Skip to main content
IUCrData logoLink to IUCrData
. 2021 Sep 17;6(Pt 9):x210951. doi: 10.1107/S2414314621009512

(2R,4S,5S)-5-Meth­oxy-4-methyl-3-oxohept-6-en-2-yl benzoate

Ann-Christin Schmidt a, Lyuba Iovkova a,*, Martin Hiersemann a
Editor: W T A Harrisonb
PMCID: PMC9462372  PMID: 36338945

The title compound was synthesized in the course of the total synthesis of fusaequisin A in order to verify and confirm the configurations of the stereogenic centers and to exclude the possibility of epimerization during the methyl­ation process. The absolute configuration was determined by anomalous dispersion and agrees with the configuration of the allylic alcohol used in the synthesis.

Keywords: crystal structure, methyl­ation, epimerization, structural elucidation

Abstract

The title compound, C16H20O4, was synthesized in the course of the total synthesis of fusaequisin A in order to verify and confirm the configurations of the stereogenic centers and to exclude the possibility of epimerization during the methyl­ation process. The crystal structure of the title compound at 100 K has ortho­rhom­bic (P212121) symmetry. The absolute configuration was determined by anomalous dispersion and agrees with the configuration of the allylic alcohol used in the synthesis. graphic file with name x-06-x210951-scheme1-3D1.jpg

Structure description

The title compound, C16H20O4 (Fig. 1), was obtained during the synthesis of the Western fragment of fusaequisin A. Background to fusaequisin A is given by Shiono et al. (2013). The asymmetric synthesis of the Western fragment is based on Paterson’s anti aldol chemistry (Paterson et al., 1994; Paterson, 1998). In the course of the total synthesis of curvicollide C (Che et al., 2004) the precursor of the title compound (I) was prepared (von Kiedrowski et al., 2017) and provided potential for further investigations regarding the total synthesis of fusaequisin A. The methyl­ation process is shown in Fig. 2.

Figure 1.

Figure 1

The mol­ecular structure of I showing displacement ellipsoids at the 50% probability level

Figure 2.

Figure 2

Methyl­ation of O-desmethyl­fusaequisin A.

The title compound crystallizes in the ortho­rhom­bic space group P212121 with four mol­ecules in the unit cell with H1A and H3A almost in plane (H1A—C1⋯C3—H3A pseudo torsion angle = −1°) and H2A and H3A in an anti­periplanar arrangement (H2A—C2—C3—H3A = 179°), which minimizes 1,3-allylic strain. Furthermore, the C8 methyl group and the O1 atom of the ether group are also in an anti­periplanar arrangement with a C8—C4—C3—O1 torsion angle of 177.32 (10)°. The ester moiety shows the most stable and expected s–cis-conformation. In the crystal, a weak C—H⋯O inter­action arising from the aromatic C—H grouping para to the side chain links the mol­ecules into C(10) chains propagating in the [010] direction (Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O2i 0.95 2.54 3.2838 (18) 135

Symmetry code: (i) Inline graphic .

Synthesis and crystallization

The reaction (Fig. 3) was carried out under an argon atmosphere. To an ice-cooled solution of the allylic alcohol (C15H18O4, 262.31 g mol−1, 300 mg, 1.10 mmol, 1 equiv.) in CH2Cl2 were successively added dried (0.1 mbar, 250°C, 2 h) 3 Å mol­ecular sieves (200 mg), 1,8-bis­(di­methyl­amino)­naphthalene (proton sponge®, C14H18N2, 214.31 g mol−1, 943 mg, 4.40 mmol, 4 equiv.) and tri­methyl­oxonium tetra­fluoro­borate (Me3OBF4, C3H9BF4O, 147.91 g mol−1, 651 mg, 4.40 mmol, 4 equiv.). The opaque, orange solution was warmed to room temperature. The reaction mixture was stirred at room temperature for 4 h and was then diluted by the addition of aqueous phosphate pH 7 buffer. The phases were separated and the aqueous layer was extracted three times with CH2Cl2. The combined organic layers were dried (MgSO4) and all volatiles were removed under reduced pressure. The light yellow residue was purified by flash chromatography (cyclo­hexane-ethyl acetate, 20:1 to 10:1) to afford the title methyl ether (I) (C16H20O4, 276.33 g mol−1, 238 mg, 0.86 mmol, 78%) as a white solid. Colourless crystals of I suitable for X-ray crystallographic analysis were obtained under air by slow evaporation from the mixed solvents of diethyl ether and n-pentane. R f = 0.56 (cyclo­hexa­ne–ethyl acetate, 5:1); m.p. = 80–83°C; [ a ]D 20 = −8.3° (c = 0.5 g ml−1 in CHCl3) ; 1H NMR (500 MHz, CDCl3) δ 1.06 (d, J = 7.1 Hz, 3H, 3-CH3), 1.55 (d, J = 7.0 Hz, 3H, 1-CH3), 2.93 (dq, J = 9.7, 7.1 Hz, 1H, 3-CH), 3.15 (s, 3H, 4-OCH3), 3.70 (dd, J = 10.1, 9.3 Hz, 1H, 4-CH), 5.24–5.35 (m, 2H, 6-CH2), 5.41 (q, J = 7.0 Hz, 1H, 1-CH), 5.56 (ddd, J = 17.1, 10.1, 8.5 Hz, 1H, 5-CH), 7.43–7.48 (m, 2H, aryl-CH), 7.55–7.60 (m, 1H, aryl-CH), 8.05–8.12 (m, 2H, aryl-CH); 13C NMR (126 MHz, CDCl3) δ 14.1 (3-CH3), 15.3 (1-CH3), 47.0 (3-CH), 56.6 (4-OCH3), 75.5 (1-CH), 85.4 (4-CH), 120.2 (6-CH2), 128.5 (aryl-CH), 129.8 (aryl-CH), 129.9 (aryl-CH), 133.3 (aryl-CH), 136.0 (5-CH), 166.0 (aryl-C), 210.1 (2-C); IR ν = 3075 (w), 2985 (w), 2935 (w), 2825 (w), 1720 (s), 1065 (w), 1450 (m), 1420 (w), 1375 (m), 1315 (m), 1265 (s), 1205 (w), 1175 (w), 1115 (s), 1090 (s), 1070 (m), 1025 (m), 1010 (m), 965 (m), 935 (m), 715 (s), 685 (w) cm−1; HRMS (ESI): m/z [M + H]+ calculated for C16H21O4: 277.1434; found: 277.1342.

Figure 3.

Figure 3

Reaction conditions for the methyl­ation of the allylic alcohol.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C16H20O4
M r 276.32
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 8.1297 (4), 11.8232 (6), 15.7213 (9)
V3) 1511.12 (14)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.71
Crystal size (mm) 0.12 × 0.10 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS;Bruker, 2016)
T min, T max 0.700, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 28627, 3078, 3054
R int 0.027
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.023, 0.060, 1.07
No. of reflections 3078
No. of parameters 184
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.12
Absolute structure Flack x determined using 1293 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.03 (2)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), XP (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314621009512/hb4390sup1.cif

x-06-x210951-sup1.cif (837.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621009512/hb4390Isup2.hkl

x-06-x210951-Isup2.hkl (246KB, hkl)

Supporting information file. DOI: 10.1107/S2414314621009512/hb4390Isup3.cdx

Supporting information file. DOI: 10.1107/S2414314621009512/hb4390Isup4.cml

CCDC reference: 2109383

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C16H20O4 Dx = 1.215 Mg m3
Mr = 276.32 Melting point = 353–356 K
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
a = 8.1297 (4) Å Cell parameters from 9807 reflections
b = 11.8232 (6) Å θ = 6.1–74.6°
c = 15.7213 (9) Å µ = 0.71 mm1
V = 1511.12 (14) Å3 T = 100 K
Z = 4 Block, colourless
F(000) = 592 0.12 × 0.10 × 0.06 mm

Data collection

Bruker APEXII CCD diffractometer 3054 reflections with I > 2σ(I)
φ and ω scans Rint = 0.027
Absorption correction: multi-scan (SADABS;Bruker, 2016) θmax = 74.5°, θmin = 4.7°
Tmin = 0.700, Tmax = 0.754 h = −10→10
28627 measured reflections k = −14→14
3078 independent reflections l = −18→19

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.2127P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.18 e Å3
3078 reflections Δρmin = −0.12 e Å3
184 parameters Absolute structure: Flack x determined using 1293 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: 0.03 (2)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.09507 (18) 0.29265 (12) 0.39623 (10) 0.0306 (3)
H1A 0.080921 0.309404 0.337584 0.037*
H1B 0.010147 0.255322 0.426807 0.037*
O1 0.52090 (11) 0.31350 (8) 0.40027 (6) 0.0257 (2)
C2 0.23199 (17) 0.32109 (12) 0.43502 (9) 0.0260 (3)
H2A 0.241816 0.302998 0.493680 0.031*
O2 0.57315 (12) 0.55222 (8) 0.31396 (6) 0.0257 (2)
C3 0.37402 (15) 0.38013 (10) 0.39331 (8) 0.0210 (3)
H3A 0.348192 0.392678 0.331840 0.025*
O3 0.79670 (11) 0.67523 (7) 0.40634 (6) 0.02254 (19)
C4 0.41493 (15) 0.49330 (10) 0.43492 (8) 0.0200 (2)
H4A 0.442788 0.480340 0.496105 0.024*
O4 0.58296 (11) 0.79534 (7) 0.39300 (6) 0.0255 (2)
C5 0.56184 (15) 0.54690 (10) 0.39052 (8) 0.0195 (2)
C6 0.69017 (16) 0.59668 (11) 0.45003 (8) 0.0214 (3)
H6A 0.633436 0.636762 0.497741 0.026*
C7 0.5209 (2) 0.22018 (12) 0.34321 (10) 0.0346 (3)
H7A 0.624899 0.178862 0.348492 0.052*
H7B 0.508591 0.247754 0.284770 0.052*
H7C 0.429206 0.169617 0.357046 0.052*
C8 0.27180 (16) 0.57771 (12) 0.42921 (10) 0.0279 (3)
H8A 0.180721 0.551481 0.464968 0.042*
H8B 0.234674 0.583387 0.370058 0.042*
H8C 0.308649 0.652131 0.448962 0.042*
C9 0.80093 (17) 0.50522 (12) 0.48637 (10) 0.0298 (3)
H9A 0.733683 0.448423 0.515567 0.045*
H9B 0.878182 0.539103 0.526875 0.045*
H9C 0.862385 0.469110 0.440132 0.045*
C10 0.72720 (16) 0.77408 (10) 0.38331 (7) 0.0204 (3)
C11 0.85150 (16) 0.85390 (10) 0.34781 (8) 0.0206 (3)
C12 0.79937 (18) 0.96224 (11) 0.32518 (8) 0.0237 (3)
H12A 0.686828 0.982661 0.330513 0.028*
C13 0.91308 (19) 1.04000 (11) 0.29482 (9) 0.0286 (3)
H13A 0.878073 1.114116 0.280093 0.034*
C14 1.07716 (19) 1.01054 (12) 0.28578 (9) 0.0303 (3)
H14A 1.153904 1.064064 0.264420 0.036*
C15 1.12937 (17) 0.90223 (13) 0.30810 (9) 0.0294 (3)
H15A 1.241701 0.881748 0.301761 0.035*
C16 1.01703 (17) 0.82427 (11) 0.33962 (8) 0.0243 (3)
H16A 1.052798 0.750788 0.355613 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0290 (7) 0.0303 (7) 0.0325 (7) −0.0065 (6) 0.0030 (6) 0.0020 (6)
O1 0.0265 (4) 0.0206 (4) 0.0298 (5) 0.0050 (4) −0.0010 (4) −0.0022 (4)
C2 0.0284 (7) 0.0248 (6) 0.0249 (6) −0.0012 (5) 0.0023 (5) 0.0032 (5)
O2 0.0317 (5) 0.0244 (4) 0.0211 (4) −0.0027 (4) 0.0034 (4) −0.0001 (3)
C3 0.0220 (6) 0.0199 (6) 0.0210 (6) 0.0009 (5) 0.0000 (5) 0.0011 (5)
O3 0.0210 (4) 0.0178 (4) 0.0289 (5) −0.0008 (4) 0.0021 (4) 0.0021 (4)
C4 0.0197 (5) 0.0207 (6) 0.0197 (5) 0.0004 (5) 0.0012 (5) −0.0017 (5)
O4 0.0226 (4) 0.0211 (4) 0.0326 (5) 0.0007 (4) 0.0033 (4) −0.0017 (4)
C5 0.0215 (6) 0.0146 (5) 0.0224 (6) 0.0040 (5) 0.0012 (5) 0.0001 (5)
C6 0.0210 (6) 0.0199 (6) 0.0234 (6) −0.0018 (5) 0.0013 (5) 0.0028 (5)
C7 0.0377 (8) 0.0236 (6) 0.0426 (8) 0.0051 (6) 0.0039 (7) −0.0090 (6)
C8 0.0234 (6) 0.0264 (7) 0.0339 (7) 0.0053 (5) 0.0006 (6) −0.0059 (5)
C9 0.0233 (6) 0.0279 (7) 0.0382 (7) −0.0005 (6) −0.0036 (6) 0.0095 (6)
C10 0.0244 (6) 0.0174 (5) 0.0196 (6) −0.0006 (5) −0.0008 (5) −0.0030 (5)
C11 0.0245 (6) 0.0192 (6) 0.0180 (6) −0.0020 (5) 0.0002 (5) −0.0034 (5)
C12 0.0277 (7) 0.0209 (6) 0.0226 (6) 0.0005 (5) 0.0004 (5) −0.0015 (5)
C13 0.0389 (7) 0.0214 (6) 0.0256 (6) −0.0034 (6) 0.0022 (6) 0.0009 (5)
C14 0.0354 (7) 0.0296 (7) 0.0260 (6) −0.0119 (6) 0.0064 (6) −0.0015 (5)
C15 0.0252 (7) 0.0340 (7) 0.0291 (7) −0.0038 (6) 0.0038 (5) −0.0049 (6)
C16 0.0257 (6) 0.0236 (6) 0.0235 (6) −0.0003 (5) 0.0003 (5) −0.0026 (5)

Geometric parameters (Å, º)

C1—C2 1.313 (2) C7—H7B 0.9800
C1—H1A 0.9500 C7—H7C 0.9800
C1—H1B 0.9500 C8—H8A 0.9800
O1—C7 1.4220 (17) C8—H8B 0.9800
O1—C3 1.4347 (15) C8—H8C 0.9800
C2—C3 1.5001 (18) C9—H9A 0.9800
C2—H2A 0.9500 C9—H9B 0.9800
O2—C5 1.2087 (16) C9—H9C 0.9800
C3—C4 1.5261 (17) C10—C11 1.4911 (18)
C3—H3A 1.0000 C11—C12 1.3953 (18)
O3—C10 1.3477 (15) C11—C16 1.3965 (19)
O3—C6 1.4438 (15) C12—C13 1.3883 (19)
C4—C5 1.5215 (17) C12—H12A 0.9500
C4—C8 1.5357 (17) C13—C14 1.386 (2)
C4—H4A 1.0000 C13—H13A 0.9500
O4—C10 1.2089 (16) C14—C15 1.394 (2)
C5—C6 1.5199 (17) C14—H14A 0.9500
C6—C9 1.5188 (18) C15—C16 1.389 (2)
C6—H6A 1.0000 C15—H15A 0.9500
C7—H7A 0.9800 C16—H16A 0.9500
C2—C1—H1A 120.0 H7B—C7—H7C 109.5
C2—C1—H1B 120.0 C4—C8—H8A 109.5
H1A—C1—H1B 120.0 C4—C8—H8B 109.5
C7—O1—C3 112.20 (11) H8A—C8—H8B 109.5
C1—C2—C3 124.65 (12) C4—C8—H8C 109.5
C1—C2—H2A 117.7 H8A—C8—H8C 109.5
C3—C2—H2A 117.7 H8B—C8—H8C 109.5
O1—C3—C2 110.60 (10) C6—C9—H9A 109.5
O1—C3—C4 105.50 (10) C6—C9—H9B 109.5
C2—C3—C4 112.85 (10) H9A—C9—H9B 109.5
O1—C3—H3A 109.3 C6—C9—H9C 109.5
C2—C3—H3A 109.3 H9A—C9—H9C 109.5
C4—C3—H3A 109.3 H9B—C9—H9C 109.5
C10—O3—C6 115.73 (10) O4—C10—O3 123.58 (12)
C5—C4—C3 109.85 (10) O4—C10—C11 124.96 (12)
C5—C4—C8 107.29 (10) O3—C10—C11 111.42 (11)
C3—C4—C8 112.31 (10) C12—C11—C16 119.97 (12)
C5—C4—H4A 109.1 C12—C11—C10 118.07 (12)
C3—C4—H4A 109.1 C16—C11—C10 121.92 (12)
C8—C4—H4A 109.1 C13—C12—C11 119.56 (13)
O2—C5—C6 122.72 (12) C13—C12—H12A 120.2
O2—C5—C4 122.56 (12) C11—C12—H12A 120.2
C6—C5—C4 114.69 (10) C14—C13—C12 120.64 (13)
O3—C6—C9 106.34 (10) C14—C13—H13A 119.7
O3—C6—C5 111.60 (10) C12—C13—H13A 119.7
C9—C6—C5 111.27 (11) C13—C14—C15 119.88 (13)
O3—C6—H6A 109.2 C13—C14—H14A 120.1
C9—C6—H6A 109.2 C15—C14—H14A 120.1
C5—C6—H6A 109.2 C16—C15—C14 119.95 (13)
O1—C7—H7A 109.5 C16—C15—H15A 120.0
O1—C7—H7B 109.5 C14—C15—H15A 120.0
H7A—C7—H7B 109.5 C15—C16—C11 120.00 (13)
O1—C7—H7C 109.5 C15—C16—H16A 120.0
H7A—C7—H7C 109.5 C11—C16—H16A 120.0
C7—O1—C3—C2 75.42 (14) O2—C5—C6—C9 −102.56 (14)
C7—O1—C3—C4 −162.25 (11) C4—C5—C6—C9 79.43 (13)
C1—C2—C3—O1 −121.33 (15) C6—O3—C10—O4 −4.44 (17)
C1—C2—C3—C4 120.75 (15) C6—O3—C10—C11 173.50 (10)
O1—C3—C4—C5 58.00 (12) O4—C10—C11—C12 1.17 (19)
C2—C3—C4—C5 178.86 (10) O3—C10—C11—C12 −176.74 (11)
O1—C3—C4—C8 177.32 (10) O4—C10—C11—C16 178.96 (13)
C2—C3—C4—C8 −61.81 (14) O3—C10—C11—C16 1.06 (16)
C3—C4—C5—O2 46.33 (16) C16—C11—C12—C13 −0.16 (19)
C8—C4—C5—O2 −76.02 (15) C10—C11—C12—C13 177.67 (11)
C3—C4—C5—C6 −135.66 (10) C11—C12—C13—C14 0.8 (2)
C8—C4—C5—C6 101.99 (12) C12—C13—C14—C15 −0.6 (2)
C10—O3—C6—C9 −167.80 (11) C13—C14—C15—C16 −0.2 (2)
C10—O3—C6—C5 70.68 (13) C14—C15—C16—C11 0.9 (2)
O2—C5—C6—O3 16.05 (17) C12—C11—C16—C15 −0.70 (19)
C4—C5—C6—O3 −161.96 (10) C10—C11—C16—C15 −178.45 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14A···O2i 0.95 2.54 3.2838 (18) 135

Symmetry code: (i) −x+2, y+1/2, −z+1/2.

Funding Statement

The TU Dortmund and the DFG are gratefully acknowledged for financial support.

References

  1. Bruker (2016). APEX3, SAINT and SADABS (version 2016/2). Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Che, Y., Gloer, J. B. & Wicklow, D. T. (2004). Org. Lett. 6, 1249–1252. [DOI] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Kiedrowski, V. von, Quentin, F. & Hiersemann, M. (2017). Org. Lett. 19, 4391–4394. [DOI] [PubMed]
  5. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  6. Paterson, I. (1998). Synthesis, pp. 639–652.
  7. Paterson, I., Wallace, D. J. & Velázquez, S. M. (1994). Tetrahedron Lett. 35, 9083–9086.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  10. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  11. Shiono, Y., Shibuya, F., Murayama, T., Koseki, T., Poumale, H. M. P. & Ngadjui, B. T. (2013). Z. Naturfosch. Teil B, 68, 289–292.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314621009512/hb4390sup1.cif

x-06-x210951-sup1.cif (837.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621009512/hb4390Isup2.hkl

x-06-x210951-Isup2.hkl (246KB, hkl)

Supporting information file. DOI: 10.1107/S2414314621009512/hb4390Isup3.cdx

Supporting information file. DOI: 10.1107/S2414314621009512/hb4390Isup4.cml

CCDC reference: 2109383

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES