Skip to main content
Pharmacology Research & Perspectives logoLink to Pharmacology Research & Perspectives
. 2022 Sep 19;10(5):e01008. doi: 10.1002/prp2.1008

Prescribing cascades in community‐dwelling adults: A systematic review

Ann S Doherty 1, Faiza Shahid 2, Frank Moriarty 3, Fiona Boland 1,4, Barbara Clyne 1, Tobias Dreischulte 2, Tom Fahey 1, Seán P Kennelly 5,6, Emma Wallace 7,
PMCID: PMC9485823  PMID: 36123967

Abstract

The misattribution of an adverse drug reaction (ADR) as a symptom or illness can lead to the prescribing of additional medication, referred to as a prescribing cascade. The aim of this systematic review is to identify published prescribing cascades in community‐dwelling adults. A systematic review was reported in line with the PRISMA guidelines and pre‐registered with PROSPERO. Electronic databases (Medline [Ovid], EMBASE, PsycINFO, CINAHL, Cochrane Library) and grey literature sources were searched. Inclusion criteria: community‐dwelling adults; risk‐prescription medication; outcomes‐initiation of new medicine to “treat” or reduce ADR risk; study type‐cohort, cross‐sectional, case‐control, and case‐series studies. Title/abstract screening, full‐text screening, data extraction, and methodological quality assessment were conducted independently in duplicate. A narrative synthesis was conducted. A total of 101 studies (reported in 103 publications) were included. Study sample sizes ranged from 126 to 11 593 989 participants and 15 studies examined older adults specifically (≥60 years). Seventy‐eight of 101 studies reported a potential prescribing cascade including calcium channel blockers to loop diuretic (n = 5), amiodarone to levothyroxine (n = 5), inhaled corticosteroid to topical antifungal (n = 4), antipsychotic to anti‐Parkinson drug (n = 4), and acetylcholinesterase inhibitor to urinary incontinence drugs (n = 4). Identified prescribing cascades occurred within three months to one year following initial medication. Methodological quality varied across included studies. Prescribing cascades occur for a broad range of medications. ADRs should be included in the differential diagnosis for patients presenting with new symptoms, particularly older adults and those who started a new medication in the preceding 12 months.

Keywords: appropriate prescribing, community‐dwelling adults, prescribing cascades, systematic review


Prescribing cascades in community dwelling adults: Systematic review.

graphic file with name PRP2-10-e01008-g004.jpg


Abbreviations

ADR

adverse drug reaction

ATC

Anatomical Therapeutic Classification

CCB

calcium channel blocker

ED

Emergency Departments

PRISMA

Preferred Reporting Items for Systematic Reviews and Meta‐analysis

TRIP

Turning Research Into Practice

1. BACKGROUND

A prescribing cascade occurs when a medication is used to treat or prevent the adverse effects of another medication. 1 , 2 , 3 An unintentional prescribing cascade occurs when the adverse drug reaction (ADR) is misinterpreted as a new medical condition, leading to the prescription of new medication to treat the emerging symptoms. 4 For example, calcium channel blocker (CCB) induced lower extremity oedema may be misinterpreted as a sign of congestive heart failure and result in the inappropriate prescribing of a loop diuretic to alleviate the oedema instead of simply switching the CCB to an alternative class antihypertensive agent. 5 , 6 , 7 Intentional prescribing cascades occur when the ADR is recognised and a subsequent medication is prescribed to combat this ADR either via treatment of the ADR or prevention of it in the first instance. 4 Prescribing cascades can be further characterised as either appropriate (potential benefits>risks), or inappropriate (risks>potential benefits). 4 Furthermore, this characterisation of appropriateness is a dynamic entity; an appropriate prescribing cascade can become inappropriate over time, particularly should the clinical circumstances of the patient change. 4

It is not clear what drives prescribing cascades. Older adults may be more vulnerable due to the nonspecific nature of ADR symptoms in older adults, e.g. falls, fatigue or constipation, all of which have multiple potential causes. 8 Multimorbidity, which is more common in older adults, may also make the identification of new onset ADRs more challenging. 9 , 10 However, the failure to correctly identify an ADR and the resultant prescribing cascade compounds the risk for medication‐related harm.

To date prescribing cascades have remained under‐researched. A previous scoping review identified only 10 original investigations and seven case reports that examined prescribing cascades. 11 In order to optimise prescribing, it is vital that clinically relevant prescribing cascades that commonly occur in practice are identified. The objective of this systematic review was to identify published prescribing cascades in community‐dwelling adults.

2. MATERIALS AND METHODS

2.1. Search protocol

The study protocol was previously published 12 and pre‐registered with PROSPERO [CRD42021243163]. 13 This study was reported according to the Preferred Reporting Items for Systematic Reviews and Meta‐analysis (PRISMA) guidelines. 14 , 15 (eTable 1 and eTable 2 in Appendix S1).

2.2. Search strategy

Searches were conducted in the following databases: Medline (Ovid), EMBASE, PsycInfo, CINAHL and the Cochrane Library. Searches were initially conducted from inception to March 2021 and updated in February 2022. The search strategy (eBox 1 in Appendix S1) was developed in consultation with an experienced librarian. No restrictions were placed on language or publication year. Grey literature database searches were conducted in MedNar, Dart Europe, Open Grey, and the Turning Research Into Practice (TRIP) databases using keyword searches. Forwards and backwards citation searching of articles selected for full text review was also conducted. Retrieved results were exported to EndNote X9 prior to screening and study selection using Covidence® systematic review management system. Following duplicates removal, titles and abstracts were independently screened by two reviewers (AD and EW, OC or FS) according to inclusion criteria. Disagreements were managed by consensus. Additional information was sought from study authors where necessary.

Studies were included if they met the following criteria:

  1. Population: community‐dwelling adults (≥18 years).

  2. Risk: prescription of medication that had the potential to cause an ADR that resulted in the prescription of further medication.

  3. Outcome: prescribing cascade defined as the initiation of a new medication to ‘treat’ an ADR (unintentional cascade) or to reduce the risk of an ADR (intentional cascade).

  4. Study type: prospective or retrospective cohort, cross‐sectional, case‐crossover, case–control or case‐series studies.

  5. Setting: primary care and community settings, including ambulatory care.

2.2.1. Exclusion criteria

The following studies were excluded;

  1. Population of interest <18 years;

  2. Studies conducted solely in nursing homes, residential care, inpatient settings or Emergency Departments (ED);

  3. Case reports

2.3. Data extraction and quality assessment

Data extraction was conducted by two independent reviewers (AD and EW, OC or FS) using a standardised Microsoft Excel proforma. (see eBox 2, Appendix S1). The methodological quality of included publications was independently performed in duplicate (AD and EW, OC or FS) using the appropriate JBI‐ Critical Appraisal checklist (eBox 3, Appendix S1). Data synthesis was conducted using a narrative synthesis. Alluvial plots of drug pair combinations were created, using R‐Studio 2021.09.2 statistical software using the ggalluvial package, to identify the drug‐pair combinations examined and to summarise the overall quantitative association reported.

3. RESULTS

3.1. Study identification

The study identification flow diagram is presented in Figure 1. A total of 103 publications relating to 101 studies met the inclusion criteria. Three publications included data from the same study relating to updated data collection time periods (2000–2006; 2000–2010; and 2000–2012). 16 , 17 , 18 Thus, only the final study publication, 18 which contained the entire data collection period, was included in the narrative synthesis.

FIGURE 1.

FIGURE 1

PRISMA flow diagram of included studies.

3.2. Study population demographics

Seventy‐nine studies presented study participants demographics, of which 15 specifically examined older adults (≥60 years), with different age‐related thresholds (e.g. ≥60; ≥65; ≥66 years) used across studies. 5 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 Thirteen studies reported analyses stratified by age. 7 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 Total study sample sizes ranged from 126 45 to 11 593 989 46 participants. (See eTable 3, Appendix S1).

3.3. Methodological approach to analysis

Most studies (n = 88) were retrospective cohort studies, 5 , 7 , 18 , 21 , 23 , 24 , 25 , 26 , 27 , 29 , 30 , 31 , 32 , 33 , 34 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 104 , 105 , 106 , 107 , 108 , 109 , 110 , 111 , 112 , 113 three of which incorporated a case–control study within the study design 49 , 85 , 110 and one that conducted a preliminary cross‐sectional study. 112 Five were case–control studies, 19 , 20 five cross‐sectional studies, 6 , 46 , 114 , 115 , 116 and three case‐crossover studies. 45 , 117 , 118 All studies used routine data (health insurance claims, prescription dispensing, clinical databases, national health surveys and pharmacovigilance data). In total, 83 studies examined dispensed prescriptions whereas 18 studies examined prescribed medications (see eTable 3, Appendix S1).

Of 101 studies, 62 used prescription sequence symmetry analysis (PSSA) to determine the ratio of participants who initiated two medications in both possible sequences (i.e. Drug A → Drug B vs. Drug B → Drug A), with the majority (n = 52) adjusting for prescribing trends.

Several studies reported stratified results by dosage, 5 , 7 , 28 , 29 , 39 concomitant medication use or polypharmacy, 7 , 40 , 44 , 85 , 104 duration, 32 , 94 comorbidity, 36 , 38 , 40 , 44 race 34 and nursing home residence. 26 For other studies, analyses were adjusted by age, 20 , 22 , 24 , 30 , 52 , 71 , 89 sex, 20 , 22 , 24 , 30 , 52 , 71 , 73 , 82 race, 22 , 24 dose, 52 , 71 nursing home residence, 22 concomitant medication or polypharmacy, 22 , 52 , 71 comorbidity, 24 with some studies conducting adjusted analyses but not reporting the independent association of these covariates. 23 , 27 , 31 , 88 , 117 , 118

Length of follow up ranged from one month 55 , 91 , 107 , 118 to seven years, 113 with the majority over one year (n = 33 studies).

3.4. Initial medication(s) prescribed to patient

A broad range of medication types were examined as potentially precipitating a prescribing cascade (see Table 1 and column 1, Figure 2A). Ninety‐four studies were hypothesis‐driven or examined a predefined list of medications (Table 2 and Figure 2A). Seven studies conducting exploratory analyses to identify new signals of potential prescribing cascades are not represented in Figure 2. 68 , 75 , 78 , 87 , 101 , 102 , 106 Initial medication Anatomical Therapeutic Classification (ATC) codes were not reported for 66 studies and were assigned by our research team.

TABLE 1.

Primary results of included studies by ATC pharmacological classification (n = 101)

Primary author (year) Initial medication(s) Suspected ADR New medication(s) Quantitative association (primary analysis or association at 1 year)
Alimentary tract and metabolism
Adimadhyam (2019) 47 Sodium/Glucose cotransporter‐2 inhibitors (SGLT2‐I) Genital mycotic infections Antifungal

PSSA SGLT2‐I → Antifungal ± 365 days

aSR 1.24 (95%CI 1.20–1.28)

Avorn (1995) a , 20 Metoclopramide Extrapyramidal symptoms (EPS) Anti‐Parkinson drug (APD)

Metoclopramide → APD (<90 days)

aOR 3.04 (95%CI 2.22–4.17)

Gadzhanova (2017) 88

SGLT2‐I

Dipeptidyl peptidase 4 inhibitor (DPP4‐I)

Urinary or genital infections

Trimethoprim

Nitrofurantoin

Norfloxacin

Risk of UTI (<6 months)

SGLT2‐I users (3.6%) compared to DPP4‐I users (4.9%), aHR 0.90 (95%CI 0.66–1.24)

Risk of genital infections (<6 months)

SGLT2‐I users (2.9%) compared with DPP4‐I users (0.9%), aHR 3.50 (95%CI 1.95–5.89)

Janetzki (2021) 99 PPI Development or exacerbation of chronic obstructive pulmonary disease (COPD) Long‐acting muscarinic antagonist (LAMA) or long‐acting beta‐2 agonist (LABA) listed for the treatment of COPD

PSSA: PPI → LAMA/LABA ± 1 year

Omeprazole: aSR = 1.29 (95%CI 1.22–1.36)

Esomperazole: aSR = 1.25 (95%CI 1.22–1.29)

Rabeprazole: aSR = 1.15 (95%CI 1.08–1.21)

Pantoprazole: aSR = 1.08 (95%CI 1.05–1.12)

Lansoprazole: aSR = 1.08 (95%CI 0.96–1.22)

Lund (2021) 111

SGLT2‐I

Glucagon‐like peptide‐1 receptor agonists (GLP1‐RA)

Gout

Any uric acid lowering therapy, colchicine or first hospital diagnosis of gout (composite)

Risk of gout <3 years: intention to treat analysis

HR: 0.58 (0.44 to 0.75) [GLP1‐RA as referent]

Risk of gout <3 years: per‐protocol analysis

HR: 0.48 (0.33 to 0.70) [GLP1‐RA as referent]

PSSA: SGLT2‐I → Gout ± 365 days

aSR 0.63 (95%CI 0.47–0.84)

PSSA: GLP1‐RA → Outcome ± 365 days

aSR 0.94 (95%CI 0.78–1.13)

Park (2018) 32

PPI

Histamine 2 receptor antagonist (H2RA)

Dementia Anti‐dementia medication (secondary outcome)

PSSA: PPI → Anti‐dementia medication ± 3 years

aSR 1.38 (95%Ci 1.28–1.48); n = 3025

PSSA: H2RA → Anti‐dementia medication ± 3 years

aSR 2.35 (2.13–2.59); n = 2308

Roughead (2015) 96

Pioglitazone

Rosiglitazone

Oedema Furosemide

PSSA: Rosiglitazone → Furosemide ± 1 year

Pooled (Australia and Canada): aSR 1.65 (95%CI 1.58–1.72)

Pooled (Asia): aSR 1.21 (95%CI 1.01–1.45)

PSSA: Pioglitazone → Furosemide ± 1 year

Pooled (Australia and Canada): aSR 1.47 (95%CI 1.41–1.91)

Pooled (Asia): aSR 1.11 (95%CI 0.86–1.32)

Roughead (2016) 95 PPI Clostridium difficile infection Oral vancomycin

PSSA: PPI → Oral vancomycin ± 1 year

Pooled estimate: aSR 2.40 (95%CI 1.88–3.05)

Pooled estimate (Asia only): aSR 3.16 (95%CI 1.95–5.10)

Wahab (2014) 113 Rosiglitazone Heart failure Furosemide

PSSA: Rosiglitazone → Furosemide (Jul 2000 to Dec 2007)

aSR = 1.73 (99%CI 1.34–2.24)

Blood and blood forming organs
Hachiken (2013) 109 Low dose aspirin (LDA) Gastrointestinal (GI) complications

H2RAs

PPIs

PSSA: LDA → PPIs ± 365 days

Enteric coated LDA: aSR 1.87 (95% CI 1.26–2.83)

Maura (2018) 93

Direct oral anticoagulants (DOACs; excluding edoxaban)

GI events (composite)

Nausea

Constipation

Depression

Glaucoma

Gastrointestinal medications (composite)

Gastrointestinal medications without acid disorder drugs

Antiemetics

Drugs for constipation

PSSA: DOAC → Gastrointestinal medications (composite± 360 days

aSR 0.95 (95%CI 0.92–0.97); n = 24 916

Apixaban → Gastrointestinal medications ± 360 days

aSR 1.18 (95%CI 1.10–1.26); n = 3440

PSSA: DOAC → Gastrointestinal medications (without acid disorder drugs ± 360 days)

aSR 1.26 (95%CI 1.24–1.29); n = 37 764

PSSA: DOAC → Antiemetic ± 360 days

aSR 1.25 (95%CI 1.22–1.28); n = 27 080

PSSA: DOAC → Drugs for constipation ± 360 days

aSR 1.25 (95%CI 1.22–1.27); n = 43 112

DOAC → Antidepressant medication ± 360 days

aSR 1.26 (95%CI 1.23–1.30); n = 20 613

DOAC → Glaucoma medication ± 360 days

aSR 1.01 (95%CI 0.97–1.05); n = 9473

Takada (2014) 67

Low dose aspirin (LDA)

Enteric coated

Buffered

GI complications

H2RAs

PPIs

PSSA: LDA → PPIs ± 12 months

Enteric‐coated LDA: aSR 1.20 (95%CI 0.97–1.49)

Buffered LDA: aSR 0.59 (95%CI 0.33–1.05)

PSSA: LDA → H2RAs ± 12 months

Enteric‐coated LDA: aSR 0.83 (95%CI 0.67–1.02)

Buffered LDA: aSR 0.78 (95%CI 0.350–1.21)

Yokoyama (2020) 84 Oral anticoagulants Osteoporosis Bisphosphonate

PSSA: Warfarin → Bisphosphonate ± 12 months

aSR 1.43 (95%CI 1.02–2.03); n = 148

Cardiovascular system
Bowman (1995) 73 Angiotensin converting enzyme inhibitor (ACEI) Cough Antitussive

ACEI → Antitussive (<1 year; adjusted)

aOR 1.53 (95%CI 1.17–2.01)

Fujimoto (2014) 50

Statins Lower urinary tract symptoms (LUTS) Drugs for storage LUTS

PSSA: Statins → Drugs for storage LUTS ± 365 days

All statins: aSR 1.17 (95% CI 1.05–1.30)

Pravastatin: aSR 1.27 (95%CI 1.05–1.54)

Statins → Solifenacin: aSR 1.47 (95% CI 1.25–1.73)

Statins → Oxybutynin: aSR 1.71 (95% CI 1.09–2.72)

Gurwitz (1997) 23

Antihypertensive medication

(see Appendix S1)

Gout

Anti‐gout medication

(see Appendix S1)

Antihypertensive → Anti‐gout medication < 365 days

Non‐thiazide antihypertensive alone: aRR 1.00 (95%CI 0.65–1.53)

Thiazide diuretic alone: aRR 1.99 (95%CI 1.21–3.26)

Thiazide diuretic plus non‐thiazide antihypertensive: aRR 2.29 (95%CI 1.55–3.37)

Hallas (1996) 52

Beta blockers

Cardiovascular drugs

(see Appendix S1)

Depression Antidepressants

Beta‐blocker → Antidepressant (study period)

aRR 1.09 (95% CI 0.95, 1.26)

ACEIs → Antidepressant

aRR 1.29 (95% CI 1.08, 1.56)

Calcium channel blockers → Antidepressant

aRR 1.31 (95% CI 1.14, 1.51)

Lindberg & Hallas (1998) 98 Cholesterol‐lowering medication Depression Antidepressants

PSSA: Cholesterol‐lowering drug → Antidepressant (study period)

All drugs: aSR 0.90 (95%CI 0.68–1.22); n = 184

Simvastatin: aSR 1.59 (1.08–2.45); n = 91

Morris (2021) c , 116 Dihydropyridine calcium channel blockers (DH‐CCBs) Oedema Loop diuretic Among 5 458 467 DH CCB users (weighted), 185 130 individuals (3.4% weighted) were identified with new loop diuretic use.
Pouwels (2013) 128 ACEI Urinary tract infection (UTI) Nitrofurantoin

PSSA: ACEI → Nitrofurantoin ± 4 weeks

aSR 1.68 (95% CI 1.21–2.36); n = 161

Pouwels (2014) b , 118 ACEI UTI Nitrofurantoin

ACEI → Nitrofurantoin (<30 days vs < 60–90 days)

Crude OR = 1.84 (95%CI 1.51–2.25)

Pouwels (2016) 69 Statin Infection Antibiotic

PSSA: Statin → Antibiotic ± 13 months

Any antibiotic: aSR 0.86 (95%CI 0.81–0.91)

Pratt (2015) 61 Amiodarone Hypothyroidism Thyroxine

PSSA: Amiodarone → Thyroxine ± 12 months

Pooled aSR 2.63 (95%CI 1.47–4.72)

Savage (2020) 5

Calcium channel blockers (CCBs)

ACEIs or Angiotensin receptor blockers (ARBs) (comparator)

Oedema Loop diuretic

CCB → Loop diuretic < 90 days

Incident CCB users had a higher cumulative incidence of loop diuretic than the comparators (1.4% vs. 0.7% [other antihypertensive comparator] and 0.5% [general comparator], p < .001).

CCB versus other antihypertensive (ACEI or ARB)

1–30 days: aHR 1.68 (95%CI 1.38–2.05)

31–60 days: aHR 2.26 (95%CI 1.76–2.92)

61–90 days: aHR 2.40 (95%CI 1.84–3.13)

91–180 days: aHR 2.24 (95%CI 1.86–2.71)

181–365 days: aHR 1.64 (95%CI 1.38–1.94)

Silwer (2006) 92 Statin Muscle pain NSAID

PSSA: Statin → NSAID ± 365 days

aSR 0.94 (95%CI 0.85–1.05)

Singh (2021) 64 CCBs Lower extremity oedema Diuretics

CCB → Diuretic day 8 → day 365

Cohort 1: 161 incident diuretic users among 3304 incident CCB users (4.9%, 95%CI 4.2–5.7).

Cohort 2: 1586 incident diuretic users among 36 462 prevalent CCB users (1.3%, 95%CI 4.1–4.6).

Cohort 3: 130 incident diuretic use among 2525 participants with polypharmacy at the day of incident CCB dispensing (5.1, 95%CI 4.3–6.0).

Takada (2014) 129 Statins Sleep disturbance Hypnotic drugs

PSS: Statin → Hypnotic drugs ± 365 days

aSR 1.18 (95%CI 1.11–1.25)

Thiessen (1990) e , 112 Beta‐blocker Depression Antidepressants

Beta‐blocker → Antidepressant < 34 days (concurrent use)

Beta‐blocker: RR 2.6 (95%CI 2.3–3.0)

Vegter (2013) 18 ACEI Cough Cough medication

PSSA: ACEI → Cough medication ± 6 months

2000–2012: SR 2.0 (95%CI 1.8–2.2)

Vouri (2018) c , 6 DH‐CCBs Lower extremity oedema Loop diuretic

DH‐CCB → Loop diuretic (2014)

The potential prescribing cascade was identified in 2.2 million visits (4.6%) using the primary definition of prescribing cascade.

Vouri (2019) 7 DH‐CCBs Lower extremity oedema Loop diuretic

PSSA: DH‐CCB → Loop diuretic (2014± 360 days

aSR 1.87 (95%CI 1.84–1.90)

Vouri (2021) 105 DH‐CCBs DH‐CCB induced oedema Loop diuretic

PSSA: DH‐CCB → Loop diuretic ± 360 days

aSR 2.27 (95% CI 1.44–3.58)

Vouri (2021) 104

DH‐CCB

DH‐CCB induced oedema Loop diuretic

PSSA: DH‐CCB → Loop diuretic ± 360 days

Relative to levothyroxine initiators: aSR 1.72 (95%CI 1.66–1.78)

Relative to ACEI/ARBs initiators: aSR 1.45 (1.41–1.49)

Vouri (2022) 36 Beta‐blocker Oedema Loop diuretic

PSSA: Beta‐blocker → Loop diuretic ± 90 days

aSR 1.78 (99%CI 1.72–1.84)

Yokoyama (2021) d , 85 Amiodarone Hypothyroidism Thyroid preparations

PSSA: Amiodarone → Thyroid preparations ± 12 months

aSR 12.8 (95%CI 8.44–20.28)

Dermatologicals
Azoulay (2007) b , 45 Isotretinoin Depression Antidepressants

Isotretinoin → Antidepressant (5 month risk and control windows)

aRR 2.68 (95%CI 1.10–6.48)

Hersom (2003) 72

Isotretinoin

Minocycline

Depression

Antidepressants

(MAOIs excluded)

Isotretinoin → Antidepressant (study period)

aRR 0.97 (95%CI 0.92–1.02)

Minocycline → Antidepressant (study period)

aRR 0.98 (95%CI 0.95–1.02)

Sturkenboom (1995) 65 Acitretin Vulvo‐vaginal infection Vulvo‐vaginal anti‐infective drug

Acitretin → Vulvo‐vaginal anti‐infective (study period)

Pooled Mantel–Haenszel IRR: 3.3 (95%CI 1.1–9.6)

Genito urinary system and sex hormones
Dyson (2020) 33 5‐α reductase inhibitors (5‐ARI) Depression Antidepressant

PSSA: 5‐ARI → Antidepressant ± 365 days

Crude SR 0.84 (95% CI 0.80–0.89)

Hagberg (2017) d , 110

5‐ARI

Alpha blocker (AB)

Depression Antidepressant (<90 days of depression diagnosis)

5ARI → Antidepressant (compared with AB only users)

5‐ARIs only: aIRR = 0.94 (95%CI 0.85–1.04)

5‐ARIs + ABs: aIRR = 1.04 (94%CI 0.89–1.21)

Nested case–control analysis (compared with AB only users)

5‐ARIs only: aOR 0.88 (95%CI 0.78–1.01)

5‐ARIs+ABs: aOR 0.90 (95%CI 0.73–1.10).

Anti‐infectives for systemic use
Corrao (2005) d , 49 Antibacterial drugs for systemic use Arrhythmia triggered by prolonged QT interval Antiarrhythmic

PSSA: Antibacterial → Antiarrhythmic (study period)

Erythromycin aSR 1.78 (95%CI 1.09, 2.89); n = 73

Ciprofloxacin aSR 1.17 (95%CI 1.02, 1.33); n = 870

Cohort analysis (standardised incidence ratios)

Erythromycin: 1.96 (95%CI 1.45–2.59); n = 8956

Clarithromycin: 1.18 (95%CI 1.08–1.29); n = 97 900

Rokitamycin: 1.27 (95%CI 1.00–1.66); n = 15 247

Ciprofloxacin: 1.25 (95%CI 1.14–1.37); n = 58 070

Norfloxacin: 1.17 (95%CI 1.00–1.36); n = 22 421

Levofloxacin: 1.33 (95%CI 1.03–1.38); n = 14 159

Case–control analysis

Erythromycin: OR 1.89 (95%CI 1.33–2.68)

Clarithromycin: OR 1.18 (95%CI 1.04–1.34)

Ciprofloxacin: OR 1.21 (95%CI 1.05–1.39)

Levofloxacin: OR 1.33 (95%CI 1.04–1.70)

Antineoplastic and immunomodulating agents
Farkas (2021) 21 Aromatase inhibitors (AI)

For the treatment of menopausal symptoms

Vasomotor symptoms, vaginal dryness, arthralgias, pain

See Appendix S1

Medication use in 12 months before AI:

Any new side effect medication: 7436 (40.2%)

Opiates 31.5%; SSRIs 16.1%; Gabapentin 7.0%

Medication use in the 24 months after AI:

Any new side effect medication: 13179 (71.2%)

Opiates 55.1%; SSRIs 22.6%; Benzodiazepines 18.4%; Tramadol 17.7%; Gabapentin 14.6%

Musculo‐skeletal system
Gurwitz (1994) a , 22 NSAID Hypertension Antihypertensive

NSAID → Antihypertensive (<365 days)

OR = 2.01 (95%CI 1.89–2.14)

Nervous system
Avorn (1995) a , 19 Neuroleptics Extrapyramidal symptoms APD (excluding amantadine monotherapy)

Any Anti‐Parkinson drug (<90 days)

Any neuroleptic: aOR 5.4 (95%CI 4.8–6.1)

Anticholinergic anti‐Parkinson drug (<90 days)

Any neuroleptic: aOR 8.5 (95%CI 4.8–6.1)

Dopaminergic agent (<90 days)

Any neuroleptic: aOR 2.2 (95%CI 1.9–2.7)

Brandt‐Christensen (2007) 37

APD

Control 1: Antidiabetics

Control 2: unexposed

Depression Antidepressants

Anti‐Parkinson drug → Antidepressant (versus unexposed)

APD cohort: RR 2.10 (95%CI 2.04–2.16)

Antidiabetic cohort: RR 1.34 (95%CI 1.32–1.36)

Dalgard Dunvald (2020) 38 Selective serotonin reuptake inhibitors (SSRI) Restless leg syndrome (RLS)

Dopamine agonist

Quinine

PSSA: SSRI → RLS drug ± 365 days

Any drug: aSR 0.99 (95%CI 0.95–1.02)

Dopamine agonist only: aSR 1.21 (95%CI 1.12–1.32); n = 2267

Gau (2010) a , 130

Lithium

Carbamazepine

Valproate

Hypothyroidism Thyroxine, liothyronine or thyroid hormone and hypothyroidism diagnosis (composite)

Likelihood for incident hypothyroidism (study period)

Lithium: OR 1.41 (95%CI 1.14–1.74)

Carbamazepine: OR 1.37 (95%CI 1.13–1.65)

Valproate: OR 1.72 (95%CI 1.40–2.11)

Gill (2005) 26 Acetylcholinesterase inhibitors (AChEI) Urge urinary incontinence Urinary anticholinergics

AChEI → Anticholinergic

Patients dispensed cholinesterase inhibitors were more likely to receive an anticholinergic medication in follow‐up (4.5% vs. 3.1%; p < .001).

Hirano (2020) 100

Anxiolytic

Hypnotic

Antidepressants

Antipsychotics

EPS Diagnosis of EPS and APD prescription in same month (composite)

PSSA: Psychotropic medication → EPS and APD ± 12 months

Anxiolytic: aSR 2.48 (95%CI 2.16–2.85); n = 992

Hypnotic: aSR 2.28 (95%CI 1.97–2.64); n = 872

Antidepressant: aSR 2.26 (95%CI 1.93–2.66); n = 728

Antipsychotic: aSR 9.24 (95%CI 7.35–11.8); n = 817

Kalisch Ellett (2018) c , 114 Antipsychotics

EPS

Hyperprolactinaemia

Diabetes mellitus

Anticholinergic

Hyperprolactinaemia medications

Oral diabetes medications

Concomitant medication use

Anticholinergic: n = 51 (0.7%)

Hyperprolactinaemia medications: n = 8 (0.1%)

Oral diabetes medicines: n = 874 (11.8%)

Kroger (2015) b , 117 AChEI Urinary incontinence Drugs for urinary frequency and incontinence

AChEI → Drugs for urinary frequency < 90 days

All patients (n = 2700): aHR 1.13 (95%CI 0.97–1.32)

Rivastigmine patients (n = 1853): aHR 1.13 (95%CI 0.95–1.34)

Galantamine patients (n = 1043): aHR 1.10 (95%CI 0.81–1.50)

Lai (2013) 79 Antiepileptic drugs (AEDs) Hypothyroidism Levothyroxine

PSSA: AEDs → Levothyroxine ± 12 months

Any AED: aSR 1.13 (99%CI 1.09–1.18)

Carbamazepine: aSR 1.21 (99%CI 1.08–1.34)

Phenobarbital: aSR 1.25 (99%CI 1.15–1.36)

Phenytoin: aSR 1.75 (99%CI 1.58–1.94)

Valproate: aSR 1.34 (99%CI 1.20–1.49)

Oxcarbazepine: aSR 1.22 (99%CI 1.03–1.46)

Lampela (2016) 44 AChEI or Memantine Urinary incontinence Urinary anticholinergics

AChEI → Urinary anticholinergics (versus memantine users)

<6 months: aHR 1.47 (95%CI 1.17–1.86)

<12 months: aHR 1.41 (95%CI 1.17–1.69)

Marras (2016) 27

Lithium

Valproic acid

Antidepressant

Drug induced tremor diagnosed as Parkinson's Disease (PD)

Anti‐Parkinson drug or PD diagnosis

(see Appendix S1)

Start of dopaminergic drug (no previous antipsychotic use)

Lithium (versus antidepressant): aHR (95%CI 1.06–3.30)

Start of anti‐Parkinson drug or PD diagnosis (no previous antipsychotic use)

Lithium (versus antidepressant): aHR 1.68 (95%CI 1.13–2.48)

Masurkar (2021) 24 AChEI Overactive bladder Urinary anticholinergic

AChEI → Anticholinergic cascade <6 months

Rivastigmine: aHR = 1.0

Donepezil: aHR = 1.55 (95%CI 1.31–1.83)

Galantamine: aHR = 1.17 (95%CI 0.87–1.58)

Movig (2002) 41 SSRI Urinary incontinence Spasmolytic agent or 30 or more units of incontinence wear

SSRI → Spasmolytic agent/incontinence wear <3 month

During SSRI (versus before SSRI): IDR 1.57 (95%CI 1.38–1.79)

During SSRI (versus after SSRI): IDR 2.03 (95%CI 1.76–2.34)

During SSRI (versus before and after SSRI): IDR 1.75 (95%CI 1.56–1.97)

Risk for incontinence during exposed period (versus non‐exposed)

aRR 1.61, 95%CI 1.42–1.82

Narayan (2019) 25

AChEI or

Memantine

Several ADRs examined relating to anticholinergic medication use Anticholinergics (see Appendix S1)

Anti‐dementia drug → Marker medication ± 180 days

Exposed to at least one anticholinergic ±180 days: n = 1439

Exposed to at least one anticholinergic after anti‐dementia drug: n = 416

Onder (2014) c , 46

Anti‐Parkinson drugs and antipsychotics

(concomitant use)

Parkinsonism (side effect of antipsychotics);

Behavioural disorders (side effect of anti‐Parkinson drugs)

Anti‐Parkinson drugs and antipsychotics (concomitant use)

Prevalence of concomitant use of anti‐Parkinson and antipsychotic medication (2011)

Total population: n = 25 949 (0.2%)

65–74 years: n = 10 200 (0.2%)

75–84 years: n = 10 625 (0.2%)

≥ 85 years: n = 5124 (0.3%)

Park (2018) 94 Benzodiazepines Dementia Anti‐dementia drugs

PSSA: Benzodiazepines → Anti‐dementia drugs ± 3 years

aSR 2.19 (95%CI 1.92–2.49); n = 1285

Petri (1988) 55 Flunarizine Depression Antidepressant

Flunarizine → Antidepressant < 30 days

Number of antidepressant starts during or within 30 days after flunarizine use was 5 out of a total of 34 histories

Petri (1990) 57 Flunarizine Depression or Parkinsonism Antidepressant or Anti‐Parkinson drug

Flunarizine → Antidepressant (study period)

Incidence Rate = 1.342 (95%CI 1.00–1.80)

Flunarizine → Anti‐Parkinson drug

In a subset of 777 flunarizine recipients there were 10 participants who received anti‐Parkinson drugs

Pratt (2013) 60 Antipsychotics Acute hyperglycaemia Insulin

PSSA: Olanzapine → Insulin ± 12 months

USA Public: aSR 1.14 (95%CI 1.1–1.17)

Sweden: aSR 1.53 (95%CI 1.13–2.06)

Risperidone → Insulin ± 12 months

USA Public: aSR 1.09 (95%CI 1.07–1.12)

Read (2021) 28 Gabapentinoid Oedema Diuretic

Gabapentinoid → Diuretic < 90 days (versus non‐users)

aHR 1.44 (95%CI 1.23–1.70).

Rochon (2005) 29 Antipsychotic Parkinsonism Anti‐Parkinson drug or Parkinson diagnosis (composite)

Antipsychotic → Anti‐Parkinson drug/diagnosis <1 year (versus atypical antipsychotic)

Typical antipsychotics: adjusted HR 1.30 (95%CI 1.04–1.58)

No therapy: aHR 0.40 (95%CI 0.29–0.43)

Takada (2016) 66 Benzodiazepine Dementia Anti‐dementia drug

PSSA: Benzodiazepine → Anti‐dementia drug ± 12 months

12 months: aSR 1.23 (95%CI 1.11–1.37)

Takeuchi (2015) 43 Atypical antipsychotics Hyperlipidemia Anti‐hyperlipidemic drugs

PSSA: Atypical antipsychotics → Anti‐hyperlipidemic drugs

Olanzapine ±360 days: aSR 2.19 (95%CI 1.55–3.12)

Thacker (2006) 107 AChEI Drug‐induced airways complications Antibacterial and oral corticosteroid

AChEI → Antibacterial and oral corticosteroid <1 month

Fully‐adjusted RR = 1.19 (95%CI 0.52–2.74)

Venalainen (2017) 70 AChEI

Nausea

Dyspepsia

Diarrhoea

Urinary incontinence

Seizures

Anxiety

Insomnia

Depression

Antiemetics

PPIs/H2RAs

Loperamide/Oral rehydration sachets Oxybutynin

Anxiolytics

Anticonvulsants

Hypnotics and sedatives

Antidepressants

AChEI → Marker drug ± 1 year

Loperamide/Oral rehydration: aSR 1.42 (95%CI 1.14–1.77); n = 348

Anxiolytics: aSR 1.16 (95%CI 1.01–1.34); n = 807

Hypnotics and sedatives: aSR 1.19 (95%CI 1.05–1.36); n = 963

Antiemetics: aSR 1.18 (95%CI 1.05–1.32); n = 1202

Anticonvulsants: aSR 1.26 (95%CI 1.03–1.55); n = 389

PPI/H2RAs: aSR 0.87 (95%CI 0.77–0.98), n = 1079

Antidepressant: aSR 0.77 (95%CI 0.70–0.85), n = 1698

Oxybutynin: aSR 1.04 (95%CI 0.81–1.34), n = 261

Vouri (2020) c , 131 AChEI or Memantine Rhinorrhea

Rhinorrhea medications

(see Appendix S1)

AChEI/Memantine → Rhinorrhea medications (concomitant use)

AChEI users were more likely to use a rhinorrhea medication compared to non‐AChEI users, OR 7.16 (95%CI 2.25–22.73); adjusted OR = 4.7 (95%CI 1.53–14.43)

Wang (2021) 80 Varenicline

Neuropsychiatric adverse events: Depression

Anxiety

Sleep disorders

Antidepressant

Anxiolytics

Hypnotics and sedatives

(composite outcome)

PSSA: Varenicline → Any NPAE drug ± 365 days

aSR 1.00 (95%CI 0.89–1.13)

PSSA: Varenicline → Hypnotics and sedatives ± 365 days

Sleep disorder drug: aSR = 1.25 (95% CI 1.05–1.48)

Wang (2021) 42

Varenicline

(Nicotine replacement therapy [NRT] as comparator)

Neuropsychiatric adverse events: Depression

Anxiety

Insomnia

Antidepressants

Antidepressants in combination with psycholeptics

Anxiolytics

Hypnotics and sedatives

(composite outcome)

General population with psychiatric disorders < 24 weeks

Any NPAE medication: adjusted OR 0.82 (95% CI 0.68 to 0.99)

General population without psychiatric disorders < 24 weeks

Any NPAE medication: adjusted OR 0.85, (95% CI 0.72 to 1.00)

COPD population with psychiatric disorders < 24 weeks

Any NPAE medication: adjusted OR 0.97 (95% CI 0.66 to 1.44)

COPD population without psychiatric disorders < 24 weeks

Any NPAE medication: adjusted OR 0.81 (95% CI 0.54 to 1.20)

Yokoyama (2020) 86 Antipsychotics Osteoporosis Bisphosphonate

PSSA: Antipsychotic → Bisphosphonate

No association identified.

Respiratory system
Fox (2022) 34 Montelukast Neuropsychiatric adverse events (NPAE)

Antidepressants Benzodiazepines

Hypnotics

Antipsychotics

Mood stabilisers

Buspirone

(composite outcome)

PSSA: Montelukast → Any NPAE medication ± 14–365 days

SR 0.84 (95%CI 0.80–0.89)

Henriksen (2017) 39 Inhaled corticosteroids Oral candidiasis Systemic or topical antifungal

PSSA: Inhaled corticosteroid → Topical antifungal ± 12 months

Crude SR 2.89 (95%CI 2.80–2.97)

PSSA: Inhaled corticosteroid → Systemic antifungal ± 12 months

Crude SR 1.50 (95%CI 1.46–1.54)

Petri (1991) 56 Inhaled corticosteroids Oral candidiasis Topical antifungal

Inhaled corticosteroids → Topical antifungal < 90 days

Crude OR = 1.66 (n = 21)

Van Boven (2013) 71 Inhaled corticosteroids Oral candidiasis Topical antifungal

PSSA: Inhaled corticosteroids → Topical antifungal ± 12 months

Crude SR 1.94 (95%CI 1.71–2.21)

Winkel (2018) 40 Montelukast Depression Antidepressant (excluding bupropion)

PSSA: Montelukast → Antidepressant ± 1 year

Crude SR 1.19 (95%CI 1.11–1.28)

Sensory organs
Roughead (2012) 97

Timolol

Latanoprost

Bimatoprost

Pilocarpine

Brimonidine

Exacerbation of airways disease

Exacerbation of depression

Inhaled beta‐agonists

Inhaled corticosteroids

Oral corticosteroids

SSRI

PSSA: Glaucoma → marker medications ± 1 year

Timolol → Inhaled beta agonist: aSR 1.48 (95%CI 1.22–1.78); n = 786

Timolol → Inhaled corticosteroid: aSR 1.43 (95%CI 1.13–1.81); n = 494

Latanoprost → Inhaled beta agonist: aSR 1.24 (95%CI 1.11–1.38); n = 2251

Latanoprost → Oral corticosteroid: aSR 1.14 (95%CI 1.00–1.29); n = 1671

Timolol → Antidepressant: aSR 1.24 (95%CI 1.07–1.43); n = 1253

Timolol → SSRI: aSR 1.30 (95%CI 1.08–1.56); n = 791

Latanoprost → Antidepressant: aSR 1.16 (95%CI 1.03–1.31); n = 1871

Latanoprost → SSRI: aSR 1.20 (95%CI 1.03–1.39); n = 1155

Multiple medication groups examined
Brandt‐Christensen (2006) 82

Antidepressant

Lithium

Antidiabetic

Parkinsonism

APD

(see Appendix S1 for exclusions)

Index drug → Anti‐Parkinson drug (versus unexposed)

Antidepressant: RR 1.79 (95%CI 1.72–1.86)

Lithium: RR 1.88 (95%CI 1.60–2.20)

Antidiabetic: RR 0.80 (95%CI 0.74–0.86)

Bytzer & Hallas (2000) 81 Predefined list of 32 index medications (see Appendix S1) Dyspepsia or nausea Cisapride or Metoclopramide

PSSA: Index medication → Cisapride < 100 days

NSAIDS: aSR = 1.33 (95%CI 1.02–1.77); n = 211

Methylxanthines: aSR = 2.36 (1.00–8.44); n = 18

PSSA: Index medication → Metoclopramide < 100 days

Insulin aSR 2.91 (95%CI 1.40–8.11); n = 28

Opioids: aSR 2.84 (95%CI 2.48–3.28); n = 1017

Potassium supplement: 1.42 (95%CI 1.15–1.79); n = 324

Digoxin: 2.87 (95%CI 2.01–4.35); n = 138

Nitrates: 1.74 (95%CI 1.16–2.77); n = 88

Loop diuretics: 1.50 (95%CI 1.23–1.85); n = 383

ACEIs: 2.27 (95%CI 1.46–3.85); n = 77

Oral corticosteroids: 1.33 (95%CI 1.11–1.60); n = 458

Antibiotics: 1.40 (95%CI 1.24–1.60); n = 974

Penicillins: 1.38 (95%CI 1.21–1.59); n = 868

Macrolides: 1.58 (95%CI 1.31–1.94); n = 414

NSAIDs: 1.48 (95%CI 1.28–1.74); n = 676

Asthma drugs: 1.42 (95%CI 1.14–1.79); n = 307

Methylxanthines: 2.03 (95%CI 1.25–3.65); n = 63

Caughey (2010) 48

Medicines commonly associated with dizziness identified

(see Appendix S1)

Dizziness Prochlorperazine

PSSA: Index medication → Prochlorperazine ± 12 months

Cardiac therapy: aSR = 1.14 (95%CI 1.06–1.22); n = 3017

Nitrates: aSR = 1.11 (95%CI 1.03–1.21); n = 2224

Isosorbide mononitrate: aSR = 1.21 (95%CI 1.07–1.38); n = 918

Diuretic: aSR = 1.07 (95%CI 1.01–1.14); n = 3845

Beta‐blocker: aSR = 1.13 (95%CI 1.05–1.21); n = 3156

CCBs: aSR = 1.22 (95%CI 1.16–1.36); n = 2696

ACE inhibitors: aSR = 1.22 (95%CI 1.14–1.31); n = 3162

AR2B: aSR = 1.20 (95%CI 1.11–1.30); n = 2577

Statins: aSR = 1.50 (95%CI 1.40–1.61); n = 3411

NSAIDs: aSR = 1.37 (95%CI 1.27–1.47); n = 3079

Opioids: aSR = 1.24 (95%CI 1.17–1.31); n = 5266

Sedatives: aSR = 1.18 (95%CI 1.11–1.26); n = 3470

de Jong (2003) 108 Antidepressant with or without NSAID GI adverse effects

H2RAs

PPIs

Prostaglandins

Antidepressant → Ulcer drugs (compared with TCA only)

SSRI: IRR 1.2 (95%CI 0.5–2.8); n = 1181

SSRI + NSAID: IRR 12.4 (95%CI 3.2–48.0); n = 86

Garrison (2012) 51

Statin

Diuretic

Inhaled long‐acting beta‐agonists (LABA)

Nocturnal leg cramps Quinine

PSSA: Index drug → Quinine ± 1 year

All statins: aSR 1.16 (95%CI 1.04–1.29); n = 1326

All LABAs: aSR 2.42 (95%CI 2.02–2.89); n = 576

LABA alone: aSR 2.17 (95%CI 1.56–3.02); n = 137

LABA‐corticosteroid: aSR 2.55 (95%CI 2.06–3.12); n = 439

All diuretics: aSR 1.47 (95%CI 1.33–1.63); n = 1590

Loop diuretic: aSR 1.20 (95%CI 1.00–1.44); n = 447

Thiazide diuretic: aSR 1.48 (95%CI 1.29–1.68); n = 977

Potassium‐sparing diuretic: aSR 2.12 (95%CI 1.61–2.78); n = 206

Hallas & Bytzer (1998) 89 Predefined list of 33 medications (see Appendix S1) Dyspepsia Ulcer drug prescription

PSSA: Index drug → Ulcer drug prescription ± 100 days

NSAIDs: aSR 1.80 (95%CI 1.64–1.99)

CCBs: aSR 1.40 (95%CI 1.18–1.67)

Oral corticosteroids: aSR 1.15 (95%CI 1.02–1.30)

ACEIs: aSR 1.38 (1.12–1.73)

Methylxanthines: aSR 1.49 (1.05–2.19)

Hashimoto (2015) 53

Medicines that cause storage symptoms;

Medicines that cause voiding symptoms

LUTS Medications for (LUTS)

PSSA: Index drug → Medications for LUTs ± 12 months

Oxycodone: aSR 1.20 (95%CI 1.03–1.41)

Morphine: aSR: 1.29 (95%CI 1.14–1.45)

Donepezil: aSR: 1.98 (95%CI 1.57–2.50)

Intestinal lavage solution: aSR 1.86 (95%CI 1.65–2.10)

Cyclophosphamide: aSR 1.52 (95%CI 1.14–2.04)

Levodopa/benserazide: aSR 1.82 (95%CI 1.18–2.81)

Amantadine: aSR 1.53 (95%CI 1.12–2.09)

Paroxetine: aSR 1.77 (95%CI 1.33–2.36)

Milnacipran: aSR 2.10 (95%CI 1.28–3.45)

Diazepam: aSR 1.73 (95%CI 1.46–2.06)

Risperidone: aSR 1.55 (95%CI 1.34–1.79)

Levomepromazine: aSR 2.20 (95%CI 1.34–1.79)

Sulpiride: aSR 1.32 (95%CI 1.01–1.72)

Cimetidine: aSR 1.99 (95%CI 1.24–3.20)

Scopolamine butylbromide: aSR 1.72 (95%CI 1.55–1.92)

Tiotropium bromide: aSR 1.75 (95%CI 1.42–2.16)

Cibenzoline: sSR 2.97 (95%CI 1.92–4.59)

Amezinium metilsufate: aSR 1.89 (95%CI 1.10–3.26)

Huh (2019) 31 Metoclopramide or levosulpiride Drug induced Parkinsonism Levodopa

PSSA: Metoclopramide → Levodopa < 90 days

aOR 2.94 (95%CI 2.35, 3.67)

PSSA: Levosulpiride → Levodopa < 90 days

aOR 3.30 (95%CI 2.52, 4.32)

Kalisch Ellett (2014) 74 See Appendix S1 Urinary incontinence Oxybutynin

PSSA: Index medication → Oxybutynin ± 12 months

Prazosin (women only): aSR 1.84 (95%CI 1.29–2.63); n = 135

Low‐ceiling diuretics, excluding thiazides: aSR 1.22 (95%CI 1.06–1.41); n = 750

CCBs: aSR 1.45 (95%CI 1.33–1.57); n = 2230

ACEIs: aSR 1.28 (95%CI 1.19–1.39); n = 2616

ACEIs + diuretic: aSR 1.35 (1.15–1.58); n = 620

ARBs: aSR 1.42 (1.30–1.55); n = 2040

ARB+ diuretic: aSR 1.32 (1.16–1.49); n = 999

HRT: aSR 1.54 (95%CI 1.42–1.67); n = 2446

Antipsychotics: aSR 0.83 (95%CI 0.78–0.89); n = 2121

Hypnotic sedatives: aSR 1.10 (95%CI 1.03–1.18); n = 3326

Kim (2019) a , 119

Propulsives

Antipsychotics

Antivertigo agent

(see Appendix S1)

Drug induced Parkinsonism

APD or Parkinson diagnosis (composite)

(see Appendix S1)

Index medication → Anti‐Parkinson drug/diagnosis <1 year

Levosulpiride: OR 4.3 (95%CI 3.5–5.3); n = 595

Mosapride: OR 2.1 (95%CI 1.7–2.6); n = 430

Domperidone: OR 2.1 (95%CI 1.6–2.8); n = 247

Metoclopramide: OR 2.7 (95%CI 1.8–4.1); n = 121

Itopride: OR 1.6 (95%CI 1.2–2.2); n = 232

Clebopride: OR 12.8 (95%CI 2.8–57.0); n = 19

Combined propulsive use: OR 3.9 (95%CI 2.8–5.5); n = 219

Typical antipsychotic: OR 6.4 (95%CI 1.4–28.2); n = 17

Atypical antipsychotic: OR 2.4 (95%CI 1.2–4.9); n = 56

Risperidone: OR 13.5 (95%CI 1.8–102.1); n = 23

Flunarizine: OR 5.0 (95%CI 2.7–9.0); n = 86

Ko (2019) 76

Statins

Statins

Skin and soft tissue infection

New onset diabetes mellitus

Dicloxacillin/Flucloxacillin

Antidiabetic

PSSA: Statin → Antibiotic ± 365 days

aSR 1.40 (95%CI 1.34–1.47); n = 7726

PSSA: Statin → Antidiabetic ± 365 days

aSR 1.09 (95%CI 1.04–1.15); n = 6794

PSSA: Antidiabetic → Antibiotic ± 365 days

aSR 1.24 (95%CI 1.15–1.33); n = 2828

Nishtala & Chyou (2017) 54

Amiodarone

Lithium

Frusemide

Fluticasone

Simvastatin

Hypothyroidism

Hyperthyroidism

Hypokalaemia

Oral candidiasis

Muscle cramps

Thyroxine

Carbimazole

Potassium

Nystatin

Quinine sulphate

PSSA: Amiodarone → Thyroxine ± 360 days

aSR 3.57 (95% CI 3.17–4.02)

Lithium → Thyroxine ± 360 days

aSR 3.43 (95% CI 2.55–4.70)

Amiodarone → Carbimazole ± 360 days

aSR 8.81 (95% CI 5.86–13.77)

Simvastatin → Quinine sulphate ± 360 days

aSR 1.69 (95% CI 1.61–1.77)

Fluticasone → Nystatin ± 360 days

aSR 2.34 (95% CI 2.19–2.50)

Frusemide → Potassium ± 360 days

aSR 2.94 (95% CI 2.83–3.05)

Pouwels (2013) 132

SSRI with or without NSAID

Peptic ulcer Peptic ulcer drug treatment

PSSA: SSRI +/− NSAID → Peptic ulcer treatment ± 4 weeks

SSRI: aSR 0.83 (95%CI 0.65–1.06)

NSAID: aSR 2.50 (95%CI 2.27–2.76)

SSRI + NSAID: aSR 1.48 (95%CI 0.90–2.49)

Rasmussen (2015) 62

Antithrombotic drugs

Cardiovascular drugs

(see Appendix S1)

Erectile dysfunction 5‐phosphodiesterase inhibitor

PSSA: Cardiovascular drugs → 5‐phosphodiesterase inhibitor ± 6 months

Thiazides: aSR 1.28 (95%CI 1.20, 1.38); NNTH 370 (95%CI 300, 500); n = 3118

ß‐blockers: aSR 1.18 (95%CI 1.09, 1.28); NNTH 680 (95%CI 480, 1200); n = 2511

CCBs: aSR 1.29 (95%CI 1.21, 1.38); NNTH 330 (95%CI 270, 440); n = 3379

ACEIs: aSR 1.29 (95%CI 1.21, 1.37); NNTH 350 (95%CI 290, 440); n = 4182

ARBs: aSR 1.16 (95%CI 1.06, 1.26); NNTH 540 (95%CI 360, 1200); n = 2082

Singh (2021) 63 Antipsychotic or Metoclopramide Parkinsonism Anti‐Parkinson drug

Antipsychotic/metoclopramide → Anti‐Parkinson drug < day 8–365

Cohort 1: 36 (0.8%) incident anti‐Parkinson drug users among 4534 incident antipsychotic/metoclopramide users

Cohort 2: 20 (0.5%) incident users of anti‐Parkinsonian drugs among 3485 antipsychotic/metoclopramide users

Trenaman (2021) 30

AChEIs

Metoclopramide

CCBs

Urinary incontinence

Parkinsonism

Pedal oedema

Urinary medications

Anti‐Parkinson drug

Diuretic

AChEI → Urinary medications <6 months

60 cases of prescribing cascade were identified.

Extending to 365 days resulted in 52 additional cases.

Metoclopramide → Anti‐Parkinson drug <6 months

11 cases of the prescribing cascade were identified. Extending to 365 days resulted in 5 additional cases.

CCB → Diuretic <6 months

289 cases of prescribing cascade were identified. Extending to 365 days resulted in 369 cases.

Exploratory studies
Tsiropoulos (2009) 68 AEDs Exploratory analysis Any other medication presented in the same period

PSSA: All AEDs → Marker medication

Propulsives ±183 days: aSR 1.31 (95%CI 1.11–1.56); n = 571

Laxatives ±183 days: aSR 1.57 (95%CI 1.29–1.92); n = 432

Topical corticosteroids ±183 days: aSR 1.32 (95%CI 1.16–1.52); n = 900

PSSA: Carbamazepine → Marker medication

Propulsives ±183 days: aSR 1.57 (95%CI 1.14–2.19); n = 163

Laxatives ±183 days: aSR 1.61 (95%CI 1.01–2.59); n = 82

Topical corticosteroids ±183 days: aSR 1.48 (95%CI 1.17–1.87); n = 305

Anti‐acne preparations ±183 days: aSR 3.66 (95%CI 1.31–2.62); n = 23

Bone disease treatment ±548 days: aSR 1.98 (95%CI 1.03–3.92); n = 43

PSSA: Oxcarbazepine → Marker medication

Propulsives ±183 days: aSR 2.54 (95%CI 1.71–3.85); n = 119

Laxatives ±183 days: aSR 3.74 (95%CI 2.31–6.29); n = 103

Topical corticosteroids ±183 days: aSR 1.40 (95%CI 1.08–1.83); n = 245

Phenobarbital → Marker medication

Bone disease treatment ±548 days: aSR 4.51 (95%CI 1.42–8.82); n = 18

King (2020) 75 654 different medications examined New onset heart failure Furosemide

PSSA: Index drug → Furosemide ± 12 months

Fosaprepitant: aSR 2.60 (95%CI 2.42–2.81); n = 3394

Granisetron: aSR 2.24 (95%CI 2.42–2.81); n = 2299

Tropisetron: aSR 1.43 (95%CI 1.08–1.79); n = 340

Degarelix: aSR 1.66 (95%CI 1.29–2.06); n = 293

Brinzolamide: aSR 1.18 (95%CI 1.06–1.32); n = 1304

Travoprost: aSR 1.18 (95%CI 1.01–1.35); n = 788

Latanoprost: aSR 1.11 (95%CI 1.04–1.19); n = 3619

Brimonidine: aSR 1.10 (95%CI 1.00–1.20); n = 2012

Pizotifen: aSR 1.27 (95%CI 1.11–1.44); n = 978

Rizatriptan: aSR 1.16 (95%CI 1.03–1.31); n = 1036

Sumatriptan: aSR 1.16 (95%CI 1.03–1.29); n = 1250

Benzhexol: aSR 1.65 (95%CI 1.12–2.24); n = 142

Mesalazine: aSR 1.33 (95%CI 1.13–1.54); n = 646

Levetiracetam: aSR 1.13 (95%CI 1.03–1.23); n = 2005

Fluorometholone: aSR 1.11 (95%CI 1.07–1.15); n = 9410

Ranitidine: aSR 1.08 (95%CI 1.04–1.12); n = 10 875

Denosumab: aSR 1.07 (95%CI 1.03–1.10); n = 16 714

Wahab (2016) 106 691 different medications examined Heart failure Furosemide

PSSA: Index medication → Furosemide ± 1 year

Teriparatide: aSR 5.02 (95% CI 1.07–23.7); n = 10

Lodoxamide: aSR 2.50 (95% C; 1.06–5.91); n = 27

Famotidine: aSR 1.69 (95% CI 1.38–2.08); n = 423

Latanoprost: aSR 1.48 (95% CI 1.38–1.59); n = 3107

Pilocarpine: aSR 1.43 (95% CI 1.16–1.77); n = 632

Brinzolamide: aSR 1.37 (95% CI 1.16–1.62); n = 564

Betahistine: aSR 1.31 (95% CI 1.07–1.62); n = 359

Ranitidine: aSR 1.24 (95% CI 1.17–1.31); n = 5554

Paracetamol: aSR 1.06 (95% CI 1.04–1.09); n = 24 210

Chen (2021) 87

Confirmatory analysis

Amiodarone

Exploratory analysis

ACEIs

Statins

Buffered LDA

Enteric‐coated LDA

DH‐CCBs

Hypothyroidism

Gout

Cough

UTI

Storage LUTS

Depression

Sleep disturbances

Hepatotoxicity

Muscle pain

Skin and soft tissue infection

Infection in those with type‐2 diabetes

GI complications

Oedema

Confirmatory analysis

Thyroxine

Allopurinol

Exploratory analysis

(see Appendix S1)

Confirmatory PSSA ± 1 year

Amiodarone → Thyroxine: aSR 3.77 (95%CI 3.43–4.14); n = 2667

Amiodarone → Allopurinol: aSR 0.83 (95%CI 0.76–0.90); n = 2071

Exploratory PSSA ± 1 year

ACEIs → Antitussive: aSR 1.33 (95% CI 1.31–1.34); n = 141 924

Statins → Drugs for urinary frequency: aSR 1.17 (95% CI 1.16–1.19); n = 107 422

Statins → Antidepressants: aSR 1.19 (95% CI 1.18–1.21); n = 117 443

Statins → Hypnotics: aSR 1.10 (95% CI 1.09–1.12); n = 124 061

Statins → Ursodeoxycholic acid: aSR 1.26 (95% CI 1.21–1.31); n = 11 231

Statins → NSAIDs: aSR 1.02 (95% CI 1.02–1.03); n = 430 774

Statins → Dicloxacillin/Flucloxacillin: aSR 1.18 (95% CI 1.15–1.22); n = 23 068

Statins → Antibiotic treatment (those with type 2 diabetes): aSR 1.38 (95% CI 1.36–1.39); n = 150 016

DH‐CCBs → Loop diuretic: aSR 1.46 (95% CI 1.45–1.48); n = 139 375

Lai (2014) 78

Sulpiride

Non‐sulpiride antipsychotics

EPS

Diabetes

Hyperprolactinaemia

Cardiac arrhythmias

Confirmatory analyses:

Anticholinergics

Oral hyperglycaemics

Prolactine inhibitors

Class 1B antiarrhythmics

Exploratory analyses:

all medications prescribed after the index date

Confirmatory PSSA analyses ± 12 months

Sulpiride → Anticholinergics: aSR 1.73 (95%CI 1.46–2.06); n = 568

Haloperidol → Anticholinergics: aSR 1.99 (95%CI 1.68–2.35); n = 611

Risperidone → Anticholinergics: aSR 1.21 (95%CI 1.04–1.41); n = 702

Olanzapine → Anticholinergics: aSR 0.73 (95%CI 0.58–0.93); n = 281

Amisulpiride → Anticholinergics: aSR 0.54 (95%CI 0.40–0.73); n = 188

Sulpiride → Prolactine inhibitors: aSR 12.0 (95%CI 1.59–91.2); n = 16

Amisulpiride→Prolactine inhibitors: aSR 8.05 (95%CI 1.00–65.4); n = 8

Haloperidol → Class 1b antiarrhythmics: sSR 2.81 (95%CI 1.03.7.66); n = 21

Exploratory PSSA analyses: Sulpiride → Marker medication ± 12 months

Stomatological preparations: aSR 1.86 (95%CI 1.13–3.07); n = 71

Corticosteroids for local oral treatment: aSR 1.71 (95%CI 1.00–2.91); n = 59

Beta blockers, any: aSR 1.42 (95%CI 1.12–1.71); n = 371

Beta blockers, non‐selective: aSR 1.61 (95%CI 1.28–2.03); n = 304

Dermatological preparations, corticosteroids: aSR 2.18 (95%CI 1.21–3.92); n = 57

Corticosteroids weak, other combinations: aSR 2.15 (95%CI 1.08–4.28); n = 42

Quinolones: aSR 1.50 (95%CI 1.00–2.24); n = 101

Fluroquinolones: aSR 1.81 (95%CI 1.03–3.17); n = 55

Anti‐inflammatory preparations, non‐steroidal for topical use: aSR 1.36 (95%CI 1.01–1.84); n = 173

Hallas (2018) 101

186 758 associations tested in the main analysis;

30 best signals reported

Exploratory analysis 30 strongest signals reported

PSSA: Index → Marker medication ± 12 months

Opioids → Drugs for constipation (crude SR 2.34, 95%CI 2.31–2.38); n = 84 020

High ceiling diuretics → Potassium SR 3.31 (95%CI 3.24–3.38); n = 48 539

Thiazide → Potassium SR 3.46 (95%CI 3.39–3.54); n = 45 175

Opioids → Propulsives SR 2.14 (95%CI 2.10–2.17); n = 62 139

NSAIDS → Anti‐ulcer drugs SR 1.71 (95%CI 1.67–1.74); n = 49 646

Antithrombotic → Anti‐ulcer drugs SR 1.41 (95%CI 1.39–1.44); n = 54 841

Cough suppressants → Drugs for constipation SR 1.95 (95%CI 1.90–2.00); n = 260 015

Corticosteroids, systemic use → Drugs affecting bone structure and mineralisation SR 3.40 (95%CI 3.27–3.54); n = 13 023

Hellfritzsch (2018) 102 Non‐vitamin K oral anticoagulants (NOAC) Exploratory analysis 20 strongest signals reported

PSSA: NOAC → Marker drug ± 6 months

Benzodiazepines, hypnotic: cSR 8.28 (95%CI 6.01–12.05); NNTH 193

Osmotic laxatives: cSR 1.35 (95%CI 1.25–1.46); NNTH 133

Benzodiazpines, sedative: cSR 1.99 (95%CI 1.74–2.30); NNTH 174

Corticosteroids, anal use: cSR 2.03 (95%CI 1.76–2.35); NNTH 176

SSRI: cSR 1.57 (95%CI 1.37–1.77); NNTH 202

Other antidepressant: cSR 1.59 (95%CI 1.41–1.80); NNTH 207

PPI: cSR 1.19 (95%CI 1.11–1.28); NNTH 209

Phenylpiridine opioids: cSR 2.12 (95%CI 1.81–2.51); NNTH 215

Propulsives: cSR 1.51 (95%CI 1.35–1.71); NNTH 216

Iron bivalent, oral: cSR 1.62 (95%CI 1.42–1.86); NNTH 238

Contact laxatives: cSR 1.29 (95%CI 1.17–1.43); NNTH 253

Abbreviations: aHR, adjusted hazard ratio; aIRR, adjusted incidence rate ratio; aOR, adjusted odds ratio; aSR, adjusted sequence ratio; cSR, crude sequence ratio; HR, hazard ratio; IDR, incidence density ratio; IRR, incidence rate ratio; NNTH, number needed to harm; PSSA, prescription sequence symmetry analysis.

a

Case–control study.

b

Case‐crossover study.

c

Cross‐sectional study.

d

Includes case–control study.

e

Includes cross‐sectional study.

FIGURE 2.

FIGURE 2

Prescribing cascades examined in non‐exploratory studies (n = 94) stratified by ATC classification. These alluvial plots represent initial (column 1) and subsequent (column 2) medication pairs examined and the primary quantitative association identified (column 3). The height of the strata in columns 1 and 2 is proportional to the number of instances that the relevant medication has been examined across included studies. The height of the strata in column 3 is proportional to the number of identified quantitative associations that belong to each association type. The width of the linkage between column 1 and column 2 is proportional to the number of instances that the unique medication pair has been examined across included studies. The width of the linkage between column 2 and column 3 is proportional to the number of tested medication pairs that result in a prescribing cascade (positive association), do not result in a prescribing cascade (none), indicate a lower likelihood of a prescribing cascade (negative association), or where no association could be examined due to study reporting (N/A: non‐applicable); (A) ATC1 level; (B) Cardiovascular medications (ATC3 level); (C) Nervous system medications (ATC3 level).

TABLE 2.

Summary of findings for the most commonly identified prescribing cascades

Initial medication Suspected ADR Second medication Main findings
DH‐CCB Oedema Loop diuretic

<1 year: aSR 1.46 (95% CI 1.45–1.48); n = 139375 87

<360 days: aSR 1.87 (95%CI 1.84–1.90); 55818 7

<360 days: aSR 2.27 (95% CI 1.44–3.58); n = 90 105

<360 days: aSR 1.72 (95%CI 1.66–1.78) relative to levothyroxine negative control; aSR 1.45 (1.41–1.49) relative to ACEI/ARB negative control 35

Rate of being dispensed a loop diuretic versus general comparator group 5

1–30 days: aHR 2.51 (95%CI 2.13–2.96)

31–60 days: aHR 2.99 (95%CI 2.43–3.69)

61–90 days: aHR 3.89 (95%CI 3.11–4.87)

91–180 days: aHR 3.20 (95%CI 2.72–3.76)

181–365 days: aHR 2.22 (95%CI 1.90–2.60)

Amiodarone Hypothyroidism Thyroxine

<1 year: aSR 3.77 (95% 3.43–4.14); n = 2667 87

<360 days: aSR 3.57 (95%CI 3.17–4.02) 54

<1 year: aSR 2.14 (99%CI 1.92–2.39); n = 2613 79

<1 year Australia: aSR 5.30 (95%CI 4.69–5.96); n = 1979 61

< 1 year Hong Kong: aSR 2.33 (95%CI 1.99–2.72); n = 754

< 1 year Japan: aSR 1.77 (95%CI 0.61–5.08); n = 6

< 1 year Korea: aSR 1.52 (95%CI 1.29–1.80); n = 657

< 1 year Taiwan: aSR 3.26 (95%CI 2.26–4.70); n = 153

<1 year: Pooled aSR 2.63 (95%CI 1.47–4.72)

<6 months: aSR 13.6 (95%CI 7.73–25.96) 85

<12 months: aSR 12.8 (95%CI 8.44–20.28)

<18 months: aSR 11.4 (95%CI 7.98–16.80)

<24 months: aSR 11.7 (95%CI 8.32–16.94)

<30 months: aSR 10.8 (95%CI 7.86–15.29)

<36 months: aSR 10.8 (95%CI 7.89–15.00)

Inhaled corticosteroids Oral candidiasis Topical antifungals

<90 days OR 1.66; n = 21 56

<1 year: SR 2.89 (95%CI 2.80–2.97) 39

<1 year: SR SR 1.94 (95%CI 1.71–2.21) 71

<360 days: aSR 2.34 (95% CI 2.19–2.50) 54

Neuroleptics/Antipsychotic Parkinsonian symptoms/ extrapyramidal symptoms Anti‐parkinson medication or Parkinson diagnosis

<90 days: aOR 5.4 (95%CI 4.8–6.1) 19

<1 year (1 antipsychotic): aSR 9.24 (7.35–11.8); n = 817 100

<1 year (2 antipsychotics): aSR 22.2 (9.94–61.7); n = 137

<1 year (≥3 antipsychotics): aSR 34.8 (5.87–1413.8); n = 37

Never use: aOR 1.0 (referent); n = 10714 119

Very‐late use (≥181 days): aOR 1.1 (95%CI 0.6–1.8); n = 61

Late use (31–180 days): aOR 2.0 (95%CI 1.2–3.3); n = 94

Early use (8–30 days): aOR 6.0 (95%CI 2.3–15.9); n = 43

Current use (≤7 days): aOR 3.0 (95%CI 1.7–5.4); n = 80

Typical: aOR 6.4 (95%CI 1.4–28.2); n = 17

Haloperidol: aOR 4.3 (95%CI 0.9–20.1); n = 12

Atypical: aOR 2.4 (95%CI 1.2–4.9); n = 56

Quetiapine: aOR 0.9 (95%CI 0.4–2.2); n = 26

Risperidone: aOR 13.5 (95%CI 1.8–102.1); n = 23

Combined use: aOR 3.2 (95%CI 0.6–17.9); n = 7

Typical antipsychotics: aHR 1.30 (95%CI 1.04–1.58) versus atypical antipsychotic use 29

No therapy: aHR 0.40 (95%CI 0.29–0.43)

Acetylcholinesterase inhibitors Urinary incontinence Drugs for urinary frequency and incontinence

During follow‐up (1st June 1999–31st March 2003): older adults dispensed acetylcholinesterase inhibitors had a higher risk of subsequently receiving an anticholinergic medication to treat urge urinary incontinence (aHR, 1.55,95% CI, 1.39–1.72) 26

Donepezil → Medication for managing Lower Urinary Tract Symptoms (LUTS) 53

<3 months: 1.32 (95%CI 1.00–3.50); n = 243

<12 months: aSR: 1.98 (95%CI 1.57–2.50); n = 319

<6 months: aHR 1.47 (95%CI 1.17–1.86) versus memantine users 44

<12 months: aHR 1.41 (95%CI 1.17–1.69) versus memantine users

Donepezil: aHR 1.55 (95%CI 1.31–1.83) versus rivastigmine use 24

Galantamine: aHR 1.17 (95%CI 0.87–1.58) versus rivastigmine use

Metoclopramide Parkinsonian symptoms Levodopa

<90 days aOR 3.04 (95%CI 2.22–4.17) 20

<90 days aOR 2.94 (95%CI 2.35–3.67) 31

Anti‐Parkinson medication or diagnosis <1 year: aOR 2.7 (95%CI 1.8–4.1); n = 121 119

ACE inhibitors Cough Antitussive

<1 year OR = 1.58 (95%CI 1.21–2.07) 73

<6 months: SR 2.0 (95%CI 1.8–2.2); n = 1898; estimated 13.4% mistreated cough 18

<1 year: aSR 1.33 (95% CI 1.31–1.34); n = 141924 87

NSAID GI symptoms Anti‐ulcer medication

<4 weeks: aSR 2.50 (95%CI 2.27–2.76); n = 2016 132

<100 days: aSR 1.80 (95%CI 1.64–1.99); n = 1814 89

<1 year: SR 1.71 (95%CI 1.67–1.74); n = 49646 101

Ranitidine Heart failure Furosemide

<1 year: aSR 1.08 (95%CI 1.04–1.12); n = 10875 75

<1 year: aSR 1.24 (95% CI 1.17–1.31); n = 5554 106

Rosiglitazone failure Furosemide

<1 year Australia‐1: aSR 1.70 (95%CI 1.34–2.15) 96

<1 year Australia‐2: aSR 1.63 (95%CI 1.51–1.76)

<1 year Canada: aSR 1.65 (95%CI 1.57–1.73)

<1 year Pooled estimate (Australia & Canada): aSR 1.65 (95%CI 1.58–1.72)

<1 year Hong Kong: aSR 3.37 (95%CI 1.69–6.72)

<1 year Korea: aSR 1.14 (95%CI 1.08–1.21)

<1 year Taiwan: aSR 1.12 (95%CI 0.99–1.25)

<1 year Pooled estimate (Asia): aSR 1.21 (95%CI 1.01–1.45)

July 2000–December 2007: aSR 1.73 (99%CI 1.34–2.24) 113

SGLT2‐I Genital infections Antifungal

<30 days: aSR 1.35 (95%CI 1.26–1.44) 47

<60 days: aSR 1.48 (95%CI 1.40–1.56)

<90 days: aSR 1.53 (95% CI 1.43–1.60)

<180 days: aSR 1.42 (95%CI 1.37–1.47)

<365 days: aSR 1.24 (95%CI 1.20–1.28)

Genital infection occurred more frequently among SGLT2‐I users than DPP‐4 users (2.9% vs, 0.9%, aHR 3.50, 95%CI 1.95–5.89) 88

DOAC Depression Antidepressant

<3 months: aSR 1.29 (95%CI 1.23–1.35); n = 7253 93

<6 months: aSR 1.28 (95%CI 1.24–1.33); n = 12 530

<12 months: aSR 1.26 (95%CI 1.23–1.30); n = 20 613

SSRI <6 month: SR 1.57 (1.37–1.77); n = 1137; NNTH 202 102

Other antidepressant <6 month: SR 1.59; 1076; (1.41–1.80); NNTH 207

High ceiling diuretics Hypokalaemia Potassium

Furosemide <360 days: aSR 2.94 (95% CI 2.83–3.05) 54

High ceiling diuretic <1 year: SR 3.31 (95%CI 3.24–3.38); n = 48539 101

Statins Lower urinary tract symptoms (LUTS) Drugs for urinary frequency and incontinence

<91 days: aSR 1.21 (95% CI 1.00, 1.46); n = 446 50

<182 days: aSR 1.19 (95% CI 1.04, 1.38); n = 785

<365 days: aSR 1.17 (95% CI 1.05, 1.30); n = 1373

<1 year: aSR 1.17 (95% CI 1.16–1.19); n = 107422 87

Statins Skin soft tissue infection Antibiotic (Dicloxacillin or Flucloxacillin)

<1 year: aSR 1.18 (95% CI 1.15–1.22); n = 23068 87

<91 days: aSR 1.40 (95%CI 1.29–1.52); n = 2498 76

<182 days: aSR 1.41 (95%CI 1.33–1.50); n = 4277

<365 days: aSR 1.40 (95%CI 1.34–1.47); n = 7726

Statins Depression Antidepressant

<1 year: aSR 1.19 (95% CI 1.18–1.21); n = 117443 87

Simvastatin → Antidepressant (April 1991–December 1995): aSR 1.59 (1.08–2.45); n = 91 98

Statins Muscle cramps Quinine

<360 days: aSR 1.69 (95% CI 1.61–1.77) 70

<1 year: aSR = 1.16 (95%CI 1.04–1.29); n = 1326 51

Brinzolamide Heart failure Furosemide

<1 year Brinzolamide: aSR 1.18 (95%CI 1.06–1.32); n = 1304 75

<1 year Brinzolamide: aSR 1.37 (95% CI 1.16–1.62); n = 564 106

Latanoprost Heart failure Furosemide

<1 year Latanoprost: aSR 1.11 (95%CI 1.04–1.19); n = 3619 75

<1 year Latanoprost: aSR 1.48 (95% CI 1.38–1.59); n = 3107 106

Carbamazepine Hypothyroidism Levothyroxine

1998–2004: aOR 1.37 (95%CI 1.13–1.65) 130

<1 year: aSR 1.21 (99%CI 1.08–1.34) 79

Valproate Hypothyroidism Levothyroxine

1998–2004: aOR 1.72 (95%CI 1.40–2.11) 130

<1 year: aSR 1.34 (99%CI 1.20–1.49) 79

Lithium Drug induced tremor Parkinson Anti‐parkinson drug

Jan 1995‐December 1999: RR 1.88 (95%CI 1.60–2.20) 82

Up to 2 year follow‐up (referent valproic acid): aHR 1.50 (95%CI 0.68–3.36) 27

Up to 2 year follow‐up (referent antidepressant): aHR 1.56 (95%CI 0.98–2.48)

Lithium Hypothyroidism Thyroxine

1998–2004: aOR 1.41 (95%CI 1.14–1.74) 130

<360 days: aSR 3.43 (95% CI 2.55–4.70) 54

Benzodiazepine Dementia Anti‐dementia drug

<3 months: aSR 1.24 (95%CI 1.05–1.45); n = 625 66

<6 months: aSR 1.20 (95%CI 1.06–1.37); n = 973

<12 months: aSR 1.23 (95%CI 1.11–1.37); n = 1450

<24 months: aSR 1.34 (95%CI 1.23–1.47); n = 2049

<36 months: aSR 1.41 (95%CI 1.29–1.53); n = 2408

<48 months: aSR 1.44 (95%CI 1.33–1.56); n = 2653

<3 years: aSR 2.19 (95%CI 1.92–2.49); n = 1285 94

<2 years: aSR 2.00 (95%CI 1.71–2.34); n = 780

<1 year: aSR 1.77 (95%CI 1.39–2.27); n = 286

SSRI Urinary incontinence Drugs for urinary frequency and incontinence (or incontinence products) 41

Paroxetine <1 year: aSR 1.77 (95%CI 1.33–2.36) 53

During SSRI (before SSRI as referent): IDR 1.57 (95%CI 1.38–1.79) 41

During SSRI (after SSRI as referent): IDR 2.03 (95%CI 1.76–2.34)

During SSRI (before and after SSRI as referent): IDR 1.75 (95%CI 1.56–1.97)

Patients had a 61% higher risk for incontinence (aRR 1.61, 95%CI 1.42–1.82)

Abbreviations: aHR, adjusted hazard ratio; aOR, adjusted odds ratio; aSR, adjusted sequence ratio; IDR, incidence density ratio; NNTH, number needed to har; SR, crude sequence ratio.

3.5. Suspected adverse reaction(s)

Throughout the included studies, suspected ADRs were presumed to have occurred based on the initiation of the second medication as a treatment. In one study examining the CCB → loop diuretic prescribing cascade, an additional medical chart review was also conducted. 105

The suspected ADRs, symptoms or new diagnoses explored were broad‐ranging (see Table 2) most commonly depression (n = 13) 33 , 37 , 40 , 45 , 52 , 55 , 57 , 72 , 93 , 97 , 98 , 110 , 112 ; peripheral oedema (n = 11) 5 , 6 , 7 , 28 , 30 , 36 , 64 , 96 , 103 , 104 , 105 , 116 ; urinary incontinence (n = 9). 24 , 26 , 30 , 41 , 44 , 50 , 53 , 74 , 117 and parkinsonism (n = 9). 27 , 29 , 30 , 31 , 46 , 57 , 63 , 82 , 119

3.6. New medication(s) prescribed

The medication sub‐classifications most frequently initiated as a new medication in the 94 studies are summarised in Figure 2A. Seventy‐eight studies reported at least one significant positive association, indicating a potential prescribing cascade (Table 1 and Figure 2A–C).

The most commonly identified prescribing cascades are summarised in Table 2. These include; amiodarone associated with subsequent thyroid hormone prescriptions for hypothyroidism (n = 5), 54 , 61 , 79 , 85 , 87 CCBs associated with diuretic prescriptions to treat peripheral oedema (n = 5), 5 , 7 , 87 , 104 , 105 topical antifungals to treat oral candidiasis following inhaled corticosteroids (n = 4), 39 , 54 , 56 , 71 anti‐Parkinson medication to treat Parkinsonian symptoms following antipsychotic initiation (n = 4), 19 , 29 , 100 , 119 urinary anticholinergics to treat urinary incontinence following acetylcholinesterase inhibitors(n = 4), 24 , 26 , 44 , 53 and antitussives to treat cough following angiotensin‐converting enzyme inhibitors (ACEIs) (n = 3). 18 , 73 , 87 Additional prescribing cascades identified included metoclopramide to anti‐Parkinson medication (n = 3). 20 , 31 , 119 and NSAID to anti‐ulcer medication. 89 , 91 , 101

No association between drug pairs could be determined for several studies, largely due to either a cross‐sectional study design examining concurrent drug use, insufficient drug‐pair sample size to determine a sequence ratio or reporting of incidence rates with no incidence rate ratio (labelled N/A in Figure 2). 6 , 21 , 25 , 30 , 43 , 46 , 53 , 55 , 63 , 64 , 78 , 79 , 112 , 114 , 115 Several studies reported at least one negative association between drug pairs, indicating a reduced likelihood of the second medication being initiated (see eTable 3 Appendix S1). 33 , 60 , 68 , 69 , 70 , 74 , 81 , 87 , 89 , 93 , 111

3.7. Modifiers of identified associations

Older people (aged ≥65 years) were more likely to receive; (i) anticholinergics for urinary incontinence following SSRI initiation, 41 (ii) ulcer drug therapy within 100 days of NSAID initiation, 89 (iii) diuretic to treat beta‐blocker induced oedema, 36 and, (iv) thyroxine for hypothyroidism following amiodarone initiation. 85 Females were more likely to receive an antitussive for cough following ACEI initiation, 73 anticholinergic medication for urinary incontinence following acetylcholinesterase inhibitor 24 , 30 and SSRI initiation, 41 and levothyroxine following amiodarone initiation. 85

Differential associations were identified for initial medication dosage in nine studies. Those who received higher doses of CCBs 5 , 7 and gabapentinoids were more likely to receive a diuretic for oedema 28 ; higher doses of inhaled corticosteroids were associated with a greater likelihood of treatment for oral candidiasis 39 ; and higher metoclopramide dosage was found to increase the likelihood for dopaminergic treatment initiation. 20 Polypharmacy (≥5 drugs) was associated with a greater likelihood of receiving thyroid hormones for amiodarone induced hypothyroidism. 85

3.8. Intentional and unintentional cascades

The intentionality of potential prescribing cascades was not reported in any study nor was the intended duration (if any) of the prescription of the second medication. One study provided a breakdown of prescriptions for the initial drug by prescriber type: 23% private cardiologist, 35.5% hospital practitioner, 30.3% General Practitioner, and 11.3% other private specialist, but did not provide details of the prescriber of the second drug. 93 Another study reported that of the sample who initiated the second drug (irrespective of initiating the first drug), 87.1% of prescriptions were started by family physicians. 51

3.9. Clinical importance of prescribing cascade

Two studies reported a number needed to harm (NNTH) for investigated cascades. 62 , 102 (See Table 1). One study (n = 90) conducted a medical chart validation study of those initiated a loop diuretic after initiating a dihydropyridine CCB (n = 64) and determined that 54.7% (n = 35) experienced a prescribing cascade. 105

3.10. Quality assessment

Overall, the methodological quality varied across included studies (Figure 3 and eTables 4–6, Appendix S1). Among the retrospective cohort studies (eTable 4, Appendix S1) there was a lack of clarity surrounding the similarity of exposed and unexposed groups at baseline and the presence of the outcome at the start of the study. For case–control studies (eTable 5, Appendix S1), reporting of baseline comparison of cases and controls was inadequate as well as the appropriateness of matching cases with controls.

FIGURE 3.

FIGURE 3

Quality appraisal summary of included studies (n = 98): (A) cohort studies; (B) case–control studies; (C) cross‐sectional studies.

4. CONCLUSION AND IMPLICATIONS

4.1. Principal findings

This systematic review identified 101 studies across 103 publications that examined potential prescribing cascades across a broad range of pharmacological drug groups. All studies used routine administrative data that included either medication prescribing or dispensed medications data. Of the 101 included studies, 78 (77%) reported at least one significant positive quantitative association that indicates a potential prescribing cascade. The most commonly identified prescribing cascades include: (i) CCBs → loop diuretics to treat peripheral oedema (n = 5); (ii) amiodarone → thyroxine to treat hypothyroidism (n = 5); inhaled corticosteroids → topical antifungal to treat candidiasis (n = 4); (iii) antipsychotics → anti‐Parkinson medication to treat Parkinsonism (n = 4); and (iv) acetylcholinesterase inhibitors → drugs for urinary frequency (n = 4).

Study methodological quality was variable with a considerable proportion of studies not reporting participant demographics. Almost two‐thirds of included studies used PSSA methodology in which all included participants have experienced the outcome at the start of the study. A recent scoping review reported that whilst the PSSA method is a useful tool in detecting prescribing cascades, such cascades need careful clinical review as there is a risk of both false positive and false negative findings. 120 This is particularly problematic when screening for cascades without predefined hypotheses. In our systematic review, the vast majority of included studies (n = 94, 93%) examined predefined medications as potentially contributing to a prescribing cascade. However, PSSA analyses cannot determine causality and should be interpreted with caution.

Several well‐designed cohort and case–control studies examining prescribing cascades were identified. For example, a Canadian population‐based study reported that incident CCB users had a higher cumulative incidence of loop diuretic use at one year follow up compared to patients dispensed ACEIs or angiotensin‐II‐receptor blocker antihypertensives (adjusted hazards ratio 1.4% vs. 0.7%, p < 0.001). 5 In a US case–control study, metoclopramide users were three times more likely to begin use of a levodopa‐containing medication compared with nonusers (OR = 3.09; 95% Cl 2.25 to 4.26). 20 Risk increased with increasing daily metoclopramide dose and the effect persisted after adjustment for demographic, health service utilization, and medication use variables. 20

Fifteen of 101 studies focused specifically on older populations, with 11 reporting a significant association between increasing age and prescribing cascade occurrence. Older adults are more likely to experience medication‐related harm due to increasing prevalence of multimorbidity, polypharmacy and age‐related physiological changes that affect drug metabolism. 9 , 10 , 121 , 122 , 123 Furthermore, ADRs are more difficult to diagnose in older adults due to their often non‐specific presentation and overlap with pre‐existing conditions or conditions likely to develop among older adults. 1 , 8 , 124

4.2. Comparison with existing literature

Two scoping reviews of prescribing cascades have been conducted to date, one that focused on literature surrounding the prevention, detection and reversal of prescribing cascades 11 and the second that focused on the use of PSSA as a potential pharmacovigilance tool. 120 In 2018, Brath et al retrieved 10 original investigations and seven case reports pertaining to prescribing cascades. 11 A considerable number of studies have been published since, indicating that this is a rapidly developing field. Morris el al. concluded that PSSA methodology demonstrated only moderate sensitivity and specificity in identifying prescribing cascades and more consistency was required in how these studies were reported. 120 As described previously, similar issues with methodological quality were identified in this systematic review.

4.3. Clinical and research implications

Multi‐country studies have shown variation in prescribing cascade likelihood both within and across countries, 60 , 95 , 96 underscoring the need to consider the local prescribing context. Differences in sample demographics, medication availability, approved clinical indications, help‐seeking behaviour and prescribing cultures or genetic polymorphisms may influence the incidence of prescribing cascades.

The complexity of optimising prescribing for patients with multimorbidity presents challenges for the prescriber due to the preponderance of single‐disease guidelines, resultant polypharmacy, fragmentation and lack of continuity of care and resourcing constraints. 125 Identification of ADRs remains a clinically challenging area, particularly in relation to older adults. Non‐specific presentation of ADR symptoms in older adults, such as delirium, falls, fatigue and constipation, can be challenging to identify as being medication‐related as such symptoms have several causes and may overlap with existing multimorbidity. 8 , 124 The failure to recognise an ADR may result in a prescribing cascade, furthering the risk for additional medication‐related harm. 1 , 2 The potential for ADRs should be considered as part of the differential diagnosis for all patients reporting new symptoms, particularly among those who have started a new medication within the previous year. 1 , 8 , 124

Developing an explicit list of evidence‐based prescribing cascades is one way of supporting clinicians' awareness and detection of this issue. The iKASCADE international consortium are currently developing an inventory of prescribing cascades affecting older adults, through a modified Delphi procedure where international experts in medicines management for older adults will rank a list of prescribing cascades as to their clinical importance. 126 The development of an explicit list of clinically important and common prescribing cascades is an important step in raising awareness of this issue and in supporting clinicians to detect cascades. 127 To maximise use in clinical practice will require explicit criteria of prescribing cascades be incorporated into existing electronic health record and prescribing support systems. Such systems will need to be able to detect the sequential prescription of drugs known to represent potentially inappropriate prescribing cascades. 127

The use of routine administrative data in included studies means that information on the broader clinical context and the rationale for medication prescribing is lacking. The identification of significant negative associations between drug pairs may indicate that prescribers are aware of certain prescribing cascades and proactively avoid their development or that therapeutic alternatives were prescribed. However, no exploration of intentionality of identified cascades could be made based on the data used in included studies.

Overall, it is difficult to determine the clinical importance of prescribing cascades identified as few studies examined clinical endpoints. 48 , 62 , 102 One study examined the association between prescribing cascades that resulted in prochlorperazine initiation and reported a subsequent 49% increased risk of hip fracture. 48 Future research is required to determine the relative clinical impact of increased medication exposure and the clinical appropriateness of prescribing cascades.

4.4. Strengths and limitations

This systematic review extends the work of previously published scoping reviews 11 , 120 by conducting a comprehensive literature search using several databases, including several grey literature searches.

This study also has some limitations. The lack of a MeSH term for prescribing cascades meant broad search terms were used, which led to a high yield of citations to be searched. Additional information was sought from study authors but a small number of studies (n = 10) could not be retrieved for eligibility assessment due to the lack of access to the full text or a translated version. The information collated is somewhat limited by the methodological and reporting quality of included studies.

5. CONCLUSION

Prescribing cascades are of increasing interest to the research and clinical communities, with a broad range of medications involved. The identification of the most common prescribing cascades can support optimising prescribing as one part of identifying potentially inappropriate prescribing. Few studies have examined the clinical importance or the broader clinical context, including intentionality of prescribing cascades, thereby limiting the inferences that can be drawn about the implications for clinical practice. Challenges remain in differentiating ADR symptoms from that of new onset disease and advancing age and frailty. 1 , 8 , 124 ADRs should be considered as part of the differential diagnosis in patients presenting with new symptoms, particularly for those who have started a new medication in the preceding 12 months.

6. AUTHOR CONTRIBTIONS

Conception and funding acquisition: EW. Study design EW, AD, FM, FB, BC, SK, and TF. Data acquisition: AD, FS, and EW. Data interpretation: AD, FS, TD, FM, FB, BC, TF, SK, and EW. Drafting of manuscript: AD, and EW. Revising of manuscript and agreement of final manuscript: AD, FS, FM, FB, BC, SK, TF, TD, and EW.

FUNDING INFORMATION

This work was funded by a Health Research Board (HRB) Ireland Emerging Clinician Scientist Award awarded to EW [HRB‐ECSA‐2020‐002]. BC is funded by the HRB Emerging Investigator Award [EIA‐2019‐09].

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare.

ETHICS STATEMENT

Ethical approval was not required for this systematic review.

Supporting information

Appendix S1

ACKNOWLEDGMENTS

The authors would like to thank Mr Paul Murphy Information Specialist in the RCSI University of Medicine and Health Sciences for his advice and input in generating the search string and Dr Orla Cotter Health Services Executive (HSE) GP Fellow in Medicines Optimisation (2021–2022) for her work in data extraction and methodological quality assessment of included articles. Open access funding provided by IReL. WOA Institution: N/A. Consortia Name: IReL gold OA 2022.

Doherty AS, Shahid F, Moriarty F, et al. Prescribing cascades in community‐dwelling adults: A systematic review. Pharmacol Res Perspect. 2022;10:e01008. doi: 10.1002/prp2.1008

DATA AVAILABILITY STATEMENT

Additional systematic review data is available from the authors on request.

REFERENCES

  • 1. Rochon PA, Gurwitz JH. Optimising drug treatment for elderly people: the prescribing cascade. Br Med J. 1997;315(7115):1096‐1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Rochon PA, Gurwitz JH. The prescribing cascade revisited. Lancet. 2017;389(10081):1778‐1780. [DOI] [PubMed] [Google Scholar]
  • 3. Rochon PA, Gurwitz JH. Drug therapy. Lancet. 1995;346(8966):32‐36. [DOI] [PubMed] [Google Scholar]
  • 4. McCarthy LM, Visentin JD, Rochon PA. Assessing the scope and appropriateness of prescribing cascades. J Am Geriatr Soc. 2019;67(5):1023‐1026. [DOI] [PubMed] [Google Scholar]
  • 5. Savage RD, Visentin JD, Bronskill SE, et al. Evaluation of a common prescribing cascade of calcium channel blockers and diuretics in older adults with hypertension. JAMA Intern Med. 2020;180(5):643‐651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Vouri SM, van Tuyl JS, Olsen MA, Hong X, Schootman M, Xian H. An evaluation of a potential calcium channel blocker‐lower‐extremity edema‐loop diuretic prescribing cascade. J Am Pharm Assoc. 2018;58(5):534‐539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Vouri SM, Jiang X, Manini TM, et al. Magnitude of and characteristics associated with the treatment of calcium channel blocker‐induced lower‐extremity edema with loop diuretics. JAMA Netw Open. 2019;2(12):e1918425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Lavan AH, Gallagher P. Predicting risk of adverse drug reactions in older adults. Ther Adv Drug Saf. 2016;7(1):11‐22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Palladino R, Tayu Lee J, Ashworth M, Triassi M, Millett C. Associations between multimorbidity, healthcare utilisation and health status: evidence from 16 European countries. Age Ageing. 2016;45(3):431‐435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Salisbury C, Johnson L, Purdy S, Valderas JM, Montgomery AA. Epidemiology and impact of multimorbidity in primary care: a retrospective cohort study. Br J Gen Pract. 2011;61(582):e12‐e21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Brath H, Mehta N, Savage RD, et al. What is known about preventing, detecting, and reversing prescribing cascades: a scoping review. J Am Geriatr Soc. 2018;66(11):2079‐2085. [DOI] [PubMed] [Google Scholar]
  • 12. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta‐analysis protocols (PRISMA‐P) statement. Syst Rev. 2015;2015:4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Doherty A, Moriarty F, Boland F, et al. Prescribing cascades in community‐dwelling adults: protocol for a systematic review. HRB Open Res. 2021;4:72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P. Preferred reporting items for systematic reviews and meta‐analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264‐W264. [DOI] [PubMed] [Google Scholar]
  • 15. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Vegter S, De Jong‐Van Den Berg LTW. Misdiagnosis and mistreatment of a common side‐effect—Angiotensin‐converting enzyme inhibitor‐induced cough. Br J Clin Pharmacol. 2010;69(2):200‐203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Vegter S, De Boer P, Van Dijk KW, Visser S, De Jong‐Van Den Berg LTW. Misdiagnosis and mistreatment of ACE‐inhibitor‐induced cough occurs frequently and decreases therapy compliance. Pharm Weekbl. 2012;147(42):177‐180. [Google Scholar]
  • 18. Vegter S, de Boer P, van Dijk KW, Visser S, de Jong‐van den Berg LTW. The effects of antitussive treatment of ACE inhibitor‐induced cough on therapy compliance: a prescription sequence symmetry analysis. Drug Saf. 2013;36(6):435‐439. [DOI] [PubMed] [Google Scholar]
  • 19. Avorn J, Bohn RL, Mogun H, et al. Neuroleptic drug exposure and treatment of parkinsonism in the elderly: a case‐control study. Am J Med. 1995;99(1):48‐54. [DOI] [PubMed] [Google Scholar]
  • 20. Avorn J, Gurwitz JH, Bohn RL, Mogun H, Monane M, Walker A. Increased incidence of levodopa therapy following metoclopramide use. JAMA. 1995;274(22):1780‐1782. [PubMed] [Google Scholar]
  • 21. Farkas AH, Winn A, Pezzin LE, Fergestrom N, Laud P, Neuner JM. The use and concurrent use of side effect controlling medications among women on aromatase inhibitors. J Women's Health. 2021;30(1):131‐136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Gurwitz JH, Avorn J, Bohn RL, Glynn RJ, Monane M, Mogun H. Initiation of antihypertensive treatment during nonsteroidal anti‐inflammatory drug therapy. JAMA. 1994;272(10):781‐786. [PubMed] [Google Scholar]
  • 23. Gurwitz JH, Kalish SC, Bohn RL, et al. Thiazide diuretics and the initiation of anti‐gout therapy. J Clin Epidemiol. 1997;50(8):953‐959. [DOI] [PubMed] [Google Scholar]
  • 24. Masurkar PP, Chatterjee S, Sherer JT, Aparasu RR. Antimuscarinic cascade across individual cholinesterase inhibitors in older adults with dementia. Drugs Aging. 2021;38(7):593‐602. [DOI] [PubMed] [Google Scholar]
  • 25. Narayan SW, Pearson SA, Litchfield M, et al. Anticholinergic medicines use among older adults before and after initiating dementia medicines. Br J Clin Pharmacol. 2019;85(9):1957‐1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Gill SS, Mamdani M, Naglie G, et al. A prescribing cascade involving cholinesterase inhibitors and anticholinergic drugs. Arch Intern Med. 2005;165(7):808‐813. [DOI] [PubMed] [Google Scholar]
  • 27. Marras C, Herrmann N, Fischer HD, et al. Lithium use in older adults is associated with increased prescribing of Parkinson medications. Am J Geriatr Psychiatry. 2016;24(4):301‐309. [DOI] [PubMed] [Google Scholar]
  • 28. Read SH, Giannakeas V, Pop P, et al. Evidence of a gabapentinoid and diuretic prescribing cascade among older adults with lower back pain. J Am Geriatr Soc. 2021;69(10):2842‐2850. [DOI] [PubMed] [Google Scholar]
  • 29. Rochon PA, Stukel TA, Sykora K, et al. Atypical antipsychotics and parkinsonism. Arch Intern Med. 2005;165(16):1882‐1888. [DOI] [PubMed] [Google Scholar]
  • 30. Trenaman SC, Bowles SK, Kirkland S, Andrew MK. An examination of three prescribing cascades in a cohort of older adults with dementia. BMC Geriatr. 2021;21(1):1‐11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Huh Y, Kim DH, Choi M, et al. Metoclopramide and levosulpiride use and subsequent levodopa prescription in the korean elderly: the prescribing cascade. J Clin Med. 2019;8(9):1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Park SK, Baek YH, Pratt N, Kalisch Ellett L, Shin JY. The uncertainty of the association between proton pump inhibitor use and the risk of dementia: prescription sequence symmetry analysis using a Korean healthcare database between 2002 and 2013. Drug Saf. 2018;41(6):615‐624. [DOI] [PubMed] [Google Scholar]
  • 33. Dyson TE, Cantrell MA, Lund BC. Lack of association between 5α‐reductase inhibitors and depression. J Urol. 2020;204(4):793‐798. [DOI] [PubMed] [Google Scholar]
  • 34. Fox CW, Khaw CL, Gerke AK, Lund BC. Montelukast and neuropsychiatric events–a sequence symmetry analysis. J Asthma. 2022;1‐7. [DOI] [PubMed] [Google Scholar]
  • 35. Vouri SM, Jiang X, Brumback B, Winterstein AG. Use of negative controls in a prescription sequence symmetry analysis used to mitigate time‐varying bias. Pharmacoepidemiol Drug Saf. 2020;29(suppl 3):390‐391. [DOI] [PubMed] [Google Scholar]
  • 36. Vouri SM, Morris EJ, Jiang X, et al. Evaluation of a beta‐blocker–edema–loop diuretic prescribing cascade: a prescription sequence symmetry analysis. Am J Hypertens. 2022;35:601‐609. [DOI] [PubMed] [Google Scholar]
  • 37. Brandt‐Christensen M, Kvist K, Nilsson FM, Andersen PK, Kessing LV. Treatment with antiparkinson and antidepressant drugs: a register‐based, pharmaco‐epidemiological study. Mov Disord. 2007;22(14):2037‐2042. [DOI] [PubMed] [Google Scholar]
  • 38. Dunvald ACD, Henriksen DP, Hallas J, Christensen MMH, Lund LC. Selective serotonin reuptake inhibitors and the risk of restless legs syndrome: a symmetry analysis. Eur J Clin Pharmacol. 2020;76(5):719‐722. [DOI] [PubMed] [Google Scholar]
  • 39. Henriksen DP, Davidsen JR, Christiansen A, Laursen CB, Damkier P, Hallas J. Inhaled corticosteroids and systemic or topical antifungal therapy: a symmetry analysis. Ann Am Thorac Soc. 2017;14(6):1045‐1047. [DOI] [PubMed] [Google Scholar]
  • 40. Winkel JS, Damkier P, Hallas J, Henriksen DP. Treatment with montelukast and antidepressive medication—a symmetry analysis. Pharmacoepidemiol Drug Saf. 2018;27(12):1409‐1415. [DOI] [PubMed] [Google Scholar]
  • 41. Movig KLL, Leufkens HGM, Belitser SV, Lenderink AW, Egberts ACG. Selective serotonin reuptake inhibitor‐induced urinary incontinence. Pharmacoepidemiol Drug Saf. 2002;11(4):271‐279. [DOI] [PubMed] [Google Scholar]
  • 42. Wang Y, Bos JH, Schuiling‐Veninga CCM, et al. Neuropsychiatric safety of varenicline in the general and COPD population with and without psychiatric disorders: a retrospective cohort study in a real‐world setting. BMJ Open. 2021;11(5):e042417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Takeuchi Y, Kajiyama K, Ishiguro C, Uyama Y. Atypical antipsychotics and the risk of hyperlipidemia: a sequence symmetry analysis. Drug Saf. 2015;38(7):641‐650. [DOI] [PubMed] [Google Scholar]
  • 44. Lampela P, Taipale H, Hartikainen S. Use of cholinesterase inhibitors increases initiation of urinary anticholinergics in persons with Alzheimer's disease. J Am Geriatr Soc. 2016;64(7):1510‐1512. [DOI] [PubMed] [Google Scholar]
  • 45. Azoulay L, Blais L, Koren G, LeLorier J, Bérard A. Isotretinoin and the risk of depression in patients with acne vulgaris: a case‐crossover study. J Clin Psychiatry. 2008;69(4):526‐532. [DOI] [PubMed] [Google Scholar]
  • 46. Onder G, Bonassi S, Abbatecola AM, et al. High prevalence of poor quality drug prescribing in older individuals: a nationwide report from the Italian Medicines Agency (AIFA). J Gerontol Series A: Biol Sci Med Sci. 2014;69(4):430‐437. [DOI] [PubMed] [Google Scholar]
  • 47. Adimadhyam S, Schumock GT, Calip GS, Smith Marsh DE, Layden BT, Lee TA. Increased risk of mycotic infections associated with sodium‐glucose co‐transporter 2 inhibitors: a prescription sequence symmetry analysis. Br J Clin Pharmacol. 2019;85(1):160‐168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Caughey GE, Roughead EE, Pratt N, Shakib S, Vitry AI, Gilbert AL. Increased risk of hip fracture in the elderly associated with prochlorperazine: is a prescribing cascade contributing? Pharmacoepidemiol Drug Saf. 2010;19(9):977‐982. [DOI] [PubMed] [Google Scholar]
  • 49. Corrao G, Botteri E, Bagnardi V, et al. Generating signals of drug‐adverse effects from prescription databases and application to the risk of arrhythmia associated with antibacterials. Pharmacoepidemiol Drug Saf. 2005;14(1):31‐40. [DOI] [PubMed] [Google Scholar]
  • 50. Fujimoto M, Higuchi T, Hosomi K, Takada M. Association of statin use with storage lower urinary tract symptoms (LUTS): data mining of prescription database. Int J Clin Pharmacol Ther. 2014;52(9):762‐769. [DOI] [PubMed] [Google Scholar]
  • 51. Garrison SR, Dormuth CR, Morrow RL, Carney GA, Khan KM. Nocturnal leg cramps and prescription use that precedes them: a sequence symmetry analysis. Arch Intern Med. 2012;172(2):120‐126. [DOI] [PubMed] [Google Scholar]
  • 52. Hallas J. Evidence of depression provoked by cardiovascular medication: a prescription sequence symmetry analysis. Epidemiology. 1996;7(5):478‐484. [PubMed] [Google Scholar]
  • 53. Hashimoto M, Hashimoto K, Ando F, Kimura Y, Nagase K, Arai K. Prescription rate of medications potentially contributing to lower urinary tract symptoms and detection of adverse reactions by prescription sequence symmetry analysis. J Pharm Health Care Sci. 2015;1(1):7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Nishtala PS, Chyou TY. Exploring New Zealand prescription data using sequence symmetry analyses for predicting adverse drug reactions. J Clin Pharm Ther. 2017;42(2):189‐194. [DOI] [PubMed] [Google Scholar]
  • 55. Petri H, de Vet HC, Naus J, Urquhart J. Prescription sequence analysis: a new and fast method for assessing certain adverse reactions of prescription drugs in large populations. Stat Med. 1988;7(11):1171‐1175. [DOI] [PubMed] [Google Scholar]
  • 56. Petri H, Kessels F, Kamakura T. Markers of adverse drug reactions in medication histories. An analysis of inhaled steroid utilization. Pharmaceutisch Weekbl. 1991;13(2):97‐106. [DOI] [PubMed] [Google Scholar]
  • 57. Petri H, Leufkens H, Naus J, Silkens R, Van Hessen P, Urquhart J. Rapid method for estimating the risk of acutely controversial side effects of prescription drugs. J Clin Epidemiol. 1990;43(5):433‐439. [DOI] [PubMed] [Google Scholar]
  • 58. Pouwels K, Visser S, Bos J, Hak E. Angiotensin‐converting enzyme inhibitor treatment and the development of urinary tract infection. Pharmacoepidemiol Drug Saf. 2013;22:127‐128. [DOI] [PubMed] [Google Scholar]
  • 59. Adrian Kym P, Elizabeth Ellen R, Nicole LP. Sequence symmetry analysis graphic adjustment for prescribing trends. BMC Med Res Methodol. 2019;19(1):143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Pratt N, Andersen M, Bergman U, et al. Multi‐country rapid adverse drug event assessment: the Asian Pharmacoepidemiology Network (AsPEN) antipsychotic and acute hyperglycaemia study. Pharmacoepidemiol Drug Saf. 2013;22(9):915‐924. [DOI] [PubMed] [Google Scholar]
  • 61. Pratt N, Chan EW, Choi NK, et al. Prescription sequence symmetry analysis: assessing risk, temporality, and consistency for adverse drug reactions across datasets in five countries. Pharmacoepidemiol Drug Saf. 2015;24(8):858‐864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Rasmussen L, Hallas J, Madsen KG. Cardiovascular drugs and erectile dysfunction–a symmetry analysis. Br J Clin Pharmacol. 2015;80(5):1219‐1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Singh S, Cocoros NM, Haynes K, et al. Antidopaminergic‐Antiparkinsonian medication prescribing cascade in persons with Alzheimer's disease. J Am Geriatr Soc. 2021;69:1328‐1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Singh S, Cocoros NM, Haynes K, et al. Identifying prescribing cascades in Alzheimer's disease and related dementias: the calcium channel blocker‐diuretic prescribing cascade. Pharmacoepidemiol Drug Saf. 2021;30:1066‐1073. [DOI] [PubMed] [Google Scholar]
  • 65. Sturkenboom MC, Middelbeek A, de Jong van den Berg LT, van den Berg PB, Stricker BH, Wesseling H. Vulvo‐vaginal candidiasis associated with acitretin. J Clin Epidemiol. 1995;48(8):991‐997. [DOI] [PubMed] [Google Scholar]
  • 66. Takada M, Fujimoto M, Hosomi K. Association between benzodiazepine use and dementia: data mining of different medical databases. Int J Med Sci. 2016;13(11):825‐834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Takada M, Fujimoto M, Hosomi K. Difference in risk of gastrointestinal complications between users of enteric‐coated and buffered low‐dose aspirin. Int J Clin Pharmacol Ther. 2014;52(3):181‐191. [DOI] [PubMed] [Google Scholar]
  • 68. Tsiropoulos I, Andersen M, Hallas J. Adverse events with use of antiepileptic drugs: a prescription and event symmetry analysis. Pharmacoepidemiol Drug Saf. 2009;18(6):483‐491. [DOI] [PubMed] [Google Scholar]
  • 69. Pouwels KB, Widyakusuma NN, Bos JHJ, Hak E. Association between statins and infections among patients with diabetes: a cohort and prescription sequence symmetry analysis. Pharmacoepidemiol Drug Saf. 2016;25(10):1124‐1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Venalainen O, Bell JS, Kirkpatrick CM, Nishtala PS, Liew D, Ilomaki J. Adverse drug reactions associated with cholinesterase inhibitors‐sequence symmetry analyses using prescription claims data. J Am Med Dir Assoc. 2017;18(2):186‐189. [DOI] [PubMed] [Google Scholar]
  • 71. van Boven JFM, de Jong‐van den Berg LTW, Vegter S. Inhaled corticosteroids and the occurrence of oral candidiasis: a prescription sequence symmetry analysis. Drug Saf. 2013;36(4):231‐236. [DOI] [PubMed] [Google Scholar]
  • 72. Hersom K, Neary MP, Levaux HP, Klaskala W, Strauss JS. Isotretinoin and antidepressant pharmacotherapy: a prescription sequence symmetry analysis. J Am Acad Dermatol. 2003;49(3):424‐432. [DOI] [PubMed] [Google Scholar]
  • 73. Bowman L, Carlstedt BC, Miller ME, McDonald CJ. Evaluation of ACE‐inhibitor (ACE‐I) associated cough using modified prescription sequence analysis (PSA). Pharmacoepidemiol Drug Saf. 1995;4(1):17‐22. [Google Scholar]
  • 74. Kalisch Ellett LM, Pratt NL, Barratt JD, Rowett D, Roughead EE. Risk of medication‐associated initiation of oxybutynin in elderly men and women. J Am Geriatr Soc. 2014;62(4):690‐695. [DOI] [PubMed] [Google Scholar]
  • 75. King CE, Pratt NL, Craig N, et al. Detecting medicine safety signals using prescription sequence symmetry analysis of a national prescribing data set. Drug Saf. 2020;43(8):787‐795. [DOI] [PubMed] [Google Scholar]
  • 76. Ko HHT, Lareu RR, Dix BR, Hughes JD, Parsons RW. A sequence symmetry analysis of the interrelationships between statins, diabetes and skin infections. Br J Clin Pharmacol. 2019;85:2559‐2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Knowledge and confidence in medication management. Nurs Manag. 2017;24(5):14. [DOI] [PubMed] [Google Scholar]
  • 78. Lai EC‐C, Hsieh C‐Y, Yang Y‐HK, Lin S‐J. Detecting potential adverse reactions of sulpiride in schizophrenic patients by prescription sequence symmetry analysis. PLoS One. 2014;9(2):e89795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Lai EC‐C, Yang Y‐HK, Lin S‐J, Hsieh C‐Y. Use of antiepileptic drugs and risk of hypothyroidism. Pharmacoepidemiol Drug Saf. 2013;22(10):1071‐1079. [DOI] [PubMed] [Google Scholar]
  • 80. Wang Y, van Boven JFM, Bos JHJ, et al. Risk of neuropsychiatric adverse events associated with varenicline treatment for smoking cessation among Dutch population: a sequence symmetry analysis. Pharmacoepidemiol Drug Saf. 2022;31(2):158‐166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Bytzer P, Hallas J. Drug‐induced symptoms of functional dyspepsia and nausea. A symmetry analysis of one million prescriptions. Aliment Pharmacol Ther. 2000;14(11):1479‐1484. [DOI] [PubMed] [Google Scholar]
  • 82. Brandt‐Christensen M, Kvist K, Nilsson FM, Andersen PK, Kessing LV. Treatment with antidepressants and lithium is associated with increased risk of treatment with antiparkinson drugs: a pharmacoepidemiological study. J Neurol Neurosurg Psychiatry. 2006;77(6):781‐783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Iwasawa M, Sagami K, Yokoyama S, Hosomi K, Takada M. Adherence to guidelines for antiulcer drug prescription in patients receiving low‐dose aspirin therapy in Japan. Int J Clin Pharmacol Ther. 2019;57(4):197‐206. [DOI] [PubMed] [Google Scholar]
  • 84. Yokoyama S, Ieda S, Nagano M, et al. Association between oral anticoagulants and osteoporosis: real‐world data mining using a multi‐methodological approach. Int J Med Sci. 2020;17(4):471‐479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Yokoyama S, Tanaka Y, Hosomi K, Takada M. Polypharmacy is associated with amiodarone‐induced hypothyroidism. Int J Med Sci. 2021;18(15):3574‐3580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Yokoyama S, Wakamoto S, Tanaka Y, Nakagawa C, Hosomi K, Takada M. Association between antipsychotics and osteoporosis based on real‐world data. Ann Pharmacother. 2020;54(10):988‐995. [DOI] [PubMed] [Google Scholar]
  • 87. Chen Y, Huang ST, Hsu TC, Peng LN, Hsiao FY, Chen LK. Detecting suspected prescribing cascades by prescription sequence symmetry analysis of nationwide real‐world data. J Am Med Dir Assoc. 2022;23(3):468‐476.e6. [DOI] [PubMed] [Google Scholar]
  • 88. Gadzhanova S, Pratt N, Roughead E. Use of SGLT2 inhibitors for diabetes and risk of infection: analysis using general practice records from the NPS MedicineWise MedicineInsight program. Diabetes Res Clin Pract. 2017;130:180‐185. [DOI] [PubMed] [Google Scholar]
  • 89. Hallas J, Bytzer P. Screening for drug related dyspepsia: an analysis of prescription symmetry. Eur J Gastroenterol Hepatol. 1998;10(1):27‐32. [DOI] [PubMed] [Google Scholar]
  • 90. Genia English, August 10, 1996. National Library of Medicine.
  • 91. Pouwels K, Kalkman A, Schagen D, Visser S, Hak E. Do SSRIs increase the risk of gastrointestinal adverse effects? Pharmacoepidemiol Drug Saf. 2013;22:127. [Google Scholar]
  • 92. Silwer L, Petzold M, Hallas J, Lundborg CS. Statins and nonsteroidal anti‐inflammatory drugs‐an analysis of prescription symmetry. Pharmacoepidemiol Drug Saf. 2006;15(7):510‐511. [DOI] [PubMed] [Google Scholar]
  • 93. Maura G, Billionnet C, Coste J, Weill A, Neumann A, Pariente A. Non‐bleeding adverse events with the use of direct oral anticoagulants: a sequence symmetry analysis. Drug Saf. 2018;41(9):881‐897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Park KR, Kim KB, Baek YH, et al. Signal detection of benzodiazepine use and risk of dementia: sequence symmetry analysis using South Korean national healthcare database. Int J Clin Pharm. 2018;40(6):1568‐1576. [DOI] [PubMed] [Google Scholar]
  • 95. Roughead EE, Chan EW, Choi NK, et al. Proton pump inhibitors and risk of Clostridium difficile infection: a multi‐country study using sequence symmetry analysis. Expert Opin Drug Saf. 2016;15(12):1589‐1595. [DOI] [PubMed] [Google Scholar]
  • 96. Roughead EE, Chan EW, Choi NK, et al. Variation in association between thiazolidinediones and heart failure across ethnic groups: retrospective analysis of large healthcare claims databases in six countries. Drug Saf. 2015;38(9):823‐831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97. Roughead EE, Kalisch LM, Pratt NL, Killer G, Barnard A, Gilbert AL. Managing glaucoma in those with co‐morbidity: not as easy as it seems. Ophthalmic Epidemiol. 2012;19(2):74‐82. [DOI] [PubMed] [Google Scholar]
  • 98. Lindberg G, Hallas J. Cholesterol‐lowering drugs and antidepressants—a study of prescription symmetry. Pharmacoepidemiol Drug Saf. 1998;7(6):399‐402. [DOI] [PubMed] [Google Scholar]
  • 99. Janetzki JL, Sykes MJ, Ward MB, Pratt NL. Proton pump inhibitors may contribute to progression or development of chronic obstructive pulmonary disease—a sequence symmetry analysis approach. J Clin Pharm Ther. 2021;46(6):1687‐1694. [DOI] [PubMed] [Google Scholar]
  • 100. Hirano Y. Risk of extrapyramidal syndromes associated with psychotropic polypharmacy: a study based on large‐scale Japanese claims data. Ther Innov Regul Sci. 2020;54(2):259‐268. [DOI] [PubMed] [Google Scholar]
  • 101. Hallas J, Wang SV, Gagne JJ, Schneeweiss S, Pratt N, Pottegård A. Hypothesis‐free screening of large administrative databases for unsuspected drug‐outcome associations. Eur J Epidemiol. 2018;33(6):545‐555. [DOI] [PubMed] [Google Scholar]
  • 102. Hellfritzsch M, Rasmussen L, Hallas J, Pottegård A. Using the symmetry analysis design to screen for adverse effects of non‐vitamin K antagonist oral anticoagulants. Drug Saf. 2018;41(7):685‐695. [DOI] [PubMed] [Google Scholar]
  • 103. Alaskar MA, Brown JD, Voils SA, Vouri SM. Loop diuretic use following fluid resuscitation in the critically ill. Am J Health‐Syst Pharm. 2022;79(3):165‐172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Vouri SM, Jiang X, Morris EJ, Brumback BA, Winterstein AG. Use of negative controls in a prescription sequence symmetry analysis to reduce time‐varying bias. Pharmacoepidemiol Drug Saf. 2021;30(9):1192‐1199. [DOI] [PubMed] [Google Scholar]
  • 105. Vouri SM, Morris EJ, Usmani SA, et al. Evaluation of the key prescription sequence symmetry analysis assumption using the calcium channel blocker: loop diuretic prescribing cascade. Pharmacoepidemiol Drug Saf. 2022;31(1):72‐81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Wahab IA, Pratt NL, Ellett LK, Roughead EE. Sequence symmetry analysis as a signal detection tool for potential heart failure adverse events in an administrative claims database. Drug Saf. 2016;39(4):347‐354. [DOI] [PubMed] [Google Scholar]
  • 107. Thacker EL, Schneeweiss S. Initiation of acetylcholinesterase inhibitors and complications of chronic airways disorders in elderly patients. Drug Saf. 2006;29(11):1077‐1085. [DOI] [PubMed] [Google Scholar]
  • 108. de Jong JC, van den Berg PB, Tobi H, de Jong‐van den Berg LT. Combined use of SSRIs and NSAIDs increases the risk of gastrointestinal adverse effects. Br J Clin Pharmacol. 2003;55(6):591‐595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109. Hachiken H, Murai A, Wada K, Kuwahara T, Hosomi K, Takada M. Difference between the frequencies of antisecretory drug prescriptions in users of buffered vs. enteric‐coated low‐dose aspirin therapies. Int J Clin Pharmacol Ther. 2013;51(10):807‐815. [DOI] [PubMed] [Google Scholar]
  • 110. Hagberg KW, Divan HA, Nickel JC, Jick SS. Risk of incident antidepressant‐treated depression associated with use of 5α‐reductase inhibitors compared with use of α‐blockers in men with benign prostatic hyperplasia: a population‐based study using the clinical practice research datalink. Pharmacotherapy. 2017;37(5):517‐527. [DOI] [PubMed] [Google Scholar]
  • 111. Lund LC, Højlund M, Henriksen DP, Hallas J, Kristensen KB. Sodium‐glucose cotransporter‐2 inhibitors and the risk of gout: a Danish population based cohort study and symmetry analysis. Pharmacoepidemiol Drug Saf. 2021;30(10):1391‐1395. [DOI] [PubMed] [Google Scholar]
  • 112. Thiessen BQ, Wallace SM, Blackburn JL, Wilson TW, Bergman U. Increased prescribing of antidepressants subsequent to beta‐blocker therapy. Arch Intern Med. 1990;150(11):2286‐2290. [PubMed] [Google Scholar]
  • 113. Wahab IA, Pratt NL, Kalisch LM, Roughead EE. Comparing time to adverse drug reaction signals in a spontaneous reporting database and a claims database: a case study of rofecoxib‐induced myocardial infarction and rosiglitazone‐induced heart failure signals in Australia. Drug Saf. 2014;37(1):53‐64. [DOI] [PubMed] [Google Scholar]
  • 114. Kalisch Ellett LM, Pratt NL, Kerr M, Roughead EE. Antipsychotic polypharmacy in older Australians. Int Psychogeriatr. 2018;30(4):539‐546. [DOI] [PubMed] [Google Scholar]
  • 115. Vouri SM. Rhinorrhea as a result of Alzheimer's disease treatment. Senior Care Pharm. 2020;35(4):148‐149. [DOI] [PubMed] [Google Scholar]
  • 116. Morris EJ, Brown JD, Manini TM, Vouri SM. Differences in health‐related quality of life among adults with a potential dihydropyridine calcium channel blocker–loop diuretic prescribing cascade. Drugs Aging. 2021;38(7):625‐632. [DOI] [PubMed] [Google Scholar]
  • 117. Kröger E, Van Marum R, Souverein P, Carmichael PH, Egberts T. Treatment with rivastigmine or galantamine and risk of urinary incontinence: results from a Dutch database study. Pharmacoepidemiol Drug Saf. 2015;24(3):276‐285. [DOI] [PubMed] [Google Scholar]
  • 118. Pouwels KB, Bos JH, Hak E. ACE inhibitors and urinary tract infections. Epidemiology. 2014;25(3):466‐467. [DOI] [PubMed] [Google Scholar]
  • 119. Kim S, Cheon SM, Suh HS. Association between drug exposure and occurrence of parkinsonism in Korea: a population‐based case‐control study. Ann Pharmacother. 2019;53(11):1102‐1110. [DOI] [PubMed] [Google Scholar]
  • 120. Morris EJ, Hollmann J, Hofer AK, et al. Evaluating the use of prescription sequence symmetry analysis as a pharmacovigilance tool: a scoping review. Res Soc Admin Pharm. 2022;18(7):3079‐3093. [DOI] [PubMed] [Google Scholar]
  • 121. Moriarty F, Hardy C, Bennett K, Smith SM, Fahey T. Trends and interaction of polypharmacy and potentially inappropriate prescribing in primary care over 15 years in Ireland: a repeated cross‐sectional study. BMJ Open. 2015;5(9):e008656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122. Mangoni AA, Jackson SHD. Age‐related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004;57(1):6‐14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123. Guthrie B, Makubate B, Hernandez‐Santiago V, Dreischulte T. The rising tide of polypharmacy and drug‐drug interactions: population database analysis 1995–2010. BMC Med. 2015;13:74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124. Petrovic M, van der Cammen T, Onder G. Adverse drug reactions in older people. Drugs Aging. 2012;29(6):453‐462. [DOI] [PubMed] [Google Scholar]
  • 125. Wallace E, Salisbury C, Guthrie B, Lewis C, Fahey T, Smith SM. Managing patients with multimorbidity in primary care. Br Med J. 2015;350:h176. [DOI] [PubMed] [Google Scholar]
  • 126. Sternberg SA, Petrovic M, Onder G, Cherubini A, O'Mahony D, Gurwitz JH, Pegreffi F, Mason R, Akerman J, McCarthy L, Lawson A, Li J, Wu W, Rochon PA. Identifying key prescribing cascades in older people (iKASCADE): a transnational initiative on drug safety through a sex and gender lens‐rationale and design. Eur Geriatr Med 2021. Jun;12(3):475–483. doi: 10.1007/s41999-021-00480-w. Epub 2021 Apr 9. PMID: 33835427. [DOI] [PubMed] [Google Scholar]
  • 127. O'Mahony D, Rochon PA. Prescribing cascades: we see only what we look for, we look for only what we know. Age Ageing. 2022;51(7):afac138. doi: 10.1093/ageing/afac138 [DOI] [PubMed] [Google Scholar]
  • 128. Pouwels KB, Visser ST, Bos HJ, Hak E. Angiotensin‐converting enzyme inhibitor treatment and the development of urinary tract infections: a prescription sequence symmetry analysis. Drug Saf. 2013;36(11):1079‐1086. [DOI] [PubMed] [Google Scholar]
  • 129. Takada M, Fujimoto M, Yamazaki K, Takamoto M, Hosomi K. Association of statin use with sleep disturbances: data mining of a spontaneous reporting database and a prescription database. Drug Saf. 2014;37(6):421‐431. [DOI] [PubMed] [Google Scholar]
  • 130. Gau CS, Chang CJ, Tsai FJ, Chao PF, Gau SS. Association between mood stabilizers and hypothyroidism in patients with bipolar disorders: a nested, matched case‐control study. Bipolar Disord. 2010;12(3):253‐263. [DOI] [PubMed] [Google Scholar]
  • 131. Vouri SM, Possinger MC, Usmani S, Solberg LM, Manini T. Evaluation of the potential acetylcholinesterase inhibitor‐induced rhinorrhea prescribing cascade. J Am Geriatr Soc. 2020;68(2):440‐441. [DOI] [PubMed] [Google Scholar]
  • 132. Pouwels KB, Kalkman GA, Schagen D, Visser ST, Hak E. Is combined use of SSRIs and NSAIDs associated with an increased risk of starting peptic ulcer treatment? Br J Clin Pharmacol. 2014;78(1):192‐193. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Appendix S1

Data Availability Statement

Additional systematic review data is available from the authors on request.


Articles from Pharmacology Research & Perspectives are provided here courtesy of Wiley

RESOURCES