Skip to main content
Entropy logoLink to Entropy
. 2022 Sep 13;24(9):1288. doi: 10.3390/e24091288

Exact Travelling-Wave Solutions of the Extended Fifth-Order Korteweg-de Vries Equation via Simple Equations Method (SEsM): The Case of Two Simple Equations

Elena V Nikolova 1,2
Editor: António Lopes
PMCID: PMC9498003  PMID: 36141174

Abstract

We apply the Simple Equations Method (SEsM) for obtaining exact travelling-wave solutions of the extended fifth-order Korteweg-de Vries (KdV) equation. We present the solution of this equation as a composite function of two functions of two independent variables. The two composing functions are constructed as finite series of the solutions of two simple equations. For our convenience, we express these solutions by special functions V, which are solutions of appropriate ordinary differential equations, containing polynomial non-linearity. Various specific cases of the use of the special functions V are presented depending on the highest degrees of the polynomials of the used simple equations. We choose the simple equations used for this study to be ordinary differential equations of first order. Based on this choice, we obtain various travelling-wave solutions of the studied equation based on the solutions of appropriate ordinary differential equations, such as the Bernoulli equation, the Abel equation of first kind, the Riccati equation, the extended tanh-function equation and the linear equation.

Keywords: extended fifth-order Korteweg-de Vries equation, simple equations method, exact travelling-wave solutions, composite functions

1. Introduction

Almost all processes occurring in human life and in nature can be considered to be complex systems. Examples of such complex systems are stock markets, research groups, traffic networks, etc. [1,2,3,4,5,6]. Moreover, most complex systems are characterized by their non-linearity. Examples of non-linear complex systems can be found in many scientific areas, from fluid mechanics and solid-state physics to biology and medicine [7,8,9,10,11]. Usually, the non-linear behavior of the complex systems is described by differential or difference equations [12,13,14,15]. In this direction, finding analytical and numerical solutions of non-linear differential equations is a great challenge for researchers from various scientific fields.

Research related to finding exact analytical solutions of non-linear partial differential equations (NPDFs) has a long history. At the beginning, to remove the non-linearity of the solved equation, an appropriate transformation is introduced. An example can be given the by so-called Hopf–Cole transformation [16,17], by which the non-linear Burger’s equation is reduced to the linear heat equation. Later, the transformation, which reduces the standard KdV equation to the famous linear equation of Schrdinger, leads to the appearance of the Method of Inverse Scattering Transform [18,19,20]. Other popular methods using appropriate transformations are the method of Hirota [21,22,23] and the method including the Painleve expansions [24,25,26].

In this study, we shall use the SEsM (Simple Equations Method) for obtaining exact solutions of non-linear differential equations. The idea for development of this method comes from the Method of Simplest Equation (MSE), proposed by Kudryashov [27]. MSE is based on searching for particular solutions of NPDEs as a series containing powers of solutions of a simpler equation called the simplest equation [28,29,30,31,32]. Application of the MSE for obtaining exact solutions of various evolution equations can be found in [33,34,35,36,37,38,39,40,41,42].

Returning to the methodology used in this study, we note that some ideas of SEsM were used in the papers of Martinov and Vitanov [43,44,45,46,47] as well as in the papers of Vitanov [48,49] about 30 years ago. About 10 years ago, Vitanov and co-authors developed methodology called Modified Method of Simplest Equation (MMSE) [50,51,52,53]. The MMSE was first applied for obtaining exact solutions of models in ecology and population dynamics [54,55,56]. In these investigations, the authors used the ordinary differential equation of Bernoulli as the simplest equation. Indeed, the main idea of the MMSE is the introduction of a balance equation. This equation allows the determination of the form of the solution of the solved equation as a finite series of the solution of the simplest equation. Moreover, it allows the determination of the kind of the simplest equations too. We note that with respect to presentation of the solution of the solved NPDE as a series of solution of the simplest equation by means of a balance equation, the MMSE is identical to the MSE developed by Kudryashov. Applications of MMSE for obtaining exact solutions of different non-linear differential equations can be found in [57,58,59,60,61,62,63,64,65,66,67,68]. In [57,58,59,60,61,62,63,64,65], the authors used ordinary differential equations of first order, such as the equation of Riccati, the equation of Bernoulli and the equation of Abel of the first kind as simplest equations. Ordinary differential equations of the second order, such as elliptic equations and equations, based on the function 1/cosh(αx+βt)n are used as the simplest equations in [66,67,68].

In the last few years, Vitanov extended the MMSE to the SEsM [69,70]. In this extended version of the methodology, the solution of the solved NPDE is constructed as a composite function of the solutions of more simple equations. Moreover, the first step of the algorithm of SEsM includes introduction of an appropriate transformation, which allows the solved NPDE containing non-polynomial non-linearity to reduce to a NPDE, containing polynomial non-linearity [71,72]. Such a procedure allows the further application of the SEsM. In this direction, the SEsM covers all previous methodologies for finding exact solutions of PDEs to this end, as proved in [73,74,75,76,77,78]. Although the SEsM is a relatively new methodology, its application for finding exact solutions of different NPDEs can be seen in [79,80,81,82,83].

In this study, we shall focus on obtaining exact travelling-wave solutions of the extended fifth-order KdV equation. It is well known that the standard KdV equation is a general model for investigation of weakly non-linear long waves, including non-linearity and dispersion effects. In more detail, it was derived using a multi-scale asymptotic procedure on the governing Euler equations for inviscid and incompressible fluids, and primarily it described surface waves with long wavelength and small amplitude in shallow water [84] and internal waves in a shallow density-stratified fluid [85]. In fact, the KdV equation is obtained at a first-perturbation expansion (non-linearity and dispersion of first order are only taken into account). However, in many cases, the explanation of physical processes needs better precision. Then the influence of non-linear and dispersive terms with higher order in the physical systems cannot be neglected. In this case, applying the perturbation procedure to the governing Euler equations and leaving second-order terms in the perturbation expansions leads to the fifth-order KdV equation. In the context of propagating surface water waves, the fifth-order KdV equation was first proposed by Olver to describe the wave breaking [86]. Later, Marchant and Smyth [87] use the same equation to model more precisely the resonant flow of a fluid over topography. An equation of such a type was also derived in [88] to examine higher-order solitary-wave interactions. In [89], the author was derived the same equation to explain the surface waves in shallow water subjected to a linear shear flow. In the context of propagating internal waves in stratified media, the fifth-order KdV equation was proposed first by Koop and Butler [90] for a two-layer system, and then by Lamb and Yan [91] for a continuous density stratification with no free surface and without a basic shear flow. Next, the same equation was adapted by Pelinovsky et al. [92] to include a basic shear flow, but again with no free surface. Internal solitary waves in a stratified shear flow but with a free surface are modeled in [93] by the same evolution equation, as the authors expressed the model coefficients in terms of integrals of the modal function for the linear long-wave theory. In addition, the fifth-order KdV equation was used to describe internal waves of moderate amplitude in density-stratified fluids [94]. All these references are only a part of the possibilities that the studied equation gives in a purely physical sense. This emphasizes the importance of finding its exact analytical solutions.

The paper is structured as follows. In Section 2, we formulate the problem studied. The methodology of SEsM is presented in the same section. In Section 3, we present various types of exact travelling-wave solution of the extended fifth-order KdV equation depending on the simple equations used. Numerical examples of the obtained analytical solutions are shown in the same section. Some concluding remarks are made in Section 4.

2. Problem Formulation and Methodology

In this study, we discuss the extended KdV equation, presented in the form [86,87,88,89,90,91,92,93,94]:

ut=uxxxxx+αuuxxxβuxuxx+γu2ux+δuxxx+ϵuux (1)

where u(x,t) is a displacement of surface at any varied natural instances, x is the spatial coordinate, and t is time. In more detail, Equation (1) is a hydrodynamic model of an incompressible, inviscid fluid and its irrotational motion is governed by gravitational forces. In addition to the standard non-linear term with a coefficient ϵ=a/h<<1, and the standard linear dispersion term with a coefficient δ=(h/l)2<<1 (a denotes the wave amplitude, h the average depth of the fluid container, and l is the average wavelength), involved in the standard KdV equation, Equation (1) involves a cubic non-linear term (with a coefficient γ), a linear dispersion term of 5th order (with a coefficient of 1), and also higher-order non-linear dispersion terms with coefficients α and β.

Here, we shall search for analytical solutions of Equation (1) applying the SEsM. The SEsM can be used for obtaining analytical solutions of NPDEs:

Φu(x,t),=0 (2)

where the left-hand side of Equation (2) is a relationship containing the function u(x,t) and some of its derivatives.

The algorithm of SEsM includes the following four steps [71,72]:

(1). The transformation

u(x,,t)=Tr(F1(x,,t),F2(x,,t),FN(x,,t)) (3)

is made, where Tr(F1(x,,t),F2(x,,t),FN(x,,t)) is a composite function of other functions Fii=1N. F1(x,,t),F2(x,,t),,FN(x,,t) are functions of several spatial variables, as well as of time. The transformations Tr(Fi) have two goals: (1) They can remove some non-linearities if possible (an example is the Hopf–Cole transformation, which leads to the linearization of the Burger’s equation); (2) They can transform the non-linearity of the solved differential equations to a more treatable kind of non-linearity (e.g., to polynomial non-linearity). In many particular cases one may skip this step (then we have just u(x,,t)=F(x,,t)), but in numerous cases this step is necessary for obtaining a solution of the studied NPDE. The substitution of Equation (3) in Equation (2) leads to a non-linear PDE for the function F(x,,t). In many cases, the general form of the transformation Tr(F) is not known.

(2). This step is based on the use of composite functions. In this step, the functions F1(x,,t),F2(x,,t), are chosen as composite functions of the functions fi1,,fiN,, which are solutions of simpler differential equations. There are two possibilities: (1) The construction relationship for the composite function is not fixed. Then, the Faa di Bruno relationship for the derivatives of a composite function is used; (2) The construction relationship for the composite function is fixed. For example, for the case of one solved equation and one function F, the construction relationship can be given as:

F=α^+i1=1Nβ^ifi1+i1=1Ni2=1Nγ^i1fi1fi2++i1=1NiN=1Nσ^i1nfi1fiN (4)

Then, one can directly calculate the corresponding derivatives from the solved differential equation.

(3). In this step, the simple equations for the functions fi1,,fiN must be selected. In addition, in accordance with the hypothesis of Point (1) of Step 2, the relationship between the composite functions F1(x,,t),,FN(x,,t) and the functions fi1,,fiN must be fixed. The fixation of the simple equations and the fixation of the relationships for the composite functions are connected. The fixations transform the left-hand sides of Equation (2). The result of this transformation can be functions that are the sum of terms. Each of these terms contains some function multiplied by a coefficient. This coefficient is a relationship containing some of the parameters of the solved equations and some of the parameters of the solutions of the simple equations used. The fixation mentioned above is performed by a balance procedure that ensures that the relationships for the coefficients contain more than one term. This balance procedure leads to one or more additional relationships among the parameters of the solved equation and parameters of the solutions of the simple equations used. These additional relationships are known as balance equations.

(4). A non-trivial solution of Equation (2) is obtained if all coefficients mentioned in Step 3 are set to zero. This condition usually leads to a system of non-linear algebraic equations. The unknown variables in these equations are the coefficients of the solved non-linear differential equation and the coefficients of the solutions of the simple equations. Any non-trivial solution of this algebraic system leads to a solution of the studied non-linear PDE.

Below, we shall apply the methodology above given to obtain exact solutions of Equation (1). We shall consider u as a composite function of two functions of two variables, i.e.,

u(ξ1,ξ2)=1+F1(ξ1)+F2(ξ2), (5)

where

ξ1=κ1x+ω1t,ξ2=κ2x+ω2t, (6)

as

F1(ξ1)=i1=0n1ζi1[f1(ξ1)]i1,F2(ξ2)=i2=0n2ηi2[f2(ξ2)]i2 (7)

where ζi1,i1=0,,n1 and ηi2,i2=0,,n2 are parameters, and n1 and n2 shall be determined by means of balance procedure. Let us present the solutions of functions f1 and f2 by the special functions Vμ0,μ1,,μm1(ξ1;k1,l1,m1) and Vν0,ν1,,νm2(ξ2;k2,l2,m2), which are solutions of the simple equations of the following kind:

dk1f1dξk1l1=j1=0m1μj1f1j1,dk2f2dξk2l2=j2=0m2νj2f2j2 (8)

where k1,2 are the orders of derivatives of f1 and f2, l1,2 are the degrees of derivatives in the defining ODEs and m1,2 are the highest degrees of the polynomials of f1 and f2 in the defining ODE. The special functions Vμ0,μ1,,μm1(ξ1;k1,l1,m1) and Vν0,ν1,,νm2(ξ2;k2,l2,m2) have interesting properties. These functions can be hyperbolic, trigonometric, elliptic functions of Jacobi, etc. For our study, we choose one specific case of the functions V. We shall assume that k1=k2=1 and l1=l2=1. Then, the functions Vμ0,μ1,,μm1(ξ1;1,1,m1) and Vν0,ν1,,νm2(ξ2;1,1,m2) are solutions of the simple equations:

df1dξ1=j1=0m1μj1f1j1,df2dξ2=j2=0m2νj2f2j2 (9)

In the study, we shall present various examples of application of the special functions V depending on the numerical value of m1 and m2. We shall use the following general types of simple equations:

  • The Bernoulli equation, whose general form is:
    dfdξ=af(ξ)+b[f(ξ)]m (10)
    The general solution of this equation is:
    f(ξ)=aexp[a(m1)(ξ+ξ0)]1bexp[a(m1)(ξ+ξ0)]1m1 (11)
    for the case a>0,b<0 and
    f(ξ)=aexp[a(m1)(ξ+ξ0)]1+bexp[a(m1)(ξ+ξ0)]1m1 (12)
    for the case a<0,b>0, as ξ0 is a constant of integration.
  • The Abel equation of first kind, whose general form is:
    dfdξ=a+bf(ξ)+c[f(ξ)]2+d[f(ξ)]3 (13)
    For the special case a=c3d(b2c29d), this equation has the following solution:
    f(ξ)=expbc23d(ξ+ξ0)C*dexp2bc23d(ξ+ξ0)c3d (14)
    where C* and ξ0 are constants of integration.
  • The Riccati equation, whose general form is:
    dfdξ=a[f(ξ)]2+bf(ξ)+c (15)
    The general solutions of this equation are:
    f(ξ)=b2aθ2atanhθ(ξ+ξ0)2 (16)
    and
    f(ξ)=b2aθ2atanhθ(ξ+ξ0)2+exp[θ(ξ+ξ0)2]2cosh[θ(ξ+ξ0)2]aθ+2C*exp[θ(ξ+ξ0)2]cosh[θ(ξ+ξ0)2] (17)
    where θ2=b24ac>0 and C* and ξ0 are constants of integration. In this study, we shall use only the extended variant of the Riccati equation (Equation (17)). In addition, as a particular case of the use of equations of Riccati as simple equations, we shall consider also the so-called extended tanh-function equation:
    dfdξ=c¯2a¯2[f(ξ)]2 (18)
    Equation (18) is obtained from Equation (15) when b=0,a=a¯2,c=c¯2 and its solution is:
    f(ξ)=c¯a¯tanh[a¯c¯(ξ+ξ0)], (19)
    where a¯2f(ξ)2<c¯2 and ξ0 is a constant of integration.
  • The linear ODE, which has the following form:
    dfdξ=af(ξ)+b, (20)
    and its solution is:
    f(ξ)=C*exp[a(ξ+ξ0)]ba, (21)
    where C* and ξ0 are constants.

3. Exact Solutions of the Extended KdV Equation

Following the above given algorithm, we skip Step 1 of the SEsM (no additional transformation of non-linearity). In Step 2, we consider u as a composite function of two functions of two variables (see Equation (5)). Substitution of Equations (5)–(7) in Equation (1) leads to the following ODE:

ω1+ω2dF1dξ1+dF2dξ2+κ15+κ25d5F1dξ15+d5F2dξ25ακ14+κ24(1+F1+F2)d3F1dξ13+d3F2dξ23+βκ13+κ23dF1dξ1+dF2dξ2d2F1dξ12+d2F2dξ22+γκ1+κ2(1+F1+F2)2dF1dξ1+dF2dξ2+δκ13+κ23d3F1dξ13+d3F2dξ23+ϵκ1+κ2(1+F1+F2)dF1dξ1+dF2dξ2=0 (22)

In Step 3 of the SEsM, we must select the equation for u(F1[f1(ξ1)],F2[f2(ξ2)]) (the relationship for the composite function) and the equations for f1(ξ1) and f1(ξ2) (the simple equations). We assume that the expression for u is of kind (5). In addition, the simple equations are assumed to be of kind (9). The substitution of Equations (5), (7) and (9) in Equation (22) leads to polynomials of the functions f1 and f2. To obtain the system of non-linear algebraic equations, we must balance the largest degrees of these polynomials. This procedure leads to the balance equations

n1=2m12,n2=2m22, (23)

Then Equation (1) may have solutions of the kind

u(ξ1,ξ2)=1+i1=02m12ζi1[f1(ξ1)]i1+i2=02m22ηi2[f2(ξ2)]i2 (24)

and the functions f1(ξ1) and f2(ξ2) are solutions of the simple Equation (9).

3.1. Case m1=3,m2=3

First, we shall search for analytical solutions of Equation (1) for m1=3,m2=3. According to the balance Equation (23), n1=4,n2=4. The general solution of Equation (1) can be written as

u(ξ1,ξ2)=1+i1=04ζi1[f1(ξ1)]i1+i2=04ηi2[f2(ξ2)]i2 (25)

where

df1dξ1=μ0+μ1f1+μ2f12+μ3f13,df2dξ2=ν0+ν1f2+ν2f22+ν3f23 (26)

Substitution of Equations (25) and (26) in Equation (22) leads to the following system of non-linear algebraic equations:

96βκ13ζ42μ33+23040κ25ζ4μ35+96βκ23ζ42μ33+4γκ1ζ43μ3192ακ24ζ42μ33+4σκ2ζ43μ3+23040κ15ζ4μ35192ακ14ζ42μ33=0 (27)
500ακ24ζ42μ32μ2500ακ14ζ42μ32μ2297ακ14ζ3ζ4μ33+11γκ2ζ3ζ42μ3+272βκ13ζ42μ32μ2+4γκ2ζ43μ2+11γκ1ζ3ζ42μ3+132βκ13ζ4μ33ζ3+93660κ15ζ4μ34μ2+10395κ15ζ3μ35297ακ24ζ3ζ4μ33+10395κ25ζ3μ35+132βκ23ζ4μ33ζ3+93660κ25ζ4μ34μ2+272βκ23ζ42μ32μ2+4γκ1ζ43μ2=0
105ακ24ζ32μ33+45βκ13ζ32μ33+45βκ23ζ32μ33+41205κ15μ34ζ3μ2+76800κ15ζ4μ34μ1+149860κ15μ33ζ4μ22+41205κ25μ34ζ3μ2+76800κ25ζ4μ34μ1=0
149860κ25μ33ζ4μ22105ακ14ζ32μ33+4γκ1ζ43μ1+3840κ15ζ2μ35+3840κ25ζ2μ35+10γκ2ζ2ζ42μ3+10γκ2ζ32ζ4μ3+11γκ2ζ3ζ42μ2=0
10γκ1ζ2ζ42μ3+10γκ1ζ32ζ4μ3+11γκ1ζ3ζ42μ2240ακ14ζ2ζ4μ33767ακ14ζ3ζ4μ32μ2240ακ24ζ2ζ4μ33432ακ24ζ42μ32μ1428ακ24ζ42μ3μ22=0
432ακ14ζ42μ32μ1428ακ14ζ42μ3μ22+80βκ13ζ4μ33ζ2+256βκ13ζ42μ3μ22+256βκ13ζ42μ32μ1+80βκ23ζ4μ33ζ2+256βκ23ζ42μ3μ22+256βκ23ζ42μ32μ1767ακ24ζ3ζ4μ32μ2=0
372βκ23ζ4μ32ζ3μ2+372βκ13ζ4μ32ζ3μ2+4γκ1ζ43μ1+4γκ2ζ43μ1=0
11γκ1ζ3ζ42μ1+945κ15ζ1μ35+945κ25ζ1μ35+9γκ2ζ1ζ42μ3+10γκ2ζ2ζ42μ2+10γκ2ζ32ζ4μ2618ακ14ζ2ζ4μ32μ2657ακ14ζ3ζ4μ32μ1650ακ14ζ3μ3ζ4μ22728ακ14ζ42μ3μ2μ1+241848κ15μ33μ2ζ4μ1+241848κ25μ33μ2ζ4μ1207ακ14ζ1ζ4μ33207ακ24ζ1ζ4μ33120ακ24ζ42μ23=0
80βκ13ζ42μ23+80βκ23ζ42μ23267ακ14ζ32μ32μ2372ακ14ζ42μ32μ0153ακ24ζ2ζ3μ33153ακ14ζ2ζ3μ33267ακ24ζ32μ32μ2372ακ24ζ42μ32μ0+36βκ13ζ4μ33ζ1+240βκ13ζ42μ32μ0+54βκ13ζ3μ33ζ2=0
126βκ13ζ32μ32μ2+36βκ23ζ4μ33ζ1+240βκ23ζ42μ32μ0+54βκ23ζ3μ33ζ2+126βκ23ζ32μ32μ2728ακ24ζ42μ3μ2μ1618ακ24ζ2ζ4μ32μ2657ακ24ζ3ζ4μ32μ1650ακ24ζ3μ3ζ4μ22+4γκ1ζ43μ0+4γκ2ζ43μ0+3γκ2ζ33μ3=0
224βκ23ζ4μ32ζ2μ2+348βκ23ζ4μ32ζ3μ1+480βκ23ζ42μ3μ2μ1+348βκ23ζ4μ3ζ3μ22+224βκ13ζ4μ32ζ2μ2+348βκ13ζ4μ3ζ3μ22+348βκ13ζ4μ32ζ3μ1+480βκ13ζ42μ3μ2μ1+11γκ2ζ3ζ42μ1+9γκ1ζ1ζ42μ3+10γκ1ζ2ζ42μ2+10γκ1ζ32ζ4μ2=0
14730κ15μ34ζ2μ2+33075κ15μ34ζ3μ1+63756κ15ζ4μ34μ0+64020κ15μ33ζ3μ22+117616κ15μ32ζ4μ23+14730κ25μ34ζ2μ2+33075κ25μ34ζ3μ1+63756κ25ζ4μ34μ0+64020κ25μ33ζ3μ22120ακ14ζ42μ23+18γκ1ζ2ζ3ζ4μ3117616κ25μ32ζ4μ23γκ1ζ33μ3+18γκ2ζ2ζ3ζ4μ3=0
8γκ2ζ42η4μ3192ακ24η4ζ4μ33192ακ14η4ζ4μ33+8γκ1ζ42η4μ3=08γκ1ζ42η1μ3+8γκ2ζ42η1μ3192ακ24η1ζ4μ33192ακ14η1ζ4μ33=0
8γκ1ζ2ζ32μ3+9γκ2ζ1ζ42μ2+8γκ2ζ2ζ32μ3+8γκ2ζ22ζ4μ3+9γκ1ζ1ζ42μ2+8γκ2ζ0ζ42μ3+8γκ1ζ0ζ42μ3+8γκ1ζ22ζ4μ3+10γκ1ζ2ζ42μ1+10γκ1ζ32ζ4μ1+11γκ1ζ3ζ42μ0+8γκ1ζ42η0μ3+10γκ2ζ2ζ42μ1+10γκ2ζ32ζ4μ1+11γκ2ζ3ζ42μ0+8γκ2ζ42η0μ3=0
18γκ2ζ2ζ3ζ4μ2+18γκ1ζ2ζ3ζ4μ2+16γκ1ζ1ζ3ζ4μ3+16γκ2ζ1ζ3ζ4μ3+45096κ25μ3ζ4μ24192ακ14ζ4μ3348ακ14ζ22μ33192ακ24ζ4μ33+3465κ15μ34ζ1μ2+11520κ15μ34ζ2μ1+27027κ15μ34ζ3μ0+22010κ15μ33ζ2μ22+96000κ15μ33ζ4μ12+48522κ15μ32ζ3μ23+45096κ15μ3ζ4μ24+3465κ25μ34ζ1μ2+11520κ25μ34ζ2μ1+27027κ25μ34ζ3μ0+22010κ25μ33ζ2μ22+96000κ25μ33ζ4μ12+48522κ25μ32ζ3μ23=0
14γκ2ζ3η4ζ4μ3500ακ24η4ζ4μ32μ2105ακ14η4ζ3μ33+8γκ1ζ42η4μ2500ακ14η4ζ4μ32μ2+14γκ1ζ3η4ζ4μ3+8γκ2ζ42η4μ2105ακ24η4ζ3μ33=0
8γκ1ζ42η3μ2500ακ14η3ζ4μ32μ2+14γκ2ζ3η3ζ4μ3500ακ24η3ζ4μ32μ2105ακ24η3ζ3μ33+14γκ1ζ3η3ζ4μ3+8γκ2ζ42η3μ2105ακ14η3ζ3μ33=0
14γκ2ζ3η2ζ4μ3+8γκ2ζ42η2μ2105ακ24η2ζ3μ33500ακ14η2ζ4μ32μ2105ακ14η2ζ3μ33+8γκ1ζ42η2μ2500ακ24η2ζ4μ32μ2+14γκ1ζ3η2ζ4μ3=0
14γκ1ζ3η1ζ4μ3500ακ14η1ζ4μ32μ2+14γκ2ζ3η1ζ4μ3+8γκ1ζ42η1μ2+8γκ2ζ42η1μ2105ακ14η1ζ3μ33105ακ24η1ζ3μ33500ακ24η1ζ4μ32μ2=0
4γκ2ζ42η4ν3+96βκ13η4ν3ζ4μ32+4γκ1ζ42η4ν3+96βκ23η4ν3ζ4μ32=0
72βκ23η3ν3ζ4μ32+3γκ2ζ42η3ν3+96βκ23η4ν2ζ4μ32+96βκ13η4ν2ζ4μ32+4γκ1ζ42η4ν2+4γκ2ζ42η4ν2+72βκ13η3ν3ζ4μ32+3γκ1ζ42η3ν3=0
48βκ23η2ν3ζ4μ32+72βκ23η3ν2ζ4μ32+96βκ23η4ν1ζ4μ32+48βκ13η2ν3ζ4μ32+72βκ13η3ν2ζ4μ32+96βκ13η4ν1ζ4μ32+4γκ2ζ42η4ν1+3γκ2ζ42η3ν248ακ24η4ζ2μ3348ακ14η4ζ2μ33+4γκ1ζ42η4ν1+3γκ1ζ42η3ν2+2γκ1ζ42η2ν3+6γκ1ζ32η4μ3+8γκ2ζ42η4μ1+8γκ1ζ42η4μ1=0
14γκ2ζ3η4ζ4μ2+14γκ1ζ3η4ζ4μ2+2γκ2ζ42η2ν3+6γκ2ζ32η4μ3267ακ14η4μ32ζ3μ2432ακ14η4ζ4μ32μ1428ακ14η4μ3ζ4μ22267ακ24η4μ32ζ3μ2432ακ24η4ζ4μ32μ1428ακ24η4μ3ζ4μ22+12γκ1ζ2η4ζ4μ3+12γκ2ζ2η4ζ4μ3=0
48ακ24η3ζ2μ3348ακ14η3ζ2μ33+2γκ1ζ42η2ν2+6γκ1ζ32η3μ3+8γκ2ζ42η3μ1+8γκ1ζ42η3μ1+γκ2ζ42η1ν3+γκ1ζ42η1ν3+4γκ2ζ42η4ν0+3γκ2ζ42η3ν1+2γκ2ζ42η2ν2+6γκ2ζ32η3μ3+4γκ1ζ42η4ν0+3γκ1ζ42η3ν1+72βκ23η3ν1ζ4μ32+96βκ23η4ν0ζ4μ32267ακ24η3μ32ζ3μ2432ακ24η3ζ4μ32μ1428ακ24η3μ3ζ4μ22267ακ14η3μ32ζ3μ2=0
432ακ14η3ζ4μ32μ1428ακ14η3μ3ζ4μ22+12γκ1ζ2η3ζ4μ3+12γκ2ζ2η3ζ4μ3+48βκ23η2ν2ζ4μ32+14γκ2ζ3η3ζ4μ2+14γκ1ζ3η3ζ4μ2+24βκ13η1ν3ζ4μ32+48βκ13η2ν2ζ4μ32+72βκ13η3ν1ζ4μ32+96βκ13η4ν0ζ4μ32+24βκ23η1ν3ζ4μ32=0
14γκ1ζ3η2ζ4μ2+2γκ1ζ42η2ν148ακ24η2ζ2μ3348ακ14η2ζ2μ33+6γκ1ζ32η2μ3+8γκ1ζ42η2μ1+γκ2ζ42η1ν2+γκ1ζ42η1ν2+3γκ2ζ42η3ν0+2γκ2ζ42η2ν1+8γκ2ζ42η2μ1+3γκ1ζ42η3ν0+6γκ2ζ32η2μ3+12γκ1ζ2η2ζ4μ3+24βκ13η1ν2ζ4μ32+72βκ13η3ν0ζ4μ32+72βκ23η3ν0ζ4μ32+24βκ23η1ν2ζ4μ32+48βκ23η2ν1ζ4μ32+48βκ13η2ν1ζ4μ32267ακ24η2μ32ζ3μ2432ακ24η2ζ4μ32μ1428ακ24η2μ3ζ4μ22267ακ14η2μ32ζ3μ2432ακ14η2ζ4μ32μ1428ακ14η2μ3ζ4μ22+12γκ2ζ2η2ζ4μ3+14γκ2ζ3η2ζ4μ2=0
48ακ24η1ζ2μ33+2γκ2ζ42η2ν0+24βκ13η1ν1ζ4μ32432ακ24η1ζ4μ32μ1428ακ24η1μ3ζ4μ22+12γκ1ζ2η1ζ4μ3428ακ14η1μ3ζ4μ22+24βκ23η1ν1ζ4μ32+48βκ13η2ν0ζ4μ32267ακ14η1μ32ζ3μ248ακ14η1ζ2μ33+γκ1ζ42η1ν1432ακ14η1ζ4μ32μ1267ακ24η1μ32ζ3μ2+48βκ23η2ν0ζ4μ32+14γκ1ζ3η1ζ4μ2+8γκ1ζ42η1μ1+6γκ1ζ32η1μ3+12γκ2ζ2η1ζ4μ3+6γκ2ζ32η1μ3+14γκ2ζ3η1ζ4μ2+2γκ1ζ42η2ν0+8γκ2ζ42η1μ1+γκ2ζ42η1ν1=0
60βκ13η4ν3ζ3μ32+176βκ23η4ν3ζ4μ3μ2+8γκ1ζ3ζ4η4ν3+176βκ13η4ν3ζ4μ3μ2+60βκ23η4ν3ζ3μ32+8γκ2ζ3ζ4η4ν3=0
6γκ1ζ3ζ4η3ν3+176βκ13η4ν2ζ4μ3μ2+45βκ13η3ν3ζ3μ32+6γκ2ζ3ζ4η3ν3+176βκ23η4ν2ζ4μ3μ2+45βκ23η3ν3ζ3μ32+8γκ2ζ3ζ4η4ν2+60βκ13η4ν2ζ3μ32+8γκ1ζ3ζ4η4ν2+60βκ23η4ν2ζ3μ32+132βκ23η3ν3ζ4μ3μ2+132βκ13η3ν3ζ4μ3μ2=0
728ακ24η4μ3μ2ζ4μ1728ακ14η4μ3μ2ζ4μ1+10γκ2ζ1η4ζ4μ3+132βκ23η3ν2ζ4μ3μ215ακ14η4ζ1μ33120ακ14η4ζ4μ23+6γκ2ζ32η4μ2+6γκ1ζ32η4μ2+8γκ2ζ42η4μ0+8γκ1ζ42η4μ0+30βκ13η2ν3ζ3μ32+45βκ13η3ν2ζ3μ32=0
60βκ13η4ν1ζ3μ32118ακ14η4μ32ζ2μ2225ακ14η4μ32ζ3μ1372ακ14η4ζ4μ32μ0222ακ14η4μ3ζ3μ22118ακ24η4μ32ζ2μ2225ακ24η4μ32ζ3μ1372ακ24η4ζ4μ32μ0222ακ24η4μ3ζ3μ22+10γκ1ζ2η4ζ3μ3+12γκ1ζ2η4ζ4μ2+4γκ1ζ3ζ4η2ν3+6γκ1ζ3ζ4η3ν2+8γκ1ζ3ζ4η4ν1+4γκ2ζ3ζ4η2ν3+176βκ23η4ν1ζ4μ3μ2+10γκ2ζ2η4ζ3μ3+12γκ2ζ2η4ζ4μ2+14γκ2ζ3η4ζ4μ1+14γκ1ζ3η4ζ4μ1+88βκ13η2ν3ζ4μ3μ2+10γκ1ζ1η4ζ4μ3+132βκ13η3ν2ζ4μ3μ2+8γκ2ζ3ζ4η4ν1+176βκ13η4ν1ζ4μ3μ2+6γκ2ζ3ζ4η3ν2120ακ24η4ζ4μ2315ακ24η4ζ1μ33+88βκ23η2ν3ζ4μ3μ2+60βκ23η4ν1ζ3μ32+30βκ23η2ν3ζ3μ32+45βκ23η3ν2ζ3μ32=0
12γκ2ζ2η3ζ4μ2+60βκ13η4ν0ζ3μ32+15βκ23η1ν3ζ3μ32+30βκ23η2ν2ζ3μ32+45βκ23η3ν1ζ3μ32+60βκ23η4ν0ζ3μ32118ακ24η3μ32ζ2μ2118ακ14η3μ32ζ2μ2225ακ14η3μ32ζ3μ1+88βκ23η2ν2ζ4μ3μ2+132βκ23η3ν1ζ4μ3μ2+176βκ23η4ν0ζ4μ3μ2+44βκ13η1ν3ζ4μ3μ2+88βκ13η2ν2ζ4μ3μ2+132βκ13η3ν1ζ4μ3μ2+176βκ13η4ν0ζ4μ3μ2=0
44βκ23η1ν3ζ4μ3μ2728ακ24η3μ3μ2ζ4μ1728ακ14η3μ3μ2ζ4μ115ακ24η3ζ1μ33120ακ24η3ζ4μ2315ακ14η3ζ1μ33120ακ14η3ζ4μ23+6γκ2ζ32η3μ2+6γκ1ζ32η3μ2+8γκ2ζ42η3μ0+8γκ1ζ42η3μ0372ακ14η3ζ4μ32μ0222ακ14η3μ3ζ3μ22225ακ24η3μ32ζ3μ1372ακ24η3ζ4μ32μ0=0
222ακ24η3μ3ζ3μ22+12γκ1ζ2η3ζ4μ2+2γκ1ζ3ζ4η1ν3+4γκ1ζ3ζ4η2ν2+6γκ1ζ3ζ4η3ν1+8γκ1ζ3ζ4η4ν0+10γκ2ζ1η3ζ4μ3+γκ1ζ2η3ζ3μ3+10γκ2ζ2η3ζ3μ3+15βκ13η1ν3ζ3μ32+30βκ13η2ν2ζ3μ32+45βκ13η3ν1ζ3μ32+14γκ2ζ3η3ζ4μ1+14γκ1ζ3η3ζ4μ1+10γκ1ζ1η3ζ4μ3+8γκ2ζ3ζ4η4ν0=0
6γκ2ζ3ζ4η3ν1+4γκ2ζ3ζ4η2ν2+2γκ2ζ3ζ4η1ν3=0
132βκ13η3ν0ζ4μ3μ2120ακ24η2ζ4μ2315ακ24η2ζ1μ33+88βκ13η2ν1ζ4μ3μ2372ακ14η2ζ4μ32μ0222ακ14η2μ3ζ3μ22+132βκ23η3ν0ζ4μ3μ2+30βκ23η2ν1ζ3μ32+88βκ23η2ν1ζ4μ3μ2+8γκ2ζ42η2μ015ακ14η2ζ1μ33120ακ14η2ζ4μ23118ακ14η2μ32ζ2μ2225ακ14η2μ32ζ3μ1728ακ14η2μ3μ2ζ4μ1728ακ24η2μ3μ2ζ4μ1=0
2γκ2ζ3ζ4η1ν2+15βκ13η1ν2ζ3μ32+6γκ1ζ3ζ4η3ν0+10γκ1ζ2η2ζ3μ3+6γκ2ζ3ζ4η3ν0+12γκ1ζ2η2ζ4μ2+2γκ1ζ3ζ4η1ν2+4γκ1ζ3ζ4η2ν1+10γκ1ζ1η2ζ4μ3+6γκ1ζ32η2μ2+10γκ2ζ1η2ζ4μ3+10γκ2ζ2η2ζ3μ3+4γκ2ζ3ζ4η2ν1+6γκ2ζ32η2μ2+12γκ2ζ2η2ζ4μ2+14γκ2ζ3η2ζ4μ1225ακ24η2μ32ζ3μ1+30βκ13η2ν1ζ3μ32118ακ24η2μ32ζ2μ2+15βκ23η1ν2ζ3μ32+45βκ13η3ν0ζ3μ32+45βκ23η3ν0ζ3μ32+44βκ23η1ν2ζ4μ3μ2+44βκ13η1ν2ζ4μ3μ2+8γκ1ζ42η2μ0+14γκ1ζ3η2ζ4μ1222ακ24η2μ3ζ3μ22=0
728ακ14η1μ3μ2ζ4μ1+44βκ23η1ν1ζ4μ3μ2+88βκ23η2ν0ζ4μ3μ2+44βκ13η1ν1ζ4μ3μ2+88βκ13η2ν0ζ4μ3μ2728ακ24η1μ3μ2ζ4μ115ακ24η1ζ1μ33120ακ24η1ζ4μ2315ακ14η1ζ1μ33120ακ14η1ζ4μ23+8γκ2ζ42η1μ0+6γκ2ζ32η1μ2+6γκ1ζ32η1μ2+8γκ1ζ42η1μ0118ακ14η1μ32ζ2μ2+15βκ13η1ν1ζ3μ32=0
30βκ13η2ν0ζ3μ32+15βκ23η1ν1ζ3μ32+30βκ23η2ν0ζ3μ32225ακ14η1μ32ζ3μ1372ακ14η1ζ4μ32μ0222ακ14η1μ3ζ3μ22118ακ24η1μ32ζ2μ2225ακ24η1μ32ζ3μ1372ακ24η1ζ4μ32μ0222ακ24η1μ3ζ3μ22+2γκ1ζ3ζ4η1ν1+4γκ1ζ3ζ4η2ν0+10γκ2ζ2η1ζ3μ3+12γκ2ζ2η1ζ4μ2+14γκ2ζ3η1ζ4μ1+14γκ1ζ3η1ζ4μ1+10γκ2ζ1η1ζ4μ3+12γκ1ζ2η1ζ4μ2+10γκ1ζ2η1ζ3μ3+10γκ1ζ1η1ζ4μ3+4γκ2ζ3ζ4η2ν0+2γκ2ζ3ζ4η1ν1=0
60βκ13ζ4μ3η3ν32+60βκ23ζ4μ3η3ν32+176βκ23ζ4μ3η4ν3ν2+8γκ1η3η4ζ4μ3+176βκ13ζ4μ3η4ν3ν2+8γκ2η3η4ζ4μ3=0
72βκ23ζ3μ3η4ν32+4γκ1η42ζ4μ2+3γκ1η42ζ3μ3+96βκ13ζ4μ2η4ν32+4γκ2η42ζ4μ2+3γκ2η42ζ3μ3+72βκ13ζ3μ3η4ν32+96βκ23ζ4μ2η4ν32=0
2416κ25μ14+2416κ15μ14+ω144δκ13μ1244δκ23μ12+ω2=0
48δκ13μ12+5280κ15μ1448δκ23μ12+5280κ25μ14=0

Thanks to the computer algebra system MAPLE, solutions of the system (27) can be derived. We note that this is performed step by step starting from the simplest equation of the system of algebraic equations and then moving in the direction of solving of the more complicated equations. There are many variants of solutions, which can be obtaining by the computational software, but our goal is to express the coefficients of the solved equation and the coefficients of its solution by the coefficients of the simple equations and the coefficients in the solutions of the simple equations, so far as it is possible.

For the special case μ0=μ2=0 and ν0=ν2=0, one non-trivial solution of the system (27), presenting the relationships between the coefficients of the solved equation and the coefficients of the simple equations and their solutions, is:

ζ0=ζ1=ζ3=0,ζ2=ζ4=1,η0=η1=η3=0,η2=η4=1,μ3=μ1,ν3=ν1,α=120κ15+κ25ν12κ24+κ14,β=120κ14κ2κ13+κ22κ12κ23κ1+κ24ν12κ12κ2κ1+κ22,γ=2880κ14κ2κ13+κ22κ12κ23κ1+κ24ν14,ω1=1984(κ15+κ25)ν14ω2,δ=1010κ14ν1210κ2κ13ν12+10κ22κ12ν1210κ23κ1ν12+10κ24ν12κ12κ2κ1+κ22,ϵ=4800κ14ν12+4800κ2κ13ν124800κ22κ12ν12+4800κ23κ1ν124800κ24ν12, (28)

where κ1,κ2,μ1,ν1 and ω2 are free parameters.

Then, the solution of Equation (1) has the following form:

u(ξ1,ξ2)=1+f1(ξ1)2+f1(ξ1)4+f2(ξ2)2+f2(ξ2)4 (29)

where the simple equations are ODEs of Bernoulli kind, i.e.,

df1dξ1=μ1f1μ1f13,df2dξ2=ν1f2ν1f23 (30)

The solutions of Equation (30) can be presented by the special functions V in the following way:

f1=V0,μ1,0,μ1(ξ1;1,1,3),f2=V0,ν1,0,ν1(ξ2;1,1,3) (31)

Then, the solution of Equation (29) can be rewritten as

u(ξ1,ξ2)=1+V0,μ1,0,μ12(ξ1;1,1,3)+V0,μ1,0,μ14(ξ1;1,1,3)+V0,ν1,0,ν12(ξ2;1,1,3)+V0,ν1,0,ν14(ξ2;1,1,3) (32)

We note that in the context of the general solution of the Bernoulli ordinary differential equation (see Equations (11) and (12)), the special functions given above reduce to the following specific forms:

V0,μ1,0,μ1(ξ1;1,1,3)=μ1exp(2μ1ξ1)1μ1exp(2μ1ξ1),V0,ν1,0,ν1(ξ1;1,1,3)=ν1exp(2ν1ξ1)1ν1exp(2μ1ξ1) (33)

for μ1>0 and ν1>0 and

V0,μ1,0,μ1(ξ1;1,1,3)=μ1exp(2μ1ξ1)1+μ1exp(2μ1ξ1),V0,ν1,0,ν1(ξ1;1,1,3)=ν1exp(2ν1ξ1)1+ν1exp(2μ1ξ1) (34)

for μ1<0 and ν1<0, where

ξ1=κ1x+1984(κ15+κ25)ν14ω2t,ξ2=κ2x+ω2t (35)

Finally, for this specific case, the travelling-wave solutions of Equation (1) can be presented as follows:

u(x,t)=1+μ1exp2μ1(κ1x(ω21984(κ15+κ25)ν14)t)1μ1exp2μ1(κ1x(ω21984(κ15+κ25)ν14)t)+μ1exp2μ1(κ1x(ω21984(κ15+κ25)ν14)t)1μ1exp2μ1(κ1x(ω21984(κ15+κ25)ν14)t)2+ν1exp2ν1(κ2x+ω2t)1ν1exp[2ν1(κ2x+ω2t)]+ν1exp[2ν1(κ2x+ω2t)]1ν1exp2ν1(κ2x+ω2t)2 (36)

for μ1>0 and ν1>0 and

u(x,t)=1+μ1exp2μ1(κ1x(ω21984(κ15+κ25)ν14)t)1+μ1exp2μ1(κ1x(ω21984(κ15+κ25)ν14)t)+μ1exp2μ1(κ1x(ω21984(κ15+κ25)ν14)t)1+μ1exp2μ1(κ1x(ω21984(κ15+κ25)ν14)t)2+ν1exp2ν1(κ2x+ω2t)1+ν1exp2ν1(κ2x+ω2t)+ν1exp2ν1(κ2x+ω2t)1+ν1exp2ν1(κ2x+ω2t)2 (37)

for μ1<0 and ν1<0.

3.2. Case m1=2,m2=3

For this case, μ3=0. Then, according to balance equation for n1 (see Equation (23)), ζ3=0, too, i.e., n1=2. The function u is presented as follows:

u(ξ1,ξ2)=1+i1=02ζi1[f1(ξ1)]i1+i2=04ηi2[f2(ξ2)]i2, (38)

where

df1dξ1=μ0+μ1f1+μ2f12,df2dξ2=ν0+ν1f2+ν2f22+ν3f23 (39)

For this case, one non-trivial solution of the system (27) is:

ζ0=ζ2=1,ζ1=18μ1Ω116μ0+Ω2,η0=η3=η4=1,η1=12η218,μ2=816μ0+Ω2Ω1,ν0=(Ω2+μ0)(5+16η2)16Ω1,ν1=1416η2316μ0+Ω2Ω1,ν2=316μ0+Ω2Ω1,ν3=416μ0+Ω2Ω1,α=1920κ15+κ2516μ0+Ω22κ14+κ24Ω12,β=1920κ14κ2κ13+κ22κ12κ23κ1+κ2416μ0+Ω22Ω12κ12κ2κ1+κ22,γ=737280(κ14κ2κ13+κ22κ12κ23κ1+κ24)(16μ0+Ω2)4Ω14,δ=152Ω12κ12κ2κ1+κ22(6957κ1κ23μ126957κ13κ2μ12+6957κ12κ22μ1216384κ14μ02η2+32768κ14μ02η2237248κ14μ12η2+50240κ14μ12η221024κ14μ12η23+391168κ2κ13μ02391168κ22κ12μ02+391168κ1κ23μ0216384κ24μ02η2+32768κ24μ02η2237248κ24μ12η2+50240κ24μ12η221024κ24μ12η23+6957κ24μ12+6957κ14μ12391168κ24μ02391168κ14μ02+37248κ1κ23μ12η250240κ1κ23μ12η22+1024κ1κ23μ12η2332768κ13κ2η22μ02+16384κ13κ2μ02η2+37248κ13κ2μ12η250240κ13κ2μ12η22+1024κ13κ2μ12η2337248κ12κ22μ12η2+50240κ12κ22μ12η221024κ12κ22μ12η2316384κ12κ22μ02η2+32768κ12κ22μ02η22+16384κ1κ23μ02η232768κ1κ23μ02η2224448κ24μ0Ω21024κ14Ω2η21024κ24μ0Ω2η2+2048κ24μ0Ω2η22+2048κ14μ0Ω2η22+24448κ2κ13μ0Ω224448κ22κ12μ0Ω2+24448κ1κ23μ0Ω22048κ13κ2η22μ0Ω2+1024κ2κ13μ0Ω2η21024κ22κ12μ0Ω2η2+2048κ22κ12μ0Ω2η22+1024κ1κ23μ0Ω2η22048κ1κ23μ0Ω2η2224448κ14μ0Ω2), (40)
ϵ=5760Ω14(24448κ14μ0Ω224448κ24μ0Ω2+37248κ1κ23μ12η250240κ1κ23μ12η22+1024κ1κ23μ12η2332768κ2κ13η22μ02+16384κ2κ13μ02η2+37248κ2κ13μ12η250240κ2κ13μ12η22+1024κ2κ13μ12η2337248κ22κ12μ12η2+50240κ22κ12μ12η221024κ22κ12μ12η2316384κ22κ12μ02η2+32768κ22κ12μ02η22+16384κ1κ23μ02η232768κ1κ23μ02η222048κ2κ13η22μ0Ω2+1024κ2κ13μ0Ω2η21024κ22κ12μ0Ω2η2+2048κ22κ12μ0Ω2η22+1024κ1κ23μ0Ω2η21024κ24μ0Ω2η2+2048κ24μ0Ω2η221024κ14μ0Ω2η2+2048κ14μ0Ω2η22+24448κ2κ13μ0Ω224448κ22κ12μ0Ω2+24448κ1κ23μ0Ω26957κ1κ23μ12+391168κ2κ13μ026957κ2κ13μ12+6957κ22κ12μ12391168κ22κ12μ02+391168κ1κ23μ0216384κ14μ02η2+32768κ14μ02η2237248κ14μ12η2+50240κ14μ12η221024κ14μ12η2316384κ24μ02η2+32768κ24μ02η2237248κ24μ12η2+50240κ24μ12η221024κ24μ12η23+6957κ24μ12+6957κ14μ12391168κ24μ022048κ1κ23μ0Ω2η22391168κ14μ02)16μ0+Ω22
ω1=14Ω14(496166400κ15μ12μ0Ω2η249313320960κ15μ12μ0Ω2η23+67108864κ25μ12μ0Ω2η26+81313376256κ15μ12μ0Ω2η2105809080320κ15μ12μ0Ω2η22339738624κ25μ12μ0Ω2η25+67108864κ15μ12μ0Ω2η269313320960κ25μ12μ0Ω2η23+9496166400κ25μ12μ0Ω2η24+81313376256κ25μ12μ0Ω2η2105809080320κ25μ12μ0Ω2η22+72213331968κ15μ03Ω2η2+13770946510848κ15μ04+13770946510848κ25μ04+559872ω2η25225472ω2η2292897280ω2η24+198180864ω2η25264241152ω2η26+201326592ω2η2767108864ω2η28+2177966961κ25μ14+2177966961κ15μ14+27869184ω2η23+2571730255872κ15μ12μ02η23265734574080κ15μ12μ02η22506682408960κ15μ12μ02η23+428825640960κ15μ12μ02η24+13287555072κ15μ12μ02η259932111872κ15μ12μ02η26+5502926848κ15μ03Ω2η24486986452992κ15μ12μ02486986452992κ25μ12μ02+1155413311488κ15μ04η22290291310592κ15μ04η2283751862272κ15μ04η23+88046829568κ15μ04η24+1155413311488κ25μ04η22290291310592κ25μ04η2283751862272κ25μ04η23+88046829568κ25μ04η24169033844736κ25μ14η23+116922470400κ25μ14η244431937536κ25μ14η25217055232κ25μ14η26+201326592κ25μ14η2767108864κ25μ14η28169033844736κ15μ14η23+116922470400κ15μ14η244431937536κ15μ14η25217055232κ15μ14η26+201326592κ15μ14η2767108864κ15μ14η28+93885153408μ14η22κ25+93885153408κ15μ14η2223321530368η2κ25μ1423321530368η2κ15μ145234491392κ15μ03Ω2η23+13287555072κ25μ12μ02η25+428825640960κ25μ12μ02η24506682408960κ25μ12μ02η2315307439616κ15μ12μ0Ω23265734574080κ25μ12μ02η22+2571730255872κ25μ12μ02η2+860684156928κ15μ03Ω226244ω2+5502926848κ25μ03Ω2η249932111872κ25μ12μ02η26+860684156928κ25μ03Ω2+72213331968κ25μ03Ω2η215307439616κ25μ12Ω2143143206912κ25μ03Ω2η22339738624κ15μ12μ0Ω2η255234491392κ25μ03Ω2η23143143206912κ15μ03Ω2η22),

where

Ω1=948η2+64η22,Ω2=256μ029μ12+48μ12η264μ12η22 (41)

and η2,μ0,μ1,κ1,κ2 and ω2 are free parameters.

Then, the solution of Equation (1) has the following form:

u(ξ1,ξ2)=3+18μ1Ω116μ0+Ω2f1(ξ1)+f1(ξ1)2+(12η218)f2(ξ2)+η2f2(ξ2)2+f2(ξ2)3+f2(ξ2)4 (42)

For this case, the first simple equation is an ODE of Riccati kind:

df1dξ1=μ0+μ1f1+816μ0+Ω2Ω1f12, (43)

while the second simple equation is the Abel ordinary differential equation of first kind:

df2dξ2=(Ω2+μ0)(5+16η2)16Ω1+1416η2316μ0+Ω2Ω1f2+316μ0+Ω2Ω1f22+416μ0+Ω2Ω1f23 (44)

The solutions of Equations (43) and (44) can be expressed by the special functions V as follows:

f1=Vμ0,μ1,816μ0+Ω2Ω1(ξ1;1,1,2),f2=V(Ω2+μ0)(5+16η2)16Ω1,1416η2316μ0+Ω2Ω1,316μ0+Ω2Ω1,416μ0+Ω2Ω1(ξ2;1,1,3) (45)

In this way, the solution of Equation (42) is reduced to:

u(ξ1,ξ2)=3+18μ1Ω116μ0+Ω2Vμ0,μ1,816μ0+Ω2Ω1(ξ1;1,1,2)+Vμ0,μ1,816μ0+Ω2Ω12(ξ1;1,1,2)+(12η218)V(Ω2+μ0)(5+16η2)16Ω1,1416η2316μ0+Ω2Ω1,316μ0+Ω2Ω1,416μ0+Ω2Ω1(ξ2;1,1,3)+η2V(Ω2+μ0)(5+16η2)16Ω1,1416η2316μ0+Ω2Ω1,316μ0+Ω2Ω1,416μ0+Ω2Ω12(ξ2;1,1,3)+V(Ω2+μ0)(5+16η2)16Ω1,1416η2316μ0+Ω2Ω1,316μ0+Ω2Ω1,416μ0+Ω2Ω13(ξ2,1,1,3)+V(Ω2+μ0)(5+16η2)16Ω1,1416η2316μ0+Ω2Ω1,316μ0+Ω2Ω1,416μ0+Ω2Ω14(ξ2,1,1,3) (46)

In the context of the general solution of the Riccati ordinary differential equation (see Equation (17)), the special function Vμ0,μ1,816μ0+Ω2Ω1(ξ1,1,1,2) reduces to the following specific forms:

Vμ0,μ1,816μ0+Ω2Ω1(ξ1;1,1,2)=116μ1Ω1(16μ0+Ω2)116Ω3(16μ0+Ω2)tanh(12Ω3ξ1)+12exp(12Ω3ξ1)cosh(12Ω3ξ1)μ2Ω1Ω3+2Cexp(12Ω3ξ1)cosh(12Ω3ξ1) (47)

where

Ω3=μ12Ω132μ0(16μ0+Ω2)Ω1>0 (48)

and ξ1=κ1x+ω1t, as the expression for ω1 is given in Equation (40) and κ1 is a free parameter. In Equation (47), C is a constant of integration.

For the special case (Ω2+μ0)(5+16η2)16Ω1=14(16η2316μ0+Ω2Ω11616μ0+Ω2Ω1), the special function V(Ω2+μ0)(5+16η2)16Ω1,1416η2316μ0+Ω2Ω1,316μ0+Ω2Ω1,416μ0+Ω2Ω1(ξ2;1,1,3) can be presented by the solution of the Abel ordinary differential equation of first kind (see Equation (14)):

V(Ω2+μ0)(5+16η2)16Ω1,1416η2316μ0+Ω2Ω1,316μ0+Ω2Ω1,416μ0+Ω2Ω1(ξ2;1,1,3)=exp(16η2316μ0+Ω2Ω11616μ0+Ω2Ω1)ξ2C*316μ0+Ω2Ω1exp(16η2316μ0+Ω2Ω11616μ0+Ω2Ω1)ξ214, (49)

where ξ2=κ2x+ω2t, as κ2 and ω2 are free parameters. In Equation (49), C* is a constant of integration. Then, the solution of Equation (1) presented in its initial coordinates is

u(x,t)=318μ1Ω116μ0+Ω2[116μ1Ω1(16μ0+Ω2)+116Ω3(16μ0+Ω2)tanh12Ω3(κ1x+ω1t)12exp12Ω3(κ1x+ω1t)cosh12Ω3(κ1x+ω1t)μ2Ω1Ω3+2Cexp12Ω3(κ1x+ω1t)cosh12Ω3(κ1x+ω1t)][116μ1Ω1(16μ0+Ω2)+116Ω3(16μ0+Ω2)tanh12Ω3(κ1x+ω1t)12exp12Ω3(κ1x+ω1t)cosh12Ω3(κ1x+ω1t)μ2Ω1Ω3+2Cexp12Ω3(κ1x+ω1t)cosh12Ω3(κ1x+ω1t)]2+12η218exp(16η2316μ0+Ω2Ω11616μ0+Ω2Ω1)(κ2x+ω2t)C*316μ0+Ω2Ω1exp(32η2616μ0+Ω2Ω11616μ0+Ω2Ω1)(κ2t+ω2t)14+η2exp(16η2316μ0+Ω2Ω11616μ0+Ω2Ω1)(κ2x+ω2t)C*316μ0+Ω2Ω1exp(32η2616μ0+Ω2Ω11616μ0+Ω2Ω1)(κ2t+ω2t)142+exp(16η2316μ0+Ω2Ω11616μ0+Ω2Ω1)(κ2x+ω2t)C*316μ0+Ω2Ω1exp(32η2616μ0+Ω2Ω11616μ0+Ω2Ω1)(κ2t+ω2t)143+exp(16η2316μ0+Ω2Ω11616μ0+Ω2Ω1)(κ2x+ω2t)C*316μ0+Ω2Ω1exp(32η2616μ0+Ω2Ω11616μ0+Ω2Ω1)(κ2t+ω2t)144 (50)

For the particular case ν0=ν2=0, one non-trivial solution of the system (27) has the following form:

ζ0=ζ2=1,ζ1=38μ1ν1,η0=η3=η4=1,η1=1132,η2=1516,ν0=ν2=0,ν3=43ν1,μ0=31284μ129ν12ν1,μ2=83ν1,α=6403κ15+κ25ν12κ24+κ14β=6403κ14κ2κ13+κ22κ12κ23κ1+κ24ν12κ12κ2κ1+κ22γ=819209κ14κ2κ13+κ22κ12κ23κ1+κ24ν14ϵ=329ν12(2485κ14ν12+2485κ2κ13ν12+24κ12δ2485κ22κ12ν1224κ2κ1δ+2485κ23κ1ν12+24κ22δ2485κ24ν12)ω1=1144001κ14κ2κ13+κ22κ12κ23κ1+κ24(2160κ1κ26δμ122160κ16δμ12κ2+2160κ15δμ12κ22+2160κ12δμ12κ25+806520κ1κ26δν12+1575900κ1κ28μ12ν12+1575900κ18μ12κ2ν121575900κ17μ12κ22ν12+1575900κ16μ12κ23ν12+806520κ16ν12κ2δ806520κ15κ22δν121575900κ15κ24μ12ν121575900κ14κ25μ12ν12+1575900κ13κ26μ12ν12806520κ12κ25δν121575900κ12κ27μ12ν12+2160κ17δμ12+106965025κ17ν14κ22806520κ17ν12δ8100κ18μ14κ2+3024κ13κ22δ2+8100κ17μ14κ22+14400κ13ω2κ2+2160δμ12κ27+8100κ14κ25μ14+8100κ15κ24μ148100κ16μ14κ238100κ13κ26μ143024κ14δ2κ214400κ12ω2κ221575900κ29μ12ν1214400ω2κ24+3024κ25δ2+8100κ29μ14+106965025κ29ν14+8100κ19μ14+3024κ15δ214400κ14ω2+106965025κ19ν141575900κ19μ12ν12106965025κ16ν14κ23+106965025κ14κ25ν14106965025κ1κ2106965025κ1κ2+106965025κ15κ24ν14+106965025κ12κ27ν14106965025κ1κ2106965025κ18ν14κ2806520κ27δν12106965025κ13κ26ν14+3024κ12κ23δ2+8100κ12κ27μ14106965025κ1κ28100κ1κ28μ14+14400κ1ω2κ233024κ1κ24δ2) (51)

where δ,μ1,ν1,κ1,κ2 and ω2 are free parameters.

For this case, the solution of Equation (1) can be presented as

u(ξ1,ξ2)=338μ1ν1f1(ξ1)+f1(ξ1)2+1132f2(ξ2)+1516f2(ξ2)2+f2(ξ2)3+f2(ξ2)4 (52)

where the simple equations are of Riccati kind and of Bernoulli kind, as follows:

df1dξ1=31284μ129ν12ν1+μ1f183ν1f12,df2dξ2=ν1f243ν1f23 (53)

We present again the solutions of Equation (53) by the special functions V:

f1=V31284μ129ν12ν1,μ1,83ν1(ξ1;1,1,2),f2=V0,ν1,0,43ν1(ξ2;1,1,3) (54)

Then, the solution of Equation (52) reduces to the following form:

u(ξ1,ξ2)=338μ1ν1V31284μ129ν12ν1,μ1,83ν1(ξ1;1,1,2)+V31284μ129ν12ν1,μ1,83ν12(ξ1;1,1,2)+1132V0,ν1,0,43ν1(ξ2;1,1,3)+1516V0,ν1,0,43ν12(ξ2;1,1,3)+V0,ν1,0,43ν13(ξ2;1,1,3)+V0,ν1,0,43ν14(ξ2;1,1,3) (55)

where in the context of the general solution of the Riccati differential equation (see Equation (17), the special function V31284μ129ν12ν1,μ1,83ν1(ξ1;1,1,2) assumes the following form:

V31284μ129ν12ν1,μ1,83ν1(ξ1;1,1,2)=316μ1ν1+916tanh(32ν1ξ1)+12exp(32ν1ξ1)cosh(32ν1ξ1)89+2C1*exp(32ν1ξ1)cosh(32ν1ξ1) (56)

for ν1>0. In Equation (56), ξ1=κ1x+ω1t, where the expression of ω1 is presented in Equation (51) and κ1 is a free parameter. In addition, C1* is a constant of integration.

On the other hand, in the context of the general solutions of the Bernoulli differential equation (see Equations (11) and (12), the special function V0,ν1,0,43ν1(ξ2;1,1,3) is presented only by the following solution:

V0,ν1,0,43ν1(ξ2;1,1,3)=ν1exp(2ν1ξ2)143ν1exp(2ν1ξ2) (57)

for ν1>0, because of the restriction for the solution V31284μ129ν12ν1,μ1,83ν1(ξ1;1,1,2) given above. In Equation (57), ξ2=κ2x+ω2t, where κ2 and ω2 are free parameters.

For this particular case, the solution of Equation (1) written in its primary coordinates, takes the form:

u(x,t)=338μ1ν1[316μ1ν1+916tanh32ν1(κ1x+ω1t)+12exp32ν1(κ1x+ω1t)cosh32ν1(κ1x+ω1t)89+2C1*exp32ν1(κ1x+ω1t)cosh32ν1(κ1x+ω1t)]+[316μ1ν1+916tanh32ν1(κ1x+ω1t)+12exp32ν1(κ1x+ω1t)cosh32ν1(κ1x+ω1t)89+2C1*exp32ν1(κ1x+ω1t)cosh32ν1(κ1x+ω1t)]2+1132ν1exp2ν1(κ2x+ω2t)143ν1exp2ν1(κ2x+ω2t)+1516ν1exp2ν1(κ2x+ω2t)143ν1exp2ν1(κ2x+ω2t)2+ν1exp2ν1(κ2x+ω2t)143ν1exp2ν1(κ2x+ω2t)3+ν1exp2ν1(κ2x+ω2t)143ν1exp2ν1(κ2x+ω2t)4 (58)

3.3. Case m1=2,m2=2

For this case we assume that μ3=0 and ν3=0. Then, according to the balance Equation (23), n1=n2=2. The general solution of Equation (1) becomes

u(ξ1,ξ2)=1+i1=02ζi1[f1(ξ1)]i1+i2=02ηi2[f2(ξ2)]i2 (59)

where the simple equations are of Riccati kind:

df1dξ1=μ0+μ1f1+μ2f12,df2dξ2=ν0+ν1f2+ν2f22 (60)

One non-trivial solution of the reduced variant of the system (27) is:

ζ0=ζ1=ζ2=1,η0=η1=η2=1,ω1=209κ15μ24ω2209μ24κ25,α=30κ15+κ25μ22κ24+κ14,β=30κ14κ2κ13+κ22κ12κ23κ1+κ24μ22κ12κ2κ1+κ22,γ=180κ14κ2κ13+κ22κ12κ23κ1+κ24μ24,μ0=23μ2,μ1=μ2,ϵ=20κ14κ2κ13+κ22κ12κ23κ1+κ24μ24,ν0=23ν2,δ=53κ14κ2κ13+κ22κ12κ23κ1+κ24μ22κ12κ2κ1+κ22,ν1=ν2 (61)

where μ2,ν2,κ1,κ2 and ω2 are free parameters. Then, the solution of Equation (1) reduces to:

u(ξ1,ξ2)=3+f1(ξ1)+f12(ξ1)+f2(ξ2)+f22(ξ2) (62)

where

df1dξ1=23μ2+μ2f1+μ2f12,df2dξ2=23ν2+ν2f2+ν2f22 (63)

We present the solutions of Equation (63) by the special functions V as follows:

f1=V23μ2,μ2,μ2(ξ1;1,1,2),f2=V23ν2,ν2,ν2(ξ2;1,1,2), (64)

Then Equation (62) transforms to

u(ξ1,ξ2)=3+V23μ2,μ2,μ2(ξ1;1,1,2)+V23μ2,μ2,μ22(ξ1;1,1,2)+V23ν2,ν2,ν2(ξ2;1,1,2)+V23ν2,ν2,ν22(ξ2;1,1,2) (65)

where

V23μ2,μ2,μ2(ξ1;1,1,2)=12336tanh(336μ2ξ1)+12exp(336μ2ξ1)cosh(336μ2ξ1)3311+2C2exp(336μ2ξ1)cosh(336μ2ξ1)V23ν2,ν2,ν2(ξ2;1,1,2)=12336tanh(336ν2ξ2)+12exp(336ν2ξ2)cosh(336ν2ξ2)3311+2C2*exp(336ν2ξ2)cosh(336ν2ξ2) (66)

for μ2>0 and ν2>0. In Equation (66), ξ1=κ1x+ω1t and ξ2=κ2x+ω2t, where the expression for ω1 is given in Equation (61) and κ1,κ2 and ω2 are free parameters. In addition, C2 and C2* are constants of integration. The solution of Equation (1), rewritten in its primary form is:

u(x,t)=3[12+336tanh336μ2(κ1x+ω1t)e336μ2(κ1x+ω1t)/2cosh336μ2(κ1x+ω1t)3311+2C2e336μ2(κ1x+ω1t)cosh336μ2(κ1x+ω1t)][12+336tanh336μ2(κ1x+ω1t)e336μ2(κ1x+ω1t)/2cosh336μ2(κ1x+ω1t)3311+2C2e336μ2(κ1x+ω1t)cosh336μ2(κ1x+ω1t)]2[12+336tanh336ν2(κ2x+ω2t)e336ν2(κ2x+ω2t)/2cosh336ν2(κ2x+ω2t)3311+2C2*e336ν2(κ2x+ω2t)cosh336ν2(κ2x+ω2t)][12+336tanh336ν2(κ2x+ω2t)e336ν2(κ2x+ω2t)/2cosh336ν2(κ2x+ω2t)3311+2C2*e336ν2(κ2x+ω2t)cosh336ν2(κ2x+ω2t)]2 (67)

For the particular case μ1=0 and ν0=0, the simple equations reduce to the following form:

df1dξ1=μ0+μ2f12,df2dξ2=ν1f2+ν2f22, (68)

In this case, one simple non-trivial solution of the system (27) is:

ζ0=η0=0,ζ1=30κ1+κ2α,ζ2=30κ1+κ2α,η1=η2=30κ1+κ2α,μ0=1,μ2=1,ν1=1,ν2=1,β=α(κ1+κ2),γ=15κ12+κ22α2,δ=12(κ1+κ2)(2α10(κ1+κ2)),ϵ=15(κ12+κ22)(2α10(κ1+κ2)) (69)

where α,κ1,κ2,ω1,ω2 are free parameters. The solutions of Equation (68), presented by the special functions V are:

f1=V1,0,1(ξ1;1,1,2),f2=V0,1,1(ξ2;1,1,2) (70)

Then, the solution of Equation (59) transforms to

u(ξ1,ξ2)=30κ1+κ2αV1,0,1(ξ1;1,1,2)+30κ1+κ2αV1,0,12(ξ1;1,1,2)+30κ1+κ2αV0,1,1(ξ2;1,1,2)+30κ1+κ2αV0,1,12(ξ2;1,1,2), (71)

where in the context of the solution of the extended tanh-function equation (see Equation (19)) and the solution of the Bernoulli equation (see Equation (12)), the solutions of Equation (68) obtain the following form:

V1,0,1(ξ1;1,1,2)=tanh(ξ1),V0,1,1(ξ2;1,1,2)=11+exp(ξ2), (72)

where tanh(ξ1)<1. In Equation (72), ξ1=κ1x+ω1t and ξ2=κ2x+ω2t, as κ1,κ2,ω1 and ω2 are free parameters.

Then, for this simplest case, the final form of Equation (1) is:

u(x,t)=30κ1+κ2αtanh(κ1x+ω1t)+30κ1+κ2αtanh2(κ1x+ω1t)+30κ1+κ2α11+exp(κ2x+ω2t)+30κ1+κ2α11+exp(κ2x+ω2t)2 (73)

3.4. Case m1=1,m2=1

For this case, according to the balance Equation (23), n1=n2=0. However, for the simple equations

df1dξ1=μ1f1,df2dξ2=ν1f2, (74)

the general solution of Equation (1) can be presented in the following specific form:

u(ξ1,ξ2)=1+f1(ξ1)f2(ξ2) (75)

The substitution of Equations (74) and (75) in Equation (22) leads to the following system of non-linear algebraic equations:

γκ2ν1+γκ1μ1+γκ1ν1+γκ2μ1=0ϵκ2ν1+2γκ2ν1+ϵκ1μ1+βκ23μ13+βκ13ν13ακ24ν13+ϵκ2μ1+βκ13μ13+2γκ1μ1+βκ23ν13ακ14μ13ακ14ν13+ϵκ1ν1+2γκ1ν1+2γκ2μ13ακ14μ1ν12+3βκ13μ12ν1+3βκ13μ1ν123ακ24μ12ν13ακ24μ1ν12+3βκ23μ12ν1+3βκ23μ1ν12ακ24μ133ακ14μ12ν1=0γκ2ν1+γκ1ν1+γκ1μ1+γκ2μ1+5κ25μ14ν1+κ15ν15+ω1ν1+ω2ν1+κ15μ15+10κ25μ13ν12+10κ15μ12ν13+5κ15μ1ν14+10κ15μ13ν12+5κ25μ1ν14+δκ13ν13+10κ25μ12ν13+5κ15μ14ν1+δκ23μ13+δκ13μ13+δκ23ν13+κ25μ15+κ25ν15+3δκ13μ12ν1+3δκ13μ1ν12+3δκ23μ12ν1+3δκ23μ1ν12+ω2μ1+ω1μ13ακ14μ1ν123ακ24μ12ν13ακ24μ1ν12+ϵκ2ν1ακ24ν13+ϵκ1μ1+ϵκ2μ1ακ14μ13+ϵκ1ν1ακ14ν13ακ24μ133ακ14μ12ν1=0 (76)

One non-trivial solution of the system (76) is:

μ1=ν1,γ=12ϵ, (77)

where α,β,δ,ϵ,ν1,κ1,κ2,ω1,ω2 are free parameters. For this case, the solutions of Equation (74) can be presented as

f1=V0,ν1(ξ1;1,1,1)=exp(ν1ξ1),f2=V0,ν1(ξ2;1,1,1)=exp(ν1ξ2) (78)

Then, the solution of Equation (1) becomes:

u(ξ1,ξ2)=1+V0,ν1(ξ1;,1,1,1)V0,ν1(ξ2;,1,1,1), (79)

or

u(ξ1,ξ2)=1+expν1(κ1x+ω1t)expν1(κ2x+ω2t) (80)

Several illustrative numerical examples of one analytical solution of Equation (1) obtained in this study are presented in Figure 1, Figure 2 and Figure 3. As can be seen, different complex multi-soliton structures can be observed depending on the numerical values the free parameters in Equation (36) as well depending on the numerical space and time intervals chosen for the simulations. In this specific case, we vary only the numerical value of the travelling-wave velocity ω2, as the numerical value of the travelling-wave velocity ω1 varies indirectly, too (see Equation (28)). We also vary the space coordinate in the numerical intervals from [10,10] to [100,100], while the time intervals vary from [0,0.03] to [0,1.5].

Figure 1.

Figure 1

Numerical simulation of Equation (36) for μ1=2,ν1=3,κ1=0.001,κ2=0.02,ω2=0.6.

Figure 2.

Figure 2

Numerical simulation of Equation (36) for μ1=2,ν1=3,κ1=0.001,κ2=0.02,ω2=1.

Figure 3.

Figure 3

Numerical simulation of Equation (36) for μ1=2,ν1=3,κ1=0.001,κ2=0.02,ω2=5.

4. Conclusions

In this paper, we have shown the effectiveness of the SEsM for obtaining exact solutions of a famous evolution equation in mathematical physics. We have presented various types of the travelling-wave solution of the fifth-order KdV equation, using the special functions V, which are solutions of so-called simple equations in SEsM. The obtained results are only a part of the possible variety of exact solutions of the studied equation that can be derived using the special functions V. We believe that the presented results are new. Moreover, the use of composite functions in the methodology of the SEsM gives possibilities for obtaining other specific solutions of the physical phenomena, discussed in the paper. However, this will be the goal of further investigations.

Conflicts of Interest

The author declares no conflict of interest.

Funding Statement

This research was supported by the project BG05 M2OP001-1.001-0008 “National Center for Mechatronics and Clean Technologies”, funded by the Operating Program “Science and Education for Intelligent Growth” of Republic of Bulgaria.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Brehmer B. Dynamic Decision Making: Human Control of Complex Systems. Acta Psychol. 1992;81:211–241. doi: 10.1016/0001-6918(92)90019-A. [DOI] [PubMed] [Google Scholar]
  • 2.Lambiotte R., Ausloos M. Coexistence of Opposite Opinions in a Network with Communities. J. Stat. Mech. Theory Exp. 2007:P08026. doi: 10.1088/1742-5468/2007/08/P08026. [DOI] [Google Scholar]
  • 3.Ausloos M. Statistical Physics in Foreign Exchange Currency and Stock Markets. Physica A. 2000;285:48–65. doi: 10.1016/S0378-4371(00)00271-5. [DOI] [Google Scholar]
  • 4.Vitanov N.K., Ausloos M., Rotundo G. Discrete Model of Ideological Struggle Accounting for Migration. Adv. Complex Syst. 2012;15((Suppl. S1)):1250049. doi: 10.1142/S021952591250049X. [DOI] [Google Scholar]
  • 5.Vitanov N.K., Vitanov K.N. Box Model of Migration Channels. Math. Soc. Sci. 2016;80:108–114. doi: 10.1016/j.mathsocsci.2016.02.001. [DOI] [Google Scholar]
  • 6.Simon J.H. The Economic Consequences of Immigration. The University of Michigan Press; Ann Arbor, MI, USA: 1999. [Google Scholar]
  • 7.Drazin P.G. Non-linear Systems. Cambridge University Press; Cambridge, UK: 1992. [Google Scholar]
  • 8.Ganji D.D., Sabzehmeidani Y., Sedighiamiri A. Non-Linear Systems in Heat Transfer. Elsevier; Amsterdam, The Netherlands: 2018. [Google Scholar]
  • 9.Boeck T., Vitanov N.K. Low-Dimensional Chaos in Zero–Prandtl Number Benard–Marangoni Convection. Phys. Rev. E. 2002;65:037203. doi: 10.1103/PhysRevE.65.037203. [DOI] [PubMed] [Google Scholar]
  • 10.Murray J. Mathematical Biology I: An Introduction. Springer; Berlin/Heidelberg, Germany: 2002. [Google Scholar]
  • 11.Murray J. Mathematical Biology II: Spatial Models and Biomedical Applications. Springer; Berlin/Heidelberg, Germany: 2003. [Google Scholar]
  • 12.Verhulst F. Non-Linear Differential Equations and Dynamical Systems. Springer; Berlin/Heidelberg, Germany: 2006. [Google Scholar]
  • 13.Struble R. Non-Linear Differential Equations. Dover; New York, NY, USA: 2018. [Google Scholar]
  • 14.Debnath L., Debnath L. Nonlinear Partial Differential Equations for Scientists and Engineers. Birkhäuser; Boston, MA, USA: 2005. [Google Scholar]
  • 15.Lakshmikantham V., Trigiante D. Theory of Difference Equations Numerical Methods and Applications. CRC Press; Boca Raton, FL, USA: 2002. eBook ISBN 9780429222412. [Google Scholar]
  • 16.Hopf E. The Partial Differential Equation: ut + uux = ϵuxx. Commun. Pure Appl. Math. 1950;3:201–230. doi: 10.1002/cpa.3160030302. [DOI] [Google Scholar]
  • 17.Cole J.D. On a Quasi-Linear Parabolic Equation Occurring in Aerodynamics. Q. Appl. Math. 1951;9:225–236. doi: 10.1090/qam/42889. [DOI] [Google Scholar]
  • 18.Gardner C.S., Greene J.M., Kruskal M.D., Miura R.R. Method for Solving the Korteweg-de Vries Equation. Phys. Rev. Lett. 1967;19:1095–1097. doi: 10.1103/PhysRevLett.19.1095. [DOI] [Google Scholar]
  • 19.Ablowitz M.J., Kaup D.J., Newell A.C., Segur H. The Inverse Scattering Transform–Fourier Analysis for non-linear problems. Stud. Appl. Math. 1974;53:249–315. doi: 10.1002/sapm1974534249. [DOI] [Google Scholar]
  • 20.Ablowitz M.J., Clarkson P.A. Solitons, Non-Linear Evolution Equations and Inverse Scattering. Cambridge University Press; Cambridge, UK: 1991. [Google Scholar]
  • 21.Hirota R. Exact Solution of the Korteweg-de Vries Equation for Multiple Collisions of Solitons. Phys. Rev. Lett. 1971;27:1192–1194. doi: 10.1103/PhysRevLett.27.1192. [DOI] [Google Scholar]
  • 22.Hirota R. The Direct Method in Soliton Theory. Cambridge University Press; Cambridge, UK: 2004. [Google Scholar]
  • 23.Tabor M. Chaos and Integrability in Dynamical Systems. Wiley; New York, NY, USA: 1989. [Google Scholar]
  • 24.Carrielo F., Tabor M. Similarity Reductions from Extended Painleve Expansions for Nonintegrable Evolution Equations. Physica D. 1991;53:59–70. doi: 10.1016/0167-2789(91)90164-5. [DOI] [Google Scholar]
  • 25.Carrielo F., Tabor M. Painleve Expansions for Nonintegrable Evolution Equations. Physica D. 1989;39:77–94. doi: 10.1016/0167-2789(89)90040-7. [DOI] [Google Scholar]
  • 26.Weiss J., Tabor M., Carnevalle G. The Painleve Property for Partial Differential Equations. J. Math. Phys. 1983;24:522–526. doi: 10.1063/1.525721. [DOI] [Google Scholar]
  • 27.Kudryashov N.A. Simplest Equation Method to Look for Exact Solutions of non-linear Differential Equations. Chaos Solitons Fractals. 2005;24:1217–1231. doi: 10.1016/j.chaos.2004.09.109. [DOI] [Google Scholar]
  • 28.Kudryashov N.A. On Types of non-linear Nonintegrable Equations with Exact Solutions. Phys. Lett. A. 1991;155:269–275. doi: 10.1016/0375-9601(91)90481-M. [DOI] [Google Scholar]
  • 29.Kudryashov N.A., Loguinova N.B. Extended Simplest Equation Method for non-linear Differential Equations. Appl. Math. Comput. 2008;205:361–365. doi: 10.1016/j.amc.2008.08.019. [DOI] [Google Scholar]
  • 30.Kudryashov N.A. Partial Differential Equations with Solutions Having Movable First-Order Singularities. Phys. Lett. A. 1992;169:237–242. doi: 10.1016/0375-9601(92)90451-Q. [DOI] [Google Scholar]
  • 31.Kudryashov N.A. Exact Solitary Waves of the Fisher Equation. Phys. Lett. A. 2005;342:99–106. doi: 10.1016/j.physleta.2005.05.025. [DOI] [Google Scholar]
  • 32.Kudryashov N.A. One Method for Finding Exact Solutions of non-linear Differential Equations. Commun. Non-Linear Sci. Numer. Simul. 2012;17:2248–2253. doi: 10.1016/j.cnsns.2011.10.016. [DOI] [Google Scholar]
  • 33.Kudryashov N.A. Exact Soliton Solutions of the Generalized Evolution Equation of Wave Dynamics. J. Appl. Math. Mech. 1988;52:361–365. doi: 10.1016/0021-8928(88)90090-1. [DOI] [Google Scholar]
  • 34.Kudryashov N.A. Exact Solutions of non-linear Wave Equations Arising in Mechanics. J. Appl. Math. Mech. 1990;54:372–375. doi: 10.1016/0021-8928(90)90140-6. [DOI] [Google Scholar]
  • 35.Kudryashov N.A. Exact Solutions and Integrability of the Duffing—Van der Pol Equation. Regul. Chaotic Dyn. 2018;23:471–479. doi: 10.1134/S156035471804007X. [DOI] [Google Scholar]
  • 36.Kudryashov N.A. Exact Solutions of the Equation for Surface waves in a Convecting Fluid. Appl. Math. Comput. 2019;344–345:97–106. doi: 10.1016/j.amc.2018.10.005. [DOI] [Google Scholar]
  • 37.Kudryashov N.A. A Generalized Model for Description of Propagation Pulses in Optical Fiber. Optik. 2019;189:42–52. doi: 10.1016/j.ijleo.2019.05.069. [DOI] [Google Scholar]
  • 38.Kudryashov N.A. First Integrals and Solutions of the Traveling Wave Reduction for the Triki–Biswas Equation. Optik. 2019;185:275–281. doi: 10.1016/j.ijleo.2019.03.087. [DOI] [Google Scholar]
  • 39.Kudryashov N.A. Highly Dispersive Optical Solitons of the Generalized non-linear Eighth-Order Schrödinger Equation. Optik. 2020;206:164335. doi: 10.1016/j.ijleo.2020.164335. [DOI] [Google Scholar]
  • 40.Kudryashov N.A. The Generalized Duffing Oscillator. Commun. Non-Linear Sci. Numer. Simul. 2021;93:105526. doi: 10.1016/j.cnsns.2020.105526. [DOI] [Google Scholar]
  • 41.Urbain F., Kudryashov N.A., Tala-Tebue E., HBMalwe Doka S.Y., Kofane T.C. Exact Solutions of the KdV Equation with Dual-Power Law non-linearity. Comput. Math. Math. Phys. 2021;61:431–435. doi: 10.1134/S0965542521030064. [DOI] [Google Scholar]
  • 42.Kudryashov N.A. Solitary waves of the generalized Sasa-Satsuma equation with arbitrary refractive index. Optik. 2021;232:166540. doi: 10.1016/j.ijleo.2021.166540. [DOI] [Google Scholar]
  • 43.Martinov N., Vitanov N. On the Correspondence Between the Self-consistent 2D Poisson-Boltzmann Structures and the Sine- Gordon Waves. J. Phys. A Math. Gen. 1992;25:L51–L56. doi: 10.1088/0305-4470/25/2/004. [DOI] [Google Scholar]
  • 44.Martinov N., Vitanov N. On Some Solutions of the Two-Dimensional Sine-Gordon Equation. J. Phys. A Math. Gen. 1992;25:L419–L426. doi: 10.1088/0305-4470/25/8/007. [DOI] [Google Scholar]
  • 45.Martinov N.K., Vitanov N.K. New Class of Running-Wave Solutions of the (2 + 1)-Dimensional Sine-Gordon Equation. J. Phys. A Math. Gen. 1994;27:4611–4618. doi: 10.1088/0305-4470/27/13/034. [DOI] [Google Scholar]
  • 46.Martinov N.K., Vitanov N.K. On Self-Consistent Thermal Equilibrium Structures in Two- Dimensional Negative-Temperature Systems. Can. J. Phys. 1994;72:618–624. doi: 10.1139/p94-079. [DOI] [Google Scholar]
  • 47.Vitanov N.K., Martinov N.K. On the Solitary Waves in the Sine-Gordon Model of the Two-Dimensional Josephson Junction. Z. Phys. B. 1996;100:129–135. doi: 10.1007/s002570050102. [DOI] [Google Scholar]
  • 48.Vitanov N.K. On Travelling Waves and Double-Periodic Structures in Two-Dimensional Sine–Gordon Systems. J. Phys. Math. Gen. 1996;29:5195–5207. doi: 10.1088/0305-4470/29/16/036. [DOI] [Google Scholar]
  • 49.Vitanov N.K. Breather and Soliton Wave Families for the Sine-Gordon Equation. Proc. R. Soc. Lond. A. 1998;454:2409–2423. doi: 10.1098/rspa.1998.0264. [DOI] [Google Scholar]
  • 50.Vitanov N.K. Application of Simplest Equations of Bernoulli and Riccati Kind for Obtaining Exact Traveling-Wave Solutions for a Class of PDEs with Polynomial non-linearity. Commun. Non-Linear Sci. Numer. Simul. 2010;15:2050–2060. doi: 10.1016/j.cnsns.2009.08.011. [DOI] [Google Scholar]
  • 51.Vitanov N.K., Dimitrova Z.I., Kantz H. Modified Method of Simplest Equation and its Application to non-linear PDEs. Appl. Math. Comput. 2010;216:2587–2595. doi: 10.1016/j.amc.2010.03.102. [DOI] [Google Scholar]
  • 52.Vitanov N.K. Modified Method of Simplest Equation: Powerful Tool for Obtaining Exact and Approximate Traveling-Wave Solutions of non-linear PDEs. Commun. Non-Linear Sci. Numer. Simulation. 2011;16:1176–1185. doi: 10.1016/j.cnsns.2010.06.011. [DOI] [Google Scholar]
  • 53.Vitanov N.K. On Modified Method of Simplest Equation for Obtaining Exact and Approximate Solutions of non-linear PDEs: The Role of the Simplest Equation. Commun. Non-Linear Sci. Numer. Simul. 2011;16:4215–4231. doi: 10.1016/j.cnsns.2011.03.035. [DOI] [Google Scholar]
  • 54.Vitanov N.K., Jordanov I.P., Dimitrova Z.I. On non-linear Dynamics of Interacting Populations: Coupled Kink Waves in a System of Two Populations. Commun. Non-Linear Sci. Numer. Simul. 2009;14:2379–2388. doi: 10.1016/j.cnsns.2008.07.015. [DOI] [Google Scholar]
  • 55.Vitanov N.K., Jordanov I.P., Dimitrova Z.I. On non-linear Population Waves. Appl. Math. Comput. 2009;215:2950–2964. doi: 10.1016/j.amc.2009.09.041. [DOI] [Google Scholar]
  • 56.Vitanov N.K., Dimitrova Z.I. Application of The Method of Simplest Equation for Obtaining Exact Traveling-Wave Solutions for Two Classes of Model PDEs from Ecology and Population Dynamics. Commun. Non-Linear Sci. Numer. Simul. 2010;15:2836–2845. doi: 10.1016/j.cnsns.2009.11.029. [DOI] [Google Scholar]
  • 57.Vitanov N.K., Dimitrova Z.I., Vitanov K.N. On the Class of non-linear PDEs That Can be Treated by the Modified Method of Simplest Equation. Application to Generalized Degasperis–Processi Equation and B-Equation. Commun. Non-Linear Sci. Numer. Simul. 2011;16:3033–3044. doi: 10.1016/j.cnsns.2010.11.013. [DOI] [Google Scholar]
  • 58.Dimitrova Z. On Traveling Waves in Lattices: The Case of Riccati Lattices. J. Theor. Appl. Mech. 2012;42:3–22. doi: 10.2478/v10254-012-0011-2. [DOI] [Google Scholar]
  • 59.Vitanov N.K., Dimitrova Z.I., Kantz H. Application of the Method of Simplest Equation for Obtaining Exact Traveling-Wave Solutions for the Extended Korteweg-de Vries Equation and Generalized Camassa–Holm Equation. Appl. Math. Comput. 2013;219:7480–7492. doi: 10.1016/j.amc.2013.01.035. [DOI] [Google Scholar]
  • 60.Vitanov N.K., Dimitrova Z.I., Vitanov K.N. Traveling Waves and Statistical Distributions Connected to Systems of Interacting Populations. Comput. Math. Appl. 2013;66:1666–1684. doi: 10.1016/j.camwa.2013.04.002. [DOI] [Google Scholar]
  • 61.Vitanov N.K., Vitanov K.N. Population Dynamics in Presence of State Dependent Fluctuations. Comput. Math. Appl. 2013;68:962–971. doi: 10.1016/j.camwa.2014.03.006. [DOI] [Google Scholar]
  • 62.Vitanov N.K., Dimitrova Z.I., Vitanov K.N. Modified Method of Simplest Equation for Obtaining Exact Analytical Solutions of non-linear Partial Differential Equations: Further Development of the Methodology with Applications. Appl. Math. Comput. 2015;269:363–378. doi: 10.1016/j.amc.2015.07.060. [DOI] [Google Scholar]
  • 63.Vitanov N.K., Dimitrova Z.I. Modified Method of Simplest Equation Applied to the non-linear Schrödinger Equation. J. Theor. Appl. Mech. Sofia. 2018;48:59–68. doi: 10.2478/jtam-2018-0005. [DOI] [Google Scholar]
  • 64.Dimitrova Z.I., Vitanov N.K. Travelling Waves Connected to Blood Flow and Motion of Arterial Walls. In: Gadomski A., editor. Water in Biomechanical and Related Systems. Springer; Cham, Switzerland: 2021. pp. 243–263. [Google Scholar]
  • 65.Jordanov I.P., Vitanov N.K. On the Exact Traveling Wave Solutions of a Hyperbolic Reaction- Diffusion Equation. Stud. Comput. Intell. 2019;793:199–210. doi: 10.1007/978-3-319-97277-0_16. [DOI] [Google Scholar]
  • 66.Vitanov N.K., Dimitrova Z.I. Solitary Wave Solutions for non-linear Partial Differential Equations that Contain Monomials of Odd and Even Grades with Respect to Participating Derivatives. Appl. Math. Comput. 2014;247:213–217. doi: 10.1016/j.amc.2014.08.101. [DOI] [Google Scholar]
  • 67.Vitanov N.K. On Modified Method of Simplest Equation for Obtaining Exact Solutions of non-linear PDEs: Case of Elliptic Simplest Equation. Pliska Stud. Math. Bulg. 2012;21:257–266. [Google Scholar]
  • 68.Vitanov N.K., Dimitrova Z.I., Ivanova T.I. On Solitary Wave Solutions of a Class of non-linear Partial Differential Equations Based on the Function 1/cosh(αx + βt)n. Appl. Math. Comput. 2017;315:372–380. doi: 10.1016/j.amc.2017.07.064. [DOI] [Google Scholar]
  • 69.Vitanov N.K. Recent Developments of the Methodology of the Modified Method of Simplest Equation with Application. Pliska Stud. Math. Bulg. 2019;30:29–42. [Google Scholar]
  • 70.Vitanov N.K. Modified Method of Simplest Equation for Obtaining Exact Solutions of non-linear Partial Differential Equations: History, recent development and studied classes of equations. J. Theor. Appl. Mech. 2019;49:107–122. doi: 10.7546/JTAM.49.19.02.02. [DOI] [Google Scholar]
  • 71.Vitanov N.K., Dimitrova Z.I., Vitanov K.N. On the Use of Composite Functions in the Simple Equations Method to Obtain Exact Solutions of non-linear Differential Equations. Computation. 2021;9:104. doi: 10.3390/computation9100104. [DOI] [Google Scholar]
  • 72.Vitanov N.K., Dimitrova Z.I. Simple Equations Method and Non-Linear Differential Equations with Non-Polynomial Non-Linearity. Entropy. 2021;23:1624. doi: 10.3390/e23121624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Vitanov N.K., Dimitrova Z.I., Vitanov K.N. Simple Equations Method (SEsM): Algorithm, Connection with Hirota Method, Inverse Scattering Transform Method, and Several Other Methods. Entropy. 2021;23:10. doi: 10.3390/e23010010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Vitanov N.K. The Simple Equations Method (SEsM) For Obtaining Exact Solutions Of non-linear PDEs: Opportunities Connected to the Exponential Functions. AIP Conf. Proc. 2019;2159:030038. doi: 10.1063/1.5127503. [DOI] [Google Scholar]
  • 75.Vitanov N.K., Dimitrova Z.I. Simple Equations Method (SEsM) And Other Direct Methods for Obtaining Exact Solutions of non-linear PDEs. AIP Conf. Proc. 2019;2159:030039. doi: 10.1063/1.5127504. [DOI] [Google Scholar]
  • 76.Vitanov N.K. Simple Equations Method (SEsM) and Its Connection with the Inverse Scattering Transform Method. AIP Conf. Proc. 2021;2321:030035. doi: 10.1063/5.0040409. [DOI] [Google Scholar]
  • 77.Vitanov N.K., Dimitrova Z.I. Simple Equations Method (SEsM) and Its Particular Cases: Hirota Method. AIP Conf. Proc. 2021;2321:030036. doi: 10.1063/5.0040410. [DOI] [Google Scholar]
  • 78.Dimitrova Z.I., Vitanov K.N. Homogeneous Balance Method and Auxiliary Equation Method as Particular Cases of Simple Equations Method (SEsM) AIP Conf. Proc. 2021;2321:030004. doi: 10.1063/5.0043070. [DOI] [Google Scholar]
  • 79.Jordanov I.P. Simple equations method applied to equations of nonlinear Schrödinger kind. AIP Conf. Proc. 2022;2459:030016. doi: 10.1063/5.0084340. [DOI] [Google Scholar]
  • 80.Vitanov N.K. Simple equations method (SEsM): Review and new results. AIP Conf. Proc. 2022;2459:020003. doi: 10.1063/5.0083565. [DOI] [Google Scholar]
  • 81.Dimitrova Z.I. On several specific cases of the simple equations method (SEsM): Jacobi elliptic function expansion method, F-expansion method, modified simple equation method, trial function method, general projective Riccati equations method, and first intergal method. AIP Conf. Proc. 2022;2459:030006. doi: 10.1063/5.0083573. [DOI] [Google Scholar]
  • 82.Dimitrova Z.I. Several examples of application of the simple equations method (SEsM) for obtaining exact solutions of nonlinear PDEs. AIP Conf. Proc. 2022;2459:030005. doi: 10.1063/5.0083572. [DOI] [Google Scholar]
  • 83.Vitanov N.K. Simple equations method (SEsM) and nonlinear PDEs with fractional derivatives. AIP Conf. Proc. 2022;2459:030040. doi: 10.1063/5.0083566. [DOI] [Google Scholar]
  • 84.Korteweg D.J., deVries H. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 1895;39:422–443. doi: 10.1080/14786449508620739. [DOI] [Google Scholar]
  • 85.Benney D.J. Long Non-Linear Waves in Fluid Flows. J. Math. Phys. 1966;45:52–63. doi: 10.1002/sapm196645152. [DOI] [Google Scholar]
  • 86.Olver P.J. Trends and Applications of Pure Mathematics to Mechanics. Springer; Berlin/Heidelberg, Germany: 1984. Hamiltonian and non-Hamiltonian models for water waves; pp. 273–290. [DOI] [Google Scholar]
  • 87.Marchant T.R., Smyth N.F. The extended Korteweg-de Vries equation and the resonant flow of a fluid over topography. J. Fluid Mech. 1990;221:263–288. doi: 10.1017/S0022112090003561. [DOI] [Google Scholar]
  • 88.Marchant T.R. High-Order Interaction of Solitary Waves on Shallow Water. Stud. Appl. Math. 2002;109:1–17. doi: 10.1111/1467-9590.00001. [DOI] [Google Scholar]
  • 89.Chow K.W. A second-order solution for the solitary wave in a rotational flow. Phys. Fluids A Fluid Dyn. 1989;1:1235. doi: 10.1063/1.857346. [DOI] [Google Scholar]
  • 90.Koop C.G., Butler G. An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech. 1981;112:225–251. doi: 10.1017/S0022112081000372. [DOI] [Google Scholar]
  • 91.Lamb K., Yan L. The evolution of internal wave undular bores: Comparisons of a fully nonlinear numerical model with weakly nonlinear theory. J. Phys. Oceanogr. 1996;26:2712–2734. doi: 10.1175/1520-0485(1996)026&#x0003c;2712:TEOIWU&#x0003e;2.0.CO;2. [DOI] [Google Scholar]
  • 92.Pelinovsky E.N., Poloukhina O.E., Lamb K. Nonlinear internal waves in the ocean stratified on density and current. Oceanology. 2000;40:805–815. [Google Scholar]
  • 93.Grimshaw R., Pelinovsky E., Poloukhina O. Higher-order Korteweg-de Vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlinear Process. Geophys. 2002;9:221–235. doi: 10.5194/npg-9-221-2002. [DOI] [Google Scholar]
  • 94.Pelinovsky E., Polukhina O., Slunyaev A., Talipova T. Solitary Waves in Fluids. WIT Press; Southampton, NY, USA: 2007. Internal solitary waves; pp. 85–110. [Google Scholar]

Articles from Entropy are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES