2(acac)2] has been redetermined at 100 K, providing a more precise description of the structure including hydrogen atoms and inter­molecular contacts.

Keywords: crystal structure, molybdenum, oxo, acetyl­acetonate, acac

Abstract

The title compound, [Mo(C5H7O2)2O2] or cis-[MoO2(acac)2] (acac is acetyl­acetonate), contains a molybdenum(VI) atom coordinated by two acetyl­acetonate ligands and two doubly bonded oxido ligands in a distorted octa­hedral shape. The mol­ecule is chiral and the asymmetric unit contains two independent mol­ecules (one Δ, one Λ). Extensive C—H⋯O contacts are present throughout the structure. Data were collected at 100 K, providing higher precision of unit-cell parameters and atomic positions than previous determinations [Kamenar et al. (1973). Cryst. Struct. Commun. 2, 41–44.; Krasochka et al. (1975). Zh. Strukt. Khim. 16, 696–698]. graphic file with name x-06-x210778-scheme1-3D1.jpg

Structure description

The title compound is a versatile starting material for the preparation of cis-dioxidomolybdenum complexes, including complexes containing organodi­nitro­gen ligands (Bustos et al., 1994) and molybdenyl adducts of platinum μ-S dimers (Henderson et al., 2011). MoO2(acac)2 has also been used to prepare dioxidomolybdenum(VI) complexes with O,N,N′ chelating ligands (Ceylan et al., 2015) and an amine bis­(phenolate) ligand (Bowen & Wile, 2021). Many of these complexes have been prepared and studied for their catalytic activities, including complexes with acyl­pyrazolo­nate ligands that catalyze the de­oxy­genation of epoxides (Hills et al., 2013; Begines et al., 2018) and dioxidomol­yb­denum(VI) complexes with salicyl­amide ligands for the epoxidation of olefins (Annese et al., 2019). Molybdenum(VI) dioxido complexes with acetyl­acetonato ligands have also been investigated for their catalytic properties in the de­hydrogenation of alcohols (Korstanje et al., 2013). These complexes are of particular inter­est due to their close structural similarities to the active sites of several molybdoenyzmes such as sulfite oxidase, xanthine oxidase, and DMSO reductase (Sousa & Fernandes, 2015).

Two previous structural determinations of cis-dioxidobis(acetyl­acetonato)molybdenum(VI) were published in the mid-1970s (Kamenar et al., 1973; Krasochka et al., 1975) based on photographic methods and room-temperature data collections. Additionally, Craven et al. (1971) cite an unpublished diffraction study that also confirms the cis coordination and includes additional structural information consistent with the current study. None of the previously published structure solutions attempted to locate the positions of any of the hydrogen atoms. Several closely related structures have been determined, including cis-dioxido-molybdenum complexes with 1,3-di­phenyl­propane­dianoto ligands (Kojić-Prodić et al., 1974; Korstanje et al., 2013) and tert-butyl­acetyl­acetonato ligands (Nass et al., 2001). The structure of the product from the reaction of cis-[MoO2(acac)2] with the strong Lewis acid B(C6F5)3 (Galsworthy et al., 1997) displays a nearly linear Mo=O—B arrangement [171.2 (1)°] and lengthening of the donating Mo=O bond by about 0.1 Å.

The asymmetric unit of the title compound contains two crystallographically independent cis-[MoO2(acac)2] mol­ec­ules, one each of the Δ and Λ forms (Fig. 1). The mol­ecular structure adopts a distorted octa­hedral arrangement around the MoVI atoms, with oxido ligands in a cis arrangement and oxido-molybdenum-oxido angles of 105.40 (4) and 105.59 (5)°. As observed previously (Krasochka, 1973; Kojić-Prodić et al., 1974), the Mo—O bond distances trans to the molybdenum-oxygen double bonds are significantly lengthened [avg = 2.185 (5) Å] relative to the other molybdenum–oxygen distances [avg = 1.999 (11) Å] (see Table 1 for selected bond distances and angles). The four molybdenum oxygen distances for the doubly-bonded oxido ligands average 1.7012 (16) Å, in agreement with the average distance found for over 140 similar cis-dioxido molybdenum complexes in the Cambridge Structural Database (Groom et al., 2016). These metrics are also in agreement with relatively narrow distribution of molybdenum–oxygen distances observed by Mayer (1988) for cis-dioxido complexes.

Figure 1.

Figure 1

Displacement ellipsoid (50% probability) diagram of the two independent mol­ecules with the numbering scheme for the non-hydrogen atoms.

Table 1. Selected geometric parameters (Å, °).

Mo1—O1 1.7029 (9) Mo2—O7 1.6996 (9)
Mo1—O2 1.7001 (9) Mo2—O8 1.7021 (9)
Mo1—O3 2.1825 (8) Mo2—O9 2.1808 (8)
Mo1—O4 2.1921 (8) Mo2—O10 2.1848 (9)
Mo1—O5 2.0060 (8) Mo2—O11 1.9898 (8)
Mo1—O6 1.9897 (8) Mo2—O12 2.0106 (8)
       
O2—Mo1—O1 105.40 (4) O7—Mo2—O8 105.59 (5)

All of the hydrogen-bonding contacts are weak C—H⋯O inter­actions with DA distances between 3.3 and 3.5 Å (see Table 2 and Fig. 2). There are contacts between C—H atoms and all four of the oxido ligands, including two contacts to O1 and three contacts to O8. Additional C—H contacts are made to most of the acetyl­acetonate oxygen atoms as well.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O8i 0.93 (1) 2.62 (2) 3.4834 (16) 155 (2)
C5—H5B⋯O10ii 0.98 (1) 2.50 (1) 3.4652 (15) 170 (2)
C6—H6A⋯O8 0.97 (1) 2.51 (2) 3.3894 (15) 151 (2)
C8—H8⋯O7iii 0.91 (1) 2.79 (2) 3.4071 (14) 126 (1)
C10—H10A⋯O6iv 0.95 (1) 2.68 (2) 3.3334 (15) 127 (1)
C10—H10C⋯O1v 0.97 (1) 2.50 (2) 3.3126 (15) 141 (2)
C11—H11B⋯O3i 0.99 (1) 2.48 (1) 3.4415 (14) 163 (2)
C15—H15A⋯O1ii 0.93 (1) 2.55 (2) 3.4592 (15) 167 (2)
C15—H15C⋯O4 0.96 (1) 2.53 (2) 3.4018 (15) 152 (2)
C16—H16A⋯O11vi 0.94 (1) 2.66 (2) 3.3127 (15) 128 (2)
C16—H16B⋯O8vii 0.96 (2) 2.52 (2) 3.3971 (17) 153 (2)
C18—H18⋯O2viii 0.92 (1) 2.82 (2) 3.4646 (15) 128 (1)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic ; (vii) Inline graphic ; (viii) Inline graphic .

Figure 2.

Figure 2

Packing diagram (viewed along a), showing extensive weak C—H⋯O contacts (red dotted lines) throughout the crystal structure.

Synthesis and crystallization

The title compound was prepared using the Inorganic Syntheses procedure (Chakravorti & Bandyopadhyay, 1992) with some modifications adapted from Arnáiz (1995). A sample of 3.0 grams of ammonium para-molybdate was dissolved in 6.0 ml of 24%wt aqueous ammonia. A syringe was used to add 7.0 ml of 2,4-penta­nedione with stirring. Concentrated nitric acid (5.0 ml) was added and the solution was stirred for 30 min. The product precipitated as a pale-yellow solid and was isolated by filtration and washed with deionized water (2 × 10 ml), followed by ethanol (1 × 10 ml), and diethyl ether (1 × 10 ml). Over multiple preparations the yield averaged around 90%. Characterization by 1H NMR and FTIR agrees with previously reported values (Chakravorti & Bandyopadhyay, 1992; Arnáiz, 1995).

Three different crystallization methods were utilized: slow evaporation from a concentrated solution in 2,4-penta­nedione, vapor diffusion (di­chloro­methane/diethyl ether), and layering (di­chloro­methane/diethyl ether) in a standard 5 mm NMR tube. All three methods produced crystals, but the highest quality crystals and those used in this study were produced from solvent layering.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

Crystal data
Chemical formula [Mo(C5H7O2)2O2]
M r 326.15
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 8.0111 (3), 12.4143 (4), 12.6847 (4)
α, β, γ (°) 75.649 (1), 89.272 (1), 87.072 (1)
V3) 1220.56 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.09
Crystal size (mm) 0.28 × 0.22 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.676, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 82074, 11855, 10556
R int 0.035
(sin θ/λ)max−1) 0.835
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.023, 0.061, 1.04
No. of reflections 11855
No. of parameters 391
No. of restraints 28
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 1.19, −1.11

Computer programs: APEX3 (Bruker, 2020), SAINT (Bruker, 2020), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), CrystalMaker (Palmer, 2019), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314621007781/wm4150sup1.cif

x-06-x210778-sup1.cif (2.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621007781/wm4150Isup2.hkl

x-06-x210778-Isup2.hkl (940.1KB, hkl)

Supporting information file. DOI: 10.1107/S2414314621007781/wm4150Isup3.mol

CCDC reference: 2100177

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

[Mo(C5H7O2)2O2] Z = 4
Mr = 326.15 F(000) = 656
Triclinic, P1 Dx = 1.775 Mg m3
a = 8.0111 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.4143 (4) Å Cell parameters from 9760 reflections
c = 12.6847 (4) Å θ = 3.0–36.3°
α = 75.649 (1)° µ = 1.09 mm1
β = 89.272 (1)° T = 100 K
γ = 87.072 (1)° Block, yellow
V = 1220.56 (7) Å3 0.28 × 0.22 × 0.14 mm

Data collection

Bruker APEXII CCD diffractometer 10556 reflections with I > 2σ(I)
φ and ω scans Rint = 0.035
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 36.4°, θmin = 1.7°
Tmin = 0.676, Tmax = 0.747 h = −13→13
82074 measured reflections k = −20→20
11855 independent reflections l = −21→21

Refinement

Refinement on F2 28 restraints
Least-squares matrix: full 0 constraints
R[F2 > 2σ(F2)] = 0.023 Only H-atom coordinates refined
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.524P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.003
11855 reflections Δρmax = 1.19 e Å3
391 parameters Δρmin = −1.11 e Å3

Special details

Refinement. All H atoms were located in a difference-Fourier map. Hydrogen atom positions were refined with C—H distances restrained to 0.98 (2) Å (CH3) or 0.95 (2) Å (ring C) and with Uiso(H) = 1.5Ueq(C) (methyl) or Uiso(H) = 1.2Ueq(C) (ring).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mo1 0.19729 (2) 0.76693 (2) 0.56793 (2) 0.01071 (2)
O1 0.01992 (11) 0.69604 (7) 0.57195 (8) 0.01646 (15)
O2 0.14825 (12) 0.86914 (7) 0.63247 (7) 0.01718 (15)
O3 0.45296 (11) 0.82176 (7) 0.55088 (7) 0.01484 (14)
O4 0.32120 (11) 0.65709 (7) 0.47653 (7) 0.01407 (14)
O5 0.30012 (10) 0.65609 (7) 0.69609 (7) 0.01323 (13)
O6 0.17058 (11) 0.86448 (7) 0.41831 (7) 0.01522 (14)
C1 0.37036 (18) 0.55651 (10) 0.34261 (11) 0.0194 (2)
H1A 0.408 (2) 0.5708 (16) 0.2707 (13) 0.029*
H1B 0.457 (2) 0.5162 (15) 0.3884 (16) 0.029*
H1C 0.286 (2) 0.5032 (14) 0.3486 (16) 0.029*
C2 0.30151 (14) 0.65672 (9) 0.37795 (9) 0.01315 (17)
C3 0.21648 (16) 0.74411 (10) 0.30091 (9) 0.01650 (19)
H3 0.205 (2) 0.7355 (14) 0.2306 (12) 0.020*
C4 0.16005 (14) 0.84288 (9) 0.32317 (9) 0.01329 (17)
C5 0.08566 (17) 0.93714 (10) 0.23647 (10) 0.0183 (2)
H5A 0.170 (2) 0.9885 (14) 0.2000 (15) 0.028*
H5B 0.033 (2) 0.9095 (15) 0.1802 (14) 0.028*
H5C 0.002 (2) 0.9801 (15) 0.2663 (16) 0.028*
C6 0.42700 (16) 0.58188 (10) 0.86696 (9) 0.0170 (2)
H6A 0.416 (2) 0.5069 (12) 0.8582 (16) 0.026*
H6B 0.333 (2) 0.5953 (15) 0.9090 (15) 0.026*
H6C 0.5274 (19) 0.5743 (15) 0.9049 (15) 0.026*
C7 0.42379 (14) 0.66499 (9) 0.75910 (8) 0.01228 (16)
C8 0.54477 (15) 0.74177 (10) 0.73039 (9) 0.01541 (18)
H8 0.6317 (19) 0.7423 (14) 0.7754 (13) 0.018*
C9 0.56069 (13) 0.81282 (9) 0.62473 (9) 0.01234 (17)
C10 0.71393 (15) 0.87800 (10) 0.59652 (11) 0.0180 (2)
H10A 0.689 (2) 0.9523 (12) 0.5569 (15) 0.027*
H10B 0.776 (2) 0.8840 (15) 0.6561 (13) 0.027*
H10C 0.788 (2) 0.8426 (15) 0.5532 (15) 0.027*
Mo2 0.31234 (2) 0.23314 (2) 0.94971 (2) 0.01062 (2)
O7 0.35933 (12) 0.13590 (7) 1.06697 (7) 0.01702 (15)
O8 0.49058 (11) 0.30206 (7) 0.91316 (8) 0.01682 (15)
O9 0.18784 (11) 0.33673 (7) 0.80520 (7) 0.01435 (14)
O10 0.05669 (11) 0.17773 (7) 0.96628 (7) 0.01557 (15)
O11 0.33915 (11) 0.12896 (7) 0.85341 (7) 0.01430 (14)
O12 0.20855 (11) 0.34966 (7) 1.01892 (7) 0.01405 (14)
C11 0.42605 (16) 0.05038 (9) 0.70948 (10) 0.01590 (19)
H11A 0.506 (2) 0.0052 (14) 0.7626 (15) 0.024*
H11B 0.481 (2) 0.0759 (15) 0.6381 (12) 0.024*
H11C 0.338 (2) 0.0040 (14) 0.6990 (15) 0.024*
C12 0.35213 (13) 0.14698 (9) 0.74799 (9) 0.01179 (16)
C13 0.29618 (16) 0.24372 (9) 0.67571 (9) 0.01583 (19)
H13 0.312 (2) 0.2494 (14) 0.6000 (11) 0.019*
C14 0.20743 (13) 0.33250 (9) 0.70739 (9) 0.01210 (16)
C15 0.13314 (16) 0.42696 (10) 0.62128 (10) 0.01670 (19)
H15A 0.095 (2) 0.4053 (15) 0.5610 (13) 0.025*
H15B 0.043 (2) 0.4672 (15) 0.6472 (16) 0.025*
H15C 0.219 (2) 0.4773 (14) 0.5942 (15) 0.025*
C16 −0.20236 (16) 0.12360 (11) 1.04748 (12) 0.0219 (2)
H16A −0.178 (2) 0.0492 (13) 1.0454 (17) 0.033*
H16B −0.280 (2) 0.1597 (16) 0.9911 (15) 0.033*
H16C −0.265 (2) 0.1222 (16) 1.1124 (14) 0.033*
C17 −0.04876 (14) 0.18876 (9) 1.03822 (9) 0.01463 (18)
C18 −0.03130 (16) 0.26312 (11) 1.10536 (10) 0.0182 (2)
H18 −0.116 (2) 0.2651 (15) 1.1543 (14) 0.022*
C19 0.08525 (14) 0.34274 (9) 1.08878 (9) 0.01445 (18)
C20 0.07649 (18) 0.43275 (12) 1.14881 (11) 0.0220 (2)
H20A 0.087 (3) 0.5039 (13) 1.1019 (16) 0.033*
H20B −0.027 (2) 0.4408 (16) 1.1843 (16) 0.033*
H20C 0.163 (2) 0.4253 (17) 1.1994 (15) 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.01212 (4) 0.01239 (4) 0.00833 (4) −0.00019 (3) −0.00151 (3) −0.00391 (3)
O1 0.0145 (3) 0.0165 (4) 0.0190 (4) −0.0011 (3) −0.0029 (3) −0.0055 (3)
O2 0.0220 (4) 0.0167 (4) 0.0150 (4) −0.0011 (3) 0.0008 (3) −0.0078 (3)
O3 0.0153 (3) 0.0185 (4) 0.0102 (3) −0.0043 (3) −0.0011 (3) −0.0016 (3)
O4 0.0174 (4) 0.0143 (3) 0.0106 (3) 0.0010 (3) −0.0004 (3) −0.0037 (3)
O5 0.0147 (3) 0.0152 (3) 0.0094 (3) −0.0023 (3) −0.0017 (3) −0.0018 (3)
O6 0.0229 (4) 0.0129 (3) 0.0099 (3) 0.0008 (3) −0.0041 (3) −0.0031 (3)
C1 0.0265 (6) 0.0172 (5) 0.0161 (5) 0.0006 (4) 0.0036 (4) −0.0079 (4)
C2 0.0152 (4) 0.0140 (4) 0.0111 (4) −0.0026 (3) 0.0016 (3) −0.0043 (3)
C3 0.0244 (5) 0.0163 (5) 0.0096 (4) −0.0001 (4) −0.0026 (4) −0.0048 (3)
C4 0.0157 (4) 0.0138 (4) 0.0102 (4) −0.0028 (3) −0.0027 (3) −0.0020 (3)
C5 0.0240 (5) 0.0165 (5) 0.0127 (4) −0.0004 (4) −0.0066 (4) 0.0000 (4)
C6 0.0228 (5) 0.0171 (5) 0.0096 (4) 0.0007 (4) −0.0027 (4) −0.0004 (3)
C7 0.0156 (4) 0.0126 (4) 0.0090 (4) 0.0017 (3) −0.0015 (3) −0.0037 (3)
C8 0.0176 (5) 0.0159 (4) 0.0126 (4) −0.0016 (4) −0.0050 (4) −0.0029 (3)
C9 0.0133 (4) 0.0114 (4) 0.0134 (4) 0.0000 (3) −0.0004 (3) −0.0051 (3)
C10 0.0146 (5) 0.0172 (5) 0.0234 (6) −0.0040 (4) 0.0003 (4) −0.0070 (4)
Mo2 0.01235 (4) 0.01240 (4) 0.00711 (4) 0.00003 (3) 0.00073 (3) −0.00262 (3)
O7 0.0226 (4) 0.0168 (4) 0.0105 (3) −0.0003 (3) −0.0010 (3) −0.0013 (3)
O8 0.0153 (4) 0.0165 (4) 0.0181 (4) −0.0016 (3) 0.0027 (3) −0.0033 (3)
O9 0.0188 (4) 0.0146 (3) 0.0095 (3) 0.0024 (3) −0.0003 (3) −0.0034 (3)
O10 0.0151 (3) 0.0185 (4) 0.0147 (4) −0.0040 (3) 0.0028 (3) −0.0066 (3)
O11 0.0214 (4) 0.0131 (3) 0.0083 (3) 0.0013 (3) 0.0016 (3) −0.0029 (2)
O12 0.0161 (3) 0.0159 (3) 0.0115 (3) −0.0007 (3) 0.0016 (3) −0.0062 (3)
C11 0.0213 (5) 0.0137 (4) 0.0135 (4) 0.0010 (4) 0.0031 (4) −0.0052 (3)
C12 0.0132 (4) 0.0124 (4) 0.0102 (4) −0.0018 (3) 0.0025 (3) −0.0037 (3)
C13 0.0244 (5) 0.0145 (4) 0.0085 (4) 0.0012 (4) 0.0011 (4) −0.0031 (3)
C14 0.0146 (4) 0.0116 (4) 0.0100 (4) −0.0021 (3) −0.0006 (3) −0.0020 (3)
C15 0.0233 (5) 0.0129 (4) 0.0127 (4) −0.0002 (4) −0.0046 (4) −0.0009 (3)
C16 0.0159 (5) 0.0220 (5) 0.0248 (6) −0.0044 (4) 0.0025 (4) 0.0002 (4)
C17 0.0139 (4) 0.0151 (4) 0.0127 (4) 0.0001 (3) 0.0004 (3) 0.0007 (3)
C18 0.0185 (5) 0.0222 (5) 0.0141 (5) 0.0002 (4) 0.0065 (4) −0.0054 (4)
C19 0.0173 (4) 0.0173 (4) 0.0091 (4) 0.0039 (4) −0.0006 (3) −0.0050 (3)
C20 0.0263 (6) 0.0251 (6) 0.0181 (5) 0.0048 (5) −0.0002 (4) −0.0135 (5)

Geometric parameters (Å, º)

Mo1—O1 1.7029 (9) Mo2—O7 1.6996 (9)
Mo1—O2 1.7001 (9) Mo2—O8 1.7021 (9)
Mo1—O3 2.1825 (8) Mo2—O9 2.1808 (8)
Mo1—O4 2.1921 (8) Mo2—O10 2.1848 (9)
Mo1—O5 2.0060 (8) Mo2—O11 1.9898 (8)
Mo1—O6 1.9897 (8) Mo2—O12 2.0106 (8)
O3—C9 1.2624 (13) O9—C14 1.2623 (13)
O4—C2 1.2635 (13) O10—C17 1.2632 (14)
O5—C7 1.3067 (13) O11—C12 1.3036 (13)
O6—C4 1.3041 (13) O12—C19 1.3104 (14)
C1—H1A 0.933 (14) C11—H11A 0.984 (14)
C1—H1B 0.947 (15) C11—H11B 0.988 (14)
C1—H1C 0.957 (14) C11—H11C 0.962 (14)
C1—C2 1.5010 (16) C11—C12 1.4961 (15)
C2—C3 1.4183 (16) C12—C13 1.3761 (16)
C3—H3 0.931 (14) C13—H13 0.953 (14)
C3—C4 1.3782 (16) C13—C14 1.4191 (16)
C4—C5 1.4971 (16) C14—C15 1.4942 (16)
C5—H5A 0.983 (14) C15—H15A 0.932 (14)
C5—H5B 0.975 (14) C15—H15B 0.961 (14)
C5—H5C 0.968 (15) C15—H15C 0.957 (14)
C6—H6A 0.973 (14) C16—H16A 0.941 (14)
C6—H6B 0.946 (14) C16—H16B 0.961 (15)
C6—H6C 0.931 (14) C16—H16C 0.955 (15)
C6—C7 1.4952 (16) C16—C17 1.4944 (17)
C7—C8 1.3762 (16) C17—C18 1.4152 (17)
C8—H8 0.907 (14) C18—H18 0.917 (14)
C8—C9 1.4184 (16) C18—C19 1.3709 (17)
C9—C10 1.4955 (16) C19—C20 1.4986 (17)
C10—H10A 0.948 (14) C20—H20A 0.942 (15)
C10—H10B 0.931 (14) C20—H20B 0.950 (15)
C10—H10C 0.965 (14) C20—H20C 0.935 (15)
O1—Mo1—O3 165.66 (4) O7—Mo2—O8 105.59 (5)
O1—Mo1—O4 89.35 (4) O7—Mo2—O9 164.58 (4)
O1—Mo1—O5 93.60 (4) O7—Mo2—O10 87.98 (4)
O1—Mo1—O6 98.03 (4) O7—Mo2—O11 95.53 (4)
O2—Mo1—O1 105.40 (4) O7—Mo2—O12 96.98 (4)
O2—Mo1—O3 88.56 (4) O8—Mo2—O9 89.81 (4)
O2—Mo1—O4 165.18 (4) O8—Mo2—O10 166.15 (4)
O2—Mo1—O5 97.16 (4) O8—Mo2—O11 97.67 (4)
O2—Mo1—O6 95.35 (4) O8—Mo2—O12 94.14 (4)
O3—Mo1—O4 76.80 (3) O9—Mo2—O10 76.68 (3)
O5—Mo1—O3 81.17 (3) O11—Mo2—O9 81.38 (3)
O5—Mo1—O4 82.99 (3) O11—Mo2—O10 83.47 (3)
O6—Mo1—O3 83.63 (3) O11—Mo2—O12 159.82 (4)
O6—Mo1—O4 80.95 (3) O12—Mo2—O9 82.36 (3)
O6—Mo1—O5 160.01 (4) O12—Mo2—O10 81.22 (3)
C9—O3—Mo1 127.94 (7) C14—O9—Mo2 128.23 (7)
C2—O4—Mo1 128.41 (7) C17—O10—Mo2 127.20 (8)
C7—O5—Mo1 130.40 (7) C12—O11—Mo2 131.47 (7)
C4—O6—Mo1 132.43 (7) C19—O12—Mo2 129.74 (7)
H1A—C1—H1B 108.5 (17) H11A—C11—H11B 109.9 (16)
H1A—C1—H1C 105.8 (17) H11A—C11—H11C 108.6 (15)
H1B—C1—H1C 103.1 (16) H11B—C11—H11C 106.5 (15)
C2—C1—H1A 115.0 (12) C12—C11—H11A 111.4 (11)
C2—C1—H1B 113.3 (13) C12—C11—H11B 110.9 (10)
C2—C1—H1C 110.2 (12) C12—C11—H11C 109.4 (11)
O4—C2—C1 117.22 (10) O11—C12—C11 114.43 (9)
O4—C2—C3 123.67 (10) O11—C12—C13 124.15 (10)
C3—C2—C1 119.10 (10) C13—C12—C11 121.35 (10)
C2—C3—H3 117.7 (11) C12—C13—H13 118.0 (10)
C4—C3—C2 123.42 (10) C12—C13—C14 123.58 (10)
C4—C3—H3 118.8 (11) C14—C13—H13 118.3 (10)
O6—C4—C3 124.17 (10) O9—C14—C13 123.53 (10)
O6—C4—C5 114.20 (10) O9—C14—C15 117.53 (10)
C3—C4—C5 121.60 (10) C13—C14—C15 118.93 (10)
C4—C5—H5A 112.3 (11) C14—C15—H15A 113.4 (12)
C4—C5—H5B 110.8 (11) C14—C15—H15B 113.3 (12)
C4—C5—H5C 111.2 (12) C14—C15—H15C 108.1 (11)
H5A—C5—H5B 106.9 (16) H15A—C15—H15B 107.6 (16)
H5A—C5—H5C 107.7 (16) H15A—C15—H15C 105.6 (16)
H5B—C5—H5C 107.8 (16) H15B—C15—H15C 108.5 (15)
H6A—C6—H6B 105.2 (16) H16A—C16—H16B 110.9 (18)
H6A—C6—H6C 101.7 (16) H16A—C16—H16C 107.2 (17)
H6B—C6—H6C 112.9 (17) H16B—C16—H16C 102.8 (17)
C7—C6—H6A 110.9 (12) C17—C16—H16A 112.3 (12)
C7—C6—H6B 110.0 (12) C17—C16—H16B 109.7 (12)
C7—C6—H6C 115.2 (12) C17—C16—H16C 113.5 (12)
O5—C7—C6 114.28 (10) O10—C17—C16 117.36 (11)
O5—C7—C8 124.26 (10) O10—C17—C18 123.12 (11)
C8—C7—C6 121.45 (10) C18—C17—C16 119.44 (11)
C7—C8—H8 121.1 (11) C17—C18—H18 115.8 (12)
C7—C8—C9 123.91 (10) C19—C18—C17 124.01 (10)
C9—C8—H8 114.2 (11) C19—C18—H18 119.2 (11)
O3—C9—C8 123.05 (10) O12—C19—C18 124.32 (10)
O3—C9—C10 117.50 (10) O12—C19—C20 114.39 (11)
C8—C9—C10 119.42 (10) C18—C19—C20 121.27 (11)
C9—C10—H10A 112.2 (12) C19—C20—H20A 112.1 (13)
C9—C10—H10B 114.7 (12) C19—C20—H20B 114.9 (12)
C9—C10—H10C 109.6 (11) C19—C20—H20C 112.8 (13)
H10A—C10—H10B 105.2 (16) H20A—C20—H20B 102.8 (17)
H10A—C10—H10C 108.5 (16) H20A—C20—H20C 104.7 (18)
H10B—C10—H10C 106.2 (16) H20B—C20—H20C 108.6 (18)
Mo1—O3—C9—C8 14.91 (16) Mo2—O9—C14—C13 11.74 (16)
Mo1—O3—C9—C10 −167.23 (8) Mo2—O9—C14—C15 −167.95 (8)
Mo1—O4—C2—C1 −165.78 (8) Mo2—O10—C17—C16 −167.33 (8)
Mo1—O4—C2—C3 13.14 (16) Mo2—O10—C17—C18 15.86 (16)
Mo1—O5—C7—C6 159.72 (8) Mo2—O11—C12—C11 160.69 (8)
Mo1—O5—C7—C8 −21.55 (16) Mo2—O11—C12—C13 −22.43 (17)
Mo1—O6—C4—C3 −21.18 (18) Mo2—O12—C19—C18 −20.31 (17)
Mo1—O6—C4—C5 160.91 (8) Mo2—O12—C19—C20 161.61 (8)
O4—C2—C3—C4 6.18 (19) O10—C17—C18—C19 10.74 (19)
O5—C7—C8—C9 −7.08 (18) O11—C12—C13—C14 −4.41 (19)
C1—C2—C3—C4 −174.93 (11) C11—C12—C13—C14 172.26 (11)
C2—C3—C4—O6 −3.75 (19) C12—C13—C14—O9 8.31 (19)
C2—C3—C4—C5 174.01 (11) C12—C13—C14—C15 −172.00 (11)
C6—C7—C8—C9 171.56 (11) C16—C17—C18—C19 −166.01 (12)
C7—C8—C9—O3 9.00 (18) C17—C18—C19—O12 −10.0 (2)
C7—C8—C9—C10 −168.82 (11) C17—C18—C19—C20 167.99 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O8i 0.93 (1) 2.62 (2) 3.4834 (16) 155 (2)
C5—H5B···O10ii 0.98 (1) 2.50 (1) 3.4652 (15) 170 (2)
C6—H6A···O8 0.97 (1) 2.51 (2) 3.3894 (15) 151 (2)
C8—H8···O7iii 0.91 (1) 2.79 (2) 3.4071 (14) 126 (1)
C10—H10A···O6iv 0.95 (1) 2.68 (2) 3.3334 (15) 127 (1)
C10—H10C···O1v 0.97 (1) 2.50 (2) 3.3126 (15) 141 (2)
C11—H11B···O3i 0.99 (1) 2.48 (1) 3.4415 (14) 163 (2)
C15—H15A···O1ii 0.93 (1) 2.55 (2) 3.4592 (15) 167 (2)
C15—H15C···O4 0.96 (1) 2.53 (2) 3.4018 (15) 152 (2)
C16—H16A···O11vi 0.94 (1) 2.66 (2) 3.3127 (15) 128 (2)
C16—H16B···O8vii 0.96 (2) 2.52 (2) 3.3971 (17) 153 (2)
C18—H18···O2viii 0.92 (1) 2.82 (2) 3.4646 (15) 128 (1)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+2; (iv) −x+1, −y+2, −z+1; (v) x+1, y, z; (vi) −x, −y, −z+2; (vii) x−1, y, z; (viii) −x, −y+1, −z+2.

Funding Statement

Funding for this research was provided by: National Science Foundation, Directorate for Education and Human Resources (grant No. 0942850 to Dean Johnston); Otterbein University Student Research Fund (grant to Calvin King, Aileen Seitz, Mia Sethi).

References

  1. Annese, C., Caputo, D., D’Accolti, L., Fusco, C., Nacci, A., Rossin, A., Tuci, G. & Giambastiani, G. (2019). Eur. J. Inorg. Chem. pp. 221–229.
  2. Arnáiz, F. J. (1995). J. Chem. Educ. 72, A7.
  3. Begines, E., Carrasco, C. J., Montilla, F., Álvarez, E., Marchetti, F., Pettinari, R., Pettinari, C. & Galindo, A. (2018). Dalton Trans. 47, 197–208. [DOI] [PubMed]
  4. Bowen, C. L. & Wile, B. M. (2021). IUCrData, 6, x210516. [DOI] [PMC free article] [PubMed]
  5. Bruker (2020). APEX3 and SAINT. Bruker AXS, Madison, Wisconsin, USA.
  6. Bustos, C., Manzur, C., Carrillo, D., Robert, F. & Gouzerh, P. (1994). Inorg. Chem. 33, 1427–1433.
  7. Ceylan, B. İ., Deniz, N. G., Kahraman, S. & Ulkuseven, B. (2015). Spectrochim. Acta A, 141, 272–277. [DOI] [PubMed]
  8. Chakravorti, M. C. & Bandyopadhyay, D. (1992). Inorganic Syntheses, Vol. 29, edited by R. N. Grimes, pp. 129–131. New York: John Wiley & Sons.
  9. Craven, B. M., Ramey, K. C. & Wise, W. B. (1971). Inorg. Chem. 10, 2626–2628.
  10. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  11. Galsworthy, J. R., Green, M. L. H., Müller, M. & Prout, K. (1997). J. Chem. Soc. Dalton Trans. pp. 1309–1313.
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Henderson, W., Nicholson, B. K., Bridson, J. H., Kueh, J. T. & Andy Hor, T. S. (2011). Inorg. Chim. Acta, 375, 142–149.
  14. Hills, L., Moyano, R., Montilla, F., Pastor, A., Galindo, A., Álvarez, E., Marchetti, F. & Pettinari, C. (2013). Eur. J. Inorg. Chem. pp. 3352–3361.
  15. Kamenar, B., Penavic, M. & Prout, C. K. (1973). Cryst. Struct. Commun. 2, 41–44.
  16. Kojić-Prodić, B., Rużić-Toroš, Ž., Grdenić, D. & Golič, L. (1974). Acta Cryst. B30, 300–305.
  17. Korstanje, T. J., Folkertsma, E., Lutz, M., Jastrzebski, J. T. B. H. & Klein Gebbink, R. J. M. (2013). Eur. J. Inorg. Chem. pp. 2195–2204.
  18. Krasochka, O. N., Sokolova, Yu. A. & Atovmyan, L. O. (1973). Zh. Strukt. Khim. 16, 696–698.
  19. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  20. Mayer, J. M. (1988). Inorg. Chem. 27, 3899–3903.
  21. Nass, M., Schürmann, M., Preut, H. & Krause, N. (2001). Z. Krist. New Cryst. Struct. 216, 461–464.
  22. Palmer, D. C. (2019). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.
  23. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  24. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  25. Sousa, S. C. A. & Fernandes, A. C. (2015). Coord. Chem. Rev. 284, 67–92.
  26. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314621007781/wm4150sup1.cif

x-06-x210778-sup1.cif (2.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621007781/wm4150Isup2.hkl

x-06-x210778-Isup2.hkl (940.1KB, hkl)

Supporting information file. DOI: 10.1107/S2414314621007781/wm4150Isup3.mol

CCDC reference: 2100177

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES