Skip to main content
Journal of Clinical Medicine logoLink to Journal of Clinical Medicine
editorial
. 2022 Sep 15;11(18):5433. doi: 10.3390/jcm11185433

Editorial: Imaging in Ophthalmology

Mariantonia Ferrara 1, Yalin Zheng 2,3, Vito Romano 4,5,*
PMCID: PMC9503085  PMID: 36143079

Over the last decade, ophthalmology has significantly benefited from advances in vivo non-invasive ophthalmic imaging techniques that play currently a fundamental role in the clinical assessment, diagnosis, management, and monitoring of a wide variety of conditions involving both the anterior and posterior segment [1,2,3,4,5,6]. Imaging technologies, including anterior and posterior segment optical coherence tomography (OCT), OCT angiography, wide-field retinal imaging, specular and confocal microscopy, corneal topography, and ocular ultrasound, have dramatically improved the morphological and functional evaluation of ocular structures, both in healthy and pathological eyes [1,2,3,4,5,6,7,8,9,10,11].

The detection of tissue microstructural changes, even at the subclinical level, can improve our ability to not only make an appropriate diagnosis, but also to elucidate pathogenetic mechanisms and to plan an appropriate management strategy for several pathological conditions. In this regard, for instance, an analysis of the retinal and corneal changes associated with SO tamponade provided important information on the potential effects of this compound on ocular tissues and facilitated the early detection of complications [12,13,14,15]. This aspect is of great clinical relevance, especially when considering that SO-related complications can be severe and potentially sight-threatening [16]. Furthermore, imaging techniques allow the identification of new biomarkers with different potential applications, including the detection and prediction of progression or responses to the treatment of common ocular diseases (e.g., age-related macular degeneration, AMD, diabetic retinopathy, DR, and myopic choroidal neovascularization) [17,18,19]; the early detection of systemic diseases, including hypertension [20] and multiple sclerosis [21]; the prediction of functional outcomes after surgical procedures [22]; or the detection of potential complications associated with systemic dugs [23].

With regard to the anterior segment, corneal topography and tomography have an established role in the accurate evaluation of the corneal shape as well as in the preoperative assessment for refractive and cataract surgery [24]. They are also relevant in the diagnosis, surgical planning, and long-term monitoring of various corneal pathologies, including keratoconus [25,26,27], ectatic corneal diseases, and pterygium or corneal scars [28,29]. It worth noting that keratometry measurements may significantly differ on the basis of the methodology used (e.g., anterior segment-OCT vs. Pentacam) [30]. Specular microscopy is a fundamental tool in the assessment of corneal and diagnosis and in the management of corneal endothelial disorders [31]. This technique can be also used to assess corneas stored in cold storage or in organoculture using an active storage machine [32]. Confocal microscopy allows for the detailed analysis of corneal nerves as well as for understanding their important role in the corneal structure and function in common corneal diseases such as keratoconus [33] but also as early markers of ocular involvement in systemic diseases, such as type 2 diabetes [34].

With regard to posterior segment, the advent of OCT and OCTA and their recent developments has dramatically improved the assessment of retinal and choroidal disorders. The diagnosis and the management of medical retinal diseases, including AMD, DR, and retinal vein occlusion, has been optimized by the use of these techniques, and the need for more invasive investigations, such as fluorescein angiography, has decreased [35,36,37]. This shift has also been seen in the anterior segment [38,39,40,41,42]. The evaluation and management of vitreoretinal interface diseases have particularly benefited from these imaging techniques, which allow for detailed structural analysis of the retinal tissues and the identification of multiple anatomical findings for classification [43,44], differential diagnosis [45,46,47], surgical planning [48,49,50], prognosis [45,49,51], and long-term monitoring [50,52]. It has been recently suggested that retromode imaging modalities, which rely on confocal scanning laser ophthalmoscopic technology, may be a promising additional tool for the assessment of ERMs [53].

The possibility of combining different imaging modalities can optimize the processes of differential diagnosis, particularly in diseases sharing multiple common clinical aspects, including macular oedema of different etiologies [54] or inflammatory pathologies [55,56,57], as shown for chorioretinal lesions associated with Mycobacterium (M.) chimaera, M. tuberculosis, and other ocular granulomatous infectious diseases [58].

Finally, there is a growing interest in the use of artificial intelligence (AI) and deep learning in ophthalmology due to the promising results achieved in the detection of common ocular diseases such as AMD, diabetic retinopathy, and glaucoma, and the potential applications for screening, diagnosis, and monitoring of these conditions [59]. The high accuracy of a computer-aided diagnosis algorithm using deep convolutional neural networks in recognizing and classifying high levels of myopia through fundus images has also been reported [60]. Interestingly, an AI system based on transfer learning and deep learning has been successfully applied for meibography analysis [61].

In this issue, we aimed to highlight the multiple potential applications of imaging techniques in ophthalmology, and we hope that this will be appreciated by readers.

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

This research received no external funding.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Fogel-Levin M., Sadda S.R., Rosenfeld P.J., Waheed N., Querques G., Freund B.K., Sarraf D. Advanced retinal imaging and applications for clinical practice: A consensus review. Surv. Ophthalmol. 2022;67:1373–1390. doi: 10.1016/j.survophthal.2022.02.004. Online ahead of print. [DOI] [PubMed] [Google Scholar]
  • 2.Romano V., Steger B., Ahmad M., Coco G., Pagano L., Ahmad S., Zhao Y., Zheng Y., Kaye S.B. Imaging of vascular abnormalities in ocular surface disease. Surv. Ophthalmol. 2021;67:31–51. doi: 10.1016/j.survophthal.2021.05.001. [DOI] [PubMed] [Google Scholar]
  • 3.Hood D.C., La Bruna S., Tsamis E., Thakoor K.A., Rai A., Leshno A., de Moraes C.G.V., Cioffi G.A., Liebmann J.M. Detecting glaucoma with only OCT: Implications for the clinic, research, screening and AI development. Prog. Retin. Eye Res. 2022;90:101052. doi: 10.1016/j.preteyeres.2022.101052. [DOI] [PubMed] [Google Scholar]
  • 4.Romano V., Tey A., Hill N.M., Ahmad S., Britten C., Batterbury M., Willoughby C., Kaye S.B. Influence of graft size on graft survival following Descemet stripping automated endothelial keratoplasty. Br. J. Ophthalmol. 2015;99:784–788. doi: 10.1136/bjophthalmol-2014-305648. [DOI] [PubMed] [Google Scholar]
  • 5.Borroni D., Romano V., Kaye S.B., Somerville T., Napoli L., Fasolo A., Gallon P., Ponzin D., Esposito A., Ferrari S. Metagenomics in ophthalmology: Current findings and future prospectives. BMJ Open Ophthalmol. 2019;4:e000248. doi: 10.1136/bmjophth-2018-000248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Liu S., Romano V., Steger B., Kaye S.B., Hamill K.J., Willoughby C.E. Gene-based antiangiogenic applications for corneal neovascularization. Surv. Ophthalmol. 2018;63:193–213. doi: 10.1016/j.survophthal.2017.10.006. [DOI] [PubMed] [Google Scholar]
  • 7.Ren J., Gao X., Chen L., Lin H., Liu Y., Zhou Y., Liao Y., Xie C., Zuo C., Lin M. Characteristics of the Ciliary Body in Healthy Chinese Subjects Evaluated by Radial and Transverse Imaging of Ultrasound Biometric Microscopy. J. Clin. Med. 2022;11:3696. doi: 10.3390/jcm11133696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kim M.-S., Lim H.-B., Lee W.-H., Won Y.-K., Nam K.-Y., Kim J.-Y. Wide-Field Swept-Source OCT Analysis of Interocular Symmetry of Choroidal Thickness in Subjects with Uncomplicated Pachychoroid. J. Clin. Med. 2021;10:4253. doi: 10.3390/jcm10184253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Zhang Z., Yao J., Chang S., Kanclerz P., Khoramnia R., Deng M., Wang X. Incidence and Risk Factors for Berger’s Space Development after Uneventful Cataract Surgery: Evidence from Swept-Source Optical Coherence Tomography. J. Clin. Med. 2022;11:3580. doi: 10.3390/jcm11133580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Parekh M., Leon P., Ruzza A., Borroni D., Ferrari S., Ponzin D., Romano V. Graft detachment and rebubbling rate in Descemet membrane endothelial keratoplasty. Surv. Ophthalmol. 2018;63:245–250. doi: 10.1016/j.survophthal.2017.07.003. [DOI] [PubMed] [Google Scholar]
  • 11.Romano V., Steger B., Myneni J., Batterbury M., Willoughby C.E., Kaye S.B. Preparation of ultrathin grafts for Descemet-stripping endothelial keratoplasty with a single microkeratome pass. J. Cataract Refract. Surg. 2017;43:12–15. doi: 10.1016/j.jcrs.2016.12.009. [DOI] [PubMed] [Google Scholar]
  • 12.Ferrara M., Coco G., Sorrentino T., Jasani K.M., Moussa G., Morescalchi F., Dhawahir-Scala F., Semeraro F., Steel D.H.W., Romano V., et al. Retinal and corneal changes associated with intraocular silicone oil tamponade. J. Clin. Med. 2022;11:5234. doi: 10.3390/jcm11175234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Romano V., Angi M., Scotti F., del grosso R., Romano D., Semeraro F., Vinciguerra P., Costagliola C., Romano M.R. Inflammation and macular oedema after pars plana vitrectomy. Mediat. Inflamm. 2013;2013:971758. doi: 10.1155/2013/971758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Morescalchi F., Costagliola C., Duse S., Gambicorti E., Parolini B., Arcidiacono B., Romano M.R., Semeraro F. Heavy silicone oil and intraocular inflammation. BioMed Res. Int. 2014;2014:574825. doi: 10.1155/2014/574825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Romano M.R., Vallejo-Garcia J.L., Parmeggiani F., Romano V., Vinciguerra P. Interaction between perfluorcarbon liquid and heavy silicone oil: Risk factor for ‘sticky oil’ formation. Curr. Eye Res. 2012;37:563–566. doi: 10.3109/02713683.2012.669511. [DOI] [PubMed] [Google Scholar]
  • 16.Romano M.R., Ferrara M., Nepita I., D’Amato Tothova J., Giacometti Schieroni A., Reami D., Mendichi R., Liggieri L., Repetto R. Biocompatibility of intraocular liquid tamponade agents: An update. Eye. 2021;35:2699–2713. doi: 10.1038/s41433-021-01596-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Schreur V., de Breuk A., Venhuizen F.G., Sánchez C.I., Tack C.J., Klevering B.J., de Jong E.K., Hoyng C.B. Retinal Hyperreflective Foci in Type 1 Diabetes Mellitus. Retina. 2020;40:1565–1573. doi: 10.1097/IAE.0000000000002626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Sitnilska V., Enders P., Cursiefen C., Fauser S., Altay L. Association of Imaging Biomarkers and Local Activation of Complement in Aqueous Humor of Patients with Early Forms of Age-Related Macular Degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 2021;259:623–632. doi: 10.1007/s00417-020-04910-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Allegrini D., Vezzola D., Borgia A., Raimondi R., Sorrentino T., Tripepi D., Stradiotto E., Alì M., Montesano G., Romano M.R. OCT Analysis of Retinal Pigment Epithelium in Myopic Choroidal Neovascularization: Correlation Analysis with Different Treatments. J. Clin. Med. 2022;11:5023. doi: 10.3390/jcm11175023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Niro A., Sborgia G., Lampignano L., Giuliani G., Castellana F., Zupo R., Bortone I., Puzo P., Pascale A., Pastore V., et al. Association of Neuroretinal Thinning andMicrovascular Changes with Hypertension in an Older Population in Southern Italy. J. Clin. Med. 2022;11:1098. doi: 10.3390/jcm11041098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Drobnjak Nes D., Berg-Hansen P., de Rodez Benavent S.A., H gest l E.A., Beyer M.K., Rinker D.A., Veiby N., Karabeg M., Petrovski B., Celius E.G., et al. Exploring Retinal Blood Vessel Diameters as Biomarkers in Multiple Sclerosis. J. Clin. Med. 2022;11:3109. doi: 10.3390/jcm11113109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Yoon J., Sung K.R., Shin J.W. Changes in Peripapillary and Macular Vessel Densities and Their Relationship with Visual Field Progression after Trabeculectomy. J. Clin. Med. 2021;10:5862. doi: 10.3390/jcm10245862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Mencucci R., Cennamo M., Alonzo L., Senni C., Vagge A., Ferro Desideri L., Scorcia V., Giannaccare G. Corneal Findings Associated to Belantamab-Mafodotin (Belamaf) Use in a Series of Patients Examined Longitudinally by Means of Advanced Corneal Imaging. J. Clin. Med. 2022;11:2884. doi: 10.3390/jcm11102884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Kanclerz P., Khoramnia R., Wang X. Current Developments in Corneal Topography and Tomography. Diagnostics. 2021;11:1466. doi: 10.3390/diagnostics11081466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Napolitano P., Tranfa F., D’Andrea L., Caruso C., Rinaldi M., Mazzucco A., Ciampa N., Melenzane A., Costagliola C. Topographic Outcomes in Keratoconus Surgery: Epi-on versus Epi-off Iontophoresis Corneal Collagen Cross-Linking. J. Clin. Med. 2022;11:1785. doi: 10.3390/jcm11071785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Gasser T., Romano V., Seifarth C., Bechrakis N.E., Kaye S.B., Steger B. Morphometric characterisation of pterygium associated with corneal stromal scarring using high-resolution anterior segment optical coherence tomography. Br. J. Ophthalmol. 2017;101:660–664. doi: 10.1136/bjophthalmol-2016-308685. [DOI] [PubMed] [Google Scholar]
  • 27.Brunner M., Czanner G., Vinciguerra R., Romano V., Ahmad S., Batterbury M., Britten C., Willoughby C.E., Kaye S.B. Improving precision for detecting change in the shape of the cornea in patients with keratoconus. Sci Rep. 2018;8:12345. doi: 10.1038/s41598-018-30173-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Vinciguerra P., Mencucci R., Romano V., Spoerl E., Camesasca F.I., Favuzza E., Azzolini C., Mastropasqua R., Vinciguerra R. Imaging mass spectrometry by matrix-assisted laser desorption/ionization and stress-strain measurements in iontophoresis transepithelial corneal collagen cross-linking. BioMed Res Int. 2014;2014:404587. doi: 10.1155/2014/404587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Lanza M., Cennamo M., Iaccarino S., Romano V., Bifani M., Irregolare C., Lanza A. Evaluation of corneal deformation analyzed with a Scheimpflug based device. Cont. Lens Anterior Eye. 2015;38:89–93. doi: 10.1016/j.clae.2014.10.002. [DOI] [PubMed] [Google Scholar]
  • 30.Pérez-Bartolomé F., Rocha-De-Lossada C., Sánchez-González J.-M., Feu-Basilio S., Torras-Sanvicens J., Peraza-Nieves J. Anterior-Segment Swept-Source Ocular Coherence Tomography and Scheimpflug Imaging Agreement for Keratometry and Pupil Measurements in Healthy Eyes. J. Clin. Med. 2021;10:5789. doi: 10.3390/jcm10245789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Chaurasia S., Vanathi M. Specular microscopy in clinical practice. Indian J. Ophthalmol. 2021;69:517–524. doi: 10.4103/ijo.IJO_574_20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Garcin T., Crouzet E., Perrache C., Lepine T., Gain P., Thuret G. Specular Microscopy of Human Corneas Stored in an Active Storage Machine. J. Clin. Med. 2022;11:3000. doi: 10.3390/jcm11113000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Teo A.W.J., Mansoor H., Sim N., Lin M.T.-Y., Liu Y.-C. In Vivo Confocal Microscopy Evaluation in Patients with Keratoconus. J. Clin. Med. 2022;11:393. doi: 10.3390/jcm11020393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.dell’Omo R., Cifariello F., De Turris S., Romano V., Di Renzo F., Di Taranto D., Coclite G., Agnifili L., Mastropasqua L., Costagliola C. Confocal microscopy of corneal nerve plexus as an early marker of eye involvement in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2018;142:393–400. doi: 10.1016/j.diabres.2018.06.010. [DOI] [PubMed] [Google Scholar]
  • 35.Tran K., Pakzad-Vaezi K. Multimodal imaging of diabetic retinopathy. Curr. Opin. Ophthalmol. 2018;29:566–575. doi: 10.1097/ICU.0000000000000524. [DOI] [PubMed] [Google Scholar]
  • 36.Guymer R., Wu Z. Age-related macular degeneration (AMD): More than meets the eye. The role of multimodal imaging in today’s management of AMD-A review. Clin. Exp. Ophthalmol. 2020;48:983–995. doi: 10.1111/ceo.13837. [DOI] [PubMed] [Google Scholar]
  • 37.Tsai G., Banaee T., Conti F.F., Singh R.P. Optical Coherence Tomography Angiography in Eyes with Retinal Vein Occlusion. J. Ophthalmic Vis. Res. 2018;13:315–332. doi: 10.4103/jovr.jovr_264_17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Duker J.S., Kaiser P.K., Binder S., de Smet M.D., Gaudric A., Reichel E., Sadda S.R., Sebag J., Spaide R.F., Stalmans P. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology. 2013;120:2611–2619. doi: 10.1016/j.ophtha.2013.07.042. [DOI] [PubMed] [Google Scholar]
  • 39.Brunner M., Romano V., Steger B., Vinciguerra R., Lawman S., Williams B., Hicks N., Czanner G., Zheng Y., Willoughby C.E., et al. Imaging of Corneal Neovascularization: Optical Coherence Tomography Angiography and Fluorescence Angiography. Investig. Ophthalmol. Vis. Sci. 2018;59:1263–1269. doi: 10.1167/iovs.17-22035. [DOI] [PubMed] [Google Scholar]
  • 40.Brunner M., Steger B., Romano V., Hodson M., Zheng Y., Heimann H., Kaye S.B. Identification of Feeder Vessels in Ocular Surface Neoplasia Using Indocyanine Green Angiography. Curr. Eye Res. 2018;43:163–169. doi: 10.1080/02713683.2017.1387273. [DOI] [PubMed] [Google Scholar]
  • 41.Romano V., Steger B., Brunner M., Ahmad S., Willoughby C.E., Kaye S.B. Method for Angiographically Guided Fine-Needle Diathermy in the Treatment of Corneal Neovascularization. Cornea. 2016;35:1029–1032. doi: 10.1097/ICO.0000000000000865. [DOI] [PubMed] [Google Scholar]
  • 42.Romano V., Steger B., Zheng Y., Ahmad S., Willoughby C.E., Kaye S.B. Angiographic and In Vivo Confocal Microscopic Characterization of Human Corneal Blood and Presumed Lymphatic Neovascularization: A Pilot Study. Cornea. 2015;34:1459–1465. doi: 10.1097/ICO.0000000000000609. [DOI] [PubMed] [Google Scholar]
  • 43.Palme C., Wanner A., Romano V., Franchi A., Haas G., Kaye S.B., Steger B. Indocyanine Green Angiographic Assessment of Conjunctival Melanocytic Disorders. Cornea. 2021;40:1519–1524. doi: 10.1097/ICO.0000000000002681. [DOI] [PubMed] [Google Scholar]
  • 44.Hubschman J.P., Govetto A., Spaide R.F., Schumann R., Steel D., Figueroa M.S., Sebag J., Gaudric A., Staurenghi G., Haritoglou C., et al. Optical coherence tomography-based consensus definition for lamellar macular hole. Br. J. Ophthalmol. 2020;104:1741–1747. doi: 10.1136/bjophthalmol-2019-315432. [DOI] [PubMed] [Google Scholar]
  • 45.Romano M.R., Allegrini D., Della Guardia C., Schiemer S., Baronissi I., Ferrara M., Cennamo G. Vitreous and intraretinal macular changes in diabetic macular edema with and without tractional components. Graefes Arch. Clin. Exp. Ophthalmol. 2019;257:1–8. doi: 10.1007/s00417-018-4173-8. [DOI] [PubMed] [Google Scholar]
  • 46.Romano M.R., Ilardi G., Ferrara M., Cennamo G., Allegrini D., Pafundi P.C., Costagliola C., Staibano S., Cennamo G. Intraretinal changes in idiopathic versus diabetic epiretinal membranes after macular peeling. PLoS ONE. 2018;13:e0197065. doi: 10.1371/journal.pone.0197065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Govetto A., Sarraf D., Hubschman J.P., Tadayoni R., Couturier A., Chehaibou I., Au A., Grondin C., Virgili G., Romano M.R. Distinctive Mechanisms and Patterns of Exudative Versus Tractional Intraretinal Cystoid Spaces as Seen With Multimodal Imaging. Am. J. Ophthalmol. 2020;212:43–56. doi: 10.1016/j.ajo.2019.12.010. [DOI] [PubMed] [Google Scholar]
  • 48.Govetto A., Hubschman J.P., Sarraf D., Figueroa M.S., Bottoni F., dell’Omo R., Curcio C.A., Seidenari P., Delledonne G., Gunzenhauser R., et al. The role of Müller cells in tractional macular disorders: An optical coherence tomography study and physical model of mechanical force transmission. Br. J. Ophthalmol. 2020;104:466–472. doi: 10.1136/bjophthalmol-2019-314245. [DOI] [PubMed] [Google Scholar]
  • 49.Chua P.Y., Sandinha M.T., Steel D.H. Idiopathic epiretinal membrane: Progression and timing of surgery. Eye. 2022;36:495–503. doi: 10.1038/s41433-021-01681-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Yang J.M., Choi S.U., Kim Y.J., Kim R., Yon D.K., Lee S.W., Shin J.I., Lee J.Y., Kim J.G. Association between epiretinal membrane, epiretinal proliferation, and prognosis of full-thickness macular hole closure. Retina. 2022;42:46–54. doi: 10.1097/IAE.0000000000003262. [DOI] [PubMed] [Google Scholar]
  • 51.Romano M.R., Rossi T., Borgia A., Catania F., Sorrentino T., Ferrara M. Management of refractory and recurrent macular holes: A comprehensive review. Surv. Ophthalmol. 2022;67:908–931. doi: 10.1016/j.survophthal.2022.01.006. [DOI] [PubMed] [Google Scholar]
  • 52.Romano M.R., Comune C., Ferrara M., Cennamo G., De Cillà S., Toto L., Cennamo G. Retinal Changes Induced by Epiretinal Tangential Forces. J. Ophthalmol. 2015;2015:372564. doi: 10.1155/2015/372564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Savastano A., Ripa M., Savastano M.C., Caporossi T., Bacherini D., Kilian R., Rizzo C., Rizzo S. Retromode Imaging Modality of Epiretinal Membranes. J. Clin. Med. 2022;11:3936. doi: 10.3390/jcm11143936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Dysli M., Rückert R., Munk M.R. Differentiation of Underlying Pathologies of Macular Edema Using Spectral Domain Optical Coherence Tomography (SD-OCT) Ocul. Immunol. Inflamm. 2019;27:474–483. doi: 10.1080/09273948.2019.1603313. [DOI] [PubMed] [Google Scholar]
  • 55.Baharani A., Errera M.H., Jhingan M., Samanta A., Agarwal A., Singh S.R., Reddy P.R.R., Grewal D.S., Chhablani J. Choroidal imaging in uveitis: An update. Surv. Ophthalmol. 2022;67:965–990. doi: 10.1016/j.survophthal.2022.01.001. [DOI] [PubMed] [Google Scholar]
  • 56.Ferrara M., Eggenschwiler L., Stephenson A., Montieth A., Nakhoul N., Araùjo-Miranda R., Foster C.S. The Challenge of Pediatric Uveitis: Tertiary Referral Center Experience in the United States. The Challenge of Pediatric Uveitis: Tertiary Referral Center Experience in the United States. Ocul. Immunol. Inflamm. 2019;27:410–417. doi: 10.1080/09273948.2017.1420202. [DOI] [PubMed] [Google Scholar]
  • 57.Thomas A.S., Lin P. Multimodal imaging in infectious and noninfectious intermediate, posterior and panuveitis. Curr. Opin. Ophthalmol. 2021;32:169–182. doi: 10.1097/ICU.0000000000000762. [DOI] [PubMed] [Google Scholar]
  • 58.Zweifel S.A., Foa N., Wiest M.R.J., Carnevali A., Zaluska-Ogryzek K., Rejdak R., Toro M.D. Differences between Mycobacterium chimaera and tuberculosis Using Ocular Multimodal Imaging: A Systematic Review. J. Clin. Med. 2021;10:4880. doi: 10.3390/jcm10214880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Williams B.M., Borroni D., Liu R., Zhao Y., Zhang J., Lim J., Ma B., Romano V., Qi H., Ferdousi M., et al. An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: A development and validation study. Diabetologica. 2020;63:419–430. doi: 10.1007/s00125-019-05023-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Wan C., Li H., Cao G.-F., Jiang Q., Yang W.-H. An Artificial Intelligent Risk Classification Method of High Myopia Based on Fundus Images. J. Clin. Med. 2021;10:4488. doi: 10.3390/jcm10194488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Zhang Z., Lin X., Yu X., Fu Y., Chen X., Yang W., Dai Q. Meibomian Gland Density: An Effective Evaluation Index of Meibomian Gland Dysfunction Based on Deep Learning and Transfer Learning. J. Clin. Med. 2022;11:2396. doi: 10.3390/jcm11092396. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Medicine are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES