Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Sep 23;35(1):855–886. doi: 10.1007/s00521-022-07718-z

Multilevel thresholding satellite image segmentation using chaotic coronavirus optimization algorithm with hybrid fitness function

Khalid M Hosny 1,, Asmaa M Khalid 1, Hanaa M Hamza 1, Seyedali Mirjalili 2
PMCID: PMC9510310  PMID: 36187233

Abstract

Image segmentation is a critical step in digital image processing applications. One of the most preferred methods for image segmentation is multilevel thresholding, in which a set of threshold values is determined to divide an image into different classes. However, the computational complexity increases when the required thresholds are high. Therefore, this paper introduces a modified Coronavirus Optimization algorithm for image segmentation. In the proposed algorithm, the chaotic map concept is added to the initialization step of the naive algorithm to increase the diversity of solutions. A hybrid of the two commonly used methods, Otsu’s and Kapur’s entropy, is applied to form a new fitness function to determine the optimum threshold values. The proposed algorithm is evaluated using two different datasets, including six benchmarks and six satellite images. Various evaluation metrics are used to measure the quality of the segmented images using the proposed algorithm, such as mean square error, peak signal-to-noise ratio, Structural Similarity Index, Feature Similarity Index, and Normalized Correlation Coefficient. Additionally, the best fitness values are calculated to demonstrate the proposed method's ability to find the optimum solution. The obtained results are compared to eleven powerful and recent metaheuristics and prove the superiority of the proposed algorithm in the image segmentation problem.

Keywords: Image segmentation, Optimization, Thresholding, Metaheuristic, Satellite

Introduction

Digital image processing is manipulating digital images through algorithms using digital computers for many purposes, such as image enhancement, image compression, and extracting useful information [1]. Image segmentation is a crucial process in most digital image processing tasks. It isolates the region of interest from the scene [2]. Image segmentation has been successfully applied to several fields, such as image denoising [3], medical image diagnosis [4], and satellite image segmentation [5]. In the literature, several techniques have been proposed for image segmentation. These techniques can be categorized as edge detection-based segmentation [6], clustering-based segmentation [7], and thresholding-based segmentation [8]. Thresholding-based segmentation is considered the most popular technique because of its simplicity and efficiency. In thresholding-based segmentation, the histogram information is extracted from the grayscale image and is used to determine threshold values to separate image pixels into different classes [9]. When one threshold value is needed, it is referred to as bi-level thresholding, in which the image is segmented into only two regions.

Multilevel thresholding is more appropriate in images containing many objects with fine details and complex backgrounds because bi-level thresholding fails to distinguish these objects correctly. After all, it divides the image into only two regions [10]. On the other hand, multilevel thresholding involves using more than one threshold to segment the image into several regions [11]. The thresholding process aims to find the best threshold values that precisely determine the image segments. Otsu [12] and Kapur [13] methods are considered the most popular strategies for determining the optimal thresholds. Otsu's method maximizes the variance between classes, while Kapur's method maximizes the histogram entropy to measure homogeneity between segmented regions.

Over the last few years, Swarm intelligence has been extensively applied to solve multilevel thresholding image segmentation problems [14]. Many algorithms have been proposed for satellite image segmentation, such as a modified version of an artificial bee colony (MABC) proposed by Bhandari et al. [15]. The results reveal that MABC has more computational efficiency and accuracy than the standard ABC. For RGB histogram-based color satellite image segmentation, a multi-strategy Emperor Penguin Optimizer (MSEPO) is proposed by Heming et al. [16]. The results showed that the MSEPO algorithm had superior performance, especially for the high dimensional segmentation of complex satellite images. The proposed hybrid Grasshopper Optimization Algorithm and Differential Evolution (GOA-jDE) has been proposed by Heming et al. [17]. The superiority of the proposed algorithm is illustrated in terms of different metrics such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), feature similarity index (FSIM), and standard deviation (STD), convergence performance, and computation time. Many other algorithms for satellite image segmentation have been proposed in [1821].

Several algorithms have been proposed in medical images, such as ant colony optimization with Cauchy and greedy levy mutations for COVID X-ray images segmentation [22]. Bandyopadhyay et al. [4] proposed an altruistic Harris Hawks’ optimization algorithm to segment brain MRI images. This algorithm combines the chaotic initialization, the concept of altruism, and a hybrid objective function, where the results show superior searchability and convergence speed performance. Also, Abualigah et al. [23] proposed an evolutionary arithmetic optimization algorithm for COVID-19 CT image segmentation. According to the experimental results, the proposed algorithm produces higher-quality solutions than other comparisons. Other techniques for medical image segmentation are proposed in [2427].

In recent years, chaotic maps were incorporated into the swarm intelligence algorithms to increase the diversity of solutions and avoid falling into local optimum [28]. Hongwei et al. [29] proposed a Chaos-enhanced moth-flame optimization (MFO) algorithm for global optimization. The statistical results demonstrate that the appropriate chaotic map (singer map) embedded in the appropriate component of MFO can significantly improve the performance of MFO. [30], two different chaotic maps were incorporated into the original elephant herding optimization algorithm. Test results proved that the proposed chaotic elephant herding optimization algorithm performs better and obtains better results. Aggarwal et al. [31] used the chaotic sequence to initialize the social spider optimization algorithm, enhancing its performance. Many other researchers have embedded the chaotic concept into their native algorithms to enhance their search ability [3236].

Coronavirus Optimization Algorithm (COVIDOA) is a recent metaheuristic inspired by the replication lifecycle of Coronavirus [37]. COVIDOA has three main phases: Virus Entry, Virus Replication, and Virus mutation. Coronavirus uses frameshifting [3840] to make new virus copies in the Replication phase. Frameshifting produces many viral proteins combined to form new virus particles as many new particles are created, and many human cells are damaged. In addition, the virus uses mutation techniques to escape from the human immunity system. COVIDOA has been applied to many benchmark test functions and real-world problems and showed superior performance. Its advantages include a good balance between exploration and exploitation and high convergence speed.

This paper introduces the chaotic map concept into the novel Coronavirus Disease Optimization Algorithm (COVIDOA) to increase the diversity of solutions. The proposed algorithm is applied to solve the multilevel thresholding image segmentation problem of satellite images and a set of benchmark images. The proposed algorithm used a hybrid fitness function to find the optimum threshold values by adding weights to the Otsu and Kapur methods. The results showed that using the hybrid fitness function and adding the chaotic maps yields significantly better results than the other proposed algorithms. The motivation for using modified COVIDOA for satellite image segmentation is as follows: The No Free Lunch (NFL) [41] theorem demonstrates that no single algorithm performs best for all optimization problems; this encouraged us to use a modified version of the recent COVIDOA to solve image segmentation problem.

Additionally, the basic and the binary versions of COVIDOA have performed much better in solving many benchmark and real-world problems [37, 42]; real world it can be assumed that, if the basic version is improved, it can also perform well in solving complex optimization problems such as multilevel thresholding problem. It is observed from the literature work that most of the authors used either the Otsu method or Kapur’s entropy as a fitness function for solving multilevel thresholding problems, which encouraged the authors to use a new hybrid fitness function with a modified COVIDOA to achieve better results in solving the multilevel thresholding image segmentation problem.

The main contributions of this paper can be summarized as follows:

  1. The chaotic logistic map is used to initialize COVIDOA to increase the diversity of solutions.

  2. A new hybrid fitness function is used for finding the optimum thresholds by assigning weights to the Otsu and Kapur methods.

  3. The superiority of the proposed algorithm is validated by applying it to six satellite and six benchmark images.

  4. The proposed method for image segmentation results is compared with many state-of-the-art algorithms focusing on the recently proposed metaheuristics.

  5. Several measures are used to evaluate the performance of the proposed algorithm in solving multilevel thresholding problems, such as best fitness value, MSE, PSNR, SSIM, FSIM, and NCC, and conducting the Wilcoxon rank-sum test to prove the efficiency of the proposed algorithm.

This paper is organized as follows: Sect. 2 provides a brief overview of multilevel thresholding techniques such as Otsu’s method, Kapur’s entropy, and the hybrid of the two objective functions. The proposed Coronavirus disease optimization with chaotic map initialization for multilevel thresholding is discussed in Sect. 3. The datasets, parameter setting, performance metrics, and experimental results are discussed in Sect. 4. Finally, conclusions and future work are given in Sect. 5.

Multilevel thresholding

Image thresholding is a simple and effective method for splitting the image into regions to make the image easier to analyze. Setting the threshold value t is based on the pixel intensity of the image, where pixels whose intensity values below t are assigned to region 1, and the other pixels are assigned to region 2 [43]. If only one threshold value is needed, this is known as bi-level thresholding, where the image is divided into two regions.

pixeli,jR1if0pixeli,j<t,pixeli,jR2iftpixeli,j<L-1, 1

where pixeli,j refers to the gray level at the (i, j)th pixel, t is the value of the threshold, R1 and R2 refer to region 1 and region 2, respectively, and L refers to maximum intensity level.

On the other hand, multilevel thresholding partitions the image into several distinct regions using more than one threshold value as follows:

pixeli,jR1if0pixeli,j<t1,pixeli,jR2ift1pixeli,j<t2,pixeli,jRjiftjpixeli,j<tj+1,pixeli,jRkiftkpixeli,j<L-1, 2

where t1,t2,,tk represents a vector of different threshold values.

The result of applying bi-level versus multilevel thresholding on the Lena image is shown in Fig. 1.

Fig. 1.

Fig. 1

Bi-level and multilevel thresholding

The optimal threshold values can be obtained by maximizing a fitness function. Otsu’s method and Kapur’s entropy are two popular techniques used in thresholding. Each technique proposes a different fitness function that must be maximized to obtain the optimal threshold values. The two techniques are briefly described in the following subsections.

Otsu’s method

Otsu is a thresholding method that selects the optimal threshold by maximizing the variance value between different classes [12]. Assume that we have L intensity levels in a grayscale image, where L = 256 and a vector V of k − 1 thresholds are used to segment the image into K regions as in Eq. (2), where V = [th1, th2, …, thk − 1]. Then the best threshold is obtained by maximizing the Otsu’s fitness function as follows:

Fostu(V)=maxσb2(V) 3

where σb2 represents the between-class variance which can be expressed as follows:

σb2=k=0Kωk·μk-μT2 4

where ωk is the cumulative probability for region Rk, μk is the average intensity in region Rk and μT is the average intensity for the whole image as follows:

ωk=iRkPi,μk=iRki·Piωk,μk=i=0L-1i·Pi 5

where Pi is the probability of gray level i, which can be represented as follows:

Pi=fii=0L-1fi 6

where fi is the frequency of gray level i.

Kapur’s entropy method

Image entropy represents the compactness and separateness between image classes [13]. The Kapur method is another widely used thresholding method that aims to find the optimal threshold value by maximizing the Kapur’s entropy as follows:

th=max(Fkapur(th)) 7

where

Fkapur(th)=A0+A1,A0=-i=0th-1Piω0lnPiω0,A1=-i=thL-1Piω1lnPiω1,ω0=i=0th-1Pi,ω1=i=thL-1Pi,

where Pi is described in Eq. (6).

For multilevel thresholding, Kapur’s method can be defined as follows:

FkapurV=A0+A1++Ak-1A0=-i=0th1-1Piω0lnPiω0,ω0=i=0th1-1PiA1=-i=th1th2-1Piω1lnPiω1,ω1=i=th1th2-1PiA2=-i=th2th3-1Piω2lnPiω2,ω2=i=th2th3-1PiAk-1=-i=thk-1L-1Piωk-1lnPiωk-1,ω2=i=thk-1L-1Pi 8

The vector V refers to thresholds to be determined.

Hybrid fitness function

A hybrid fitness function calculates COVID solutions' fitness in image segmentation problems. This hybrid function is formulated by assigning weights to Otsu and Kapur functions in Eq. 9.

Fhybrid=aFOtsu+bFKapur 9

where a and b [0, 1] are weights associated with the two fitness functions and a + b = 1. The proposed hybrid fitness function optimizes Otsu and Kapur methods simultaneously and performs more efficiently.

Coronavirus disease optimization algorithm

COVIDOA is a recent evolutionary optimization algorithm inspired by the replication mechanism of Coronavirus when getting inside the human body [37]. The replication process of Coronavirus has four main stages as follows, see Fig. 2:

  1. Virus entry and uncoating

    When a human is infected with COVID, the Coronavirus particles attach to the human cell via spike protein which is one of its structural proteins [39]. After getting inside the human cell, the virus contents are released.

  2. Virus replication

    The virus tries to make more copies to hijack other human healthy cells. The virus's replication technique is called the frameshifting technique [38, 39]. Frameshifting is moving the reading frame of a protein sequence of the virus to another reading frame that leads to the creation of many new viral proteins that are then merged to form new virus particles. The frameshifting technique is presented in Fig. 3. As shown in the figure, in the replication process, the virus's mRNA (messenger Ribonucleic Acid) is translated into viral proteins by reading tri-nucleotides (e.g., ACU). Each tri-nucleotide is translated into single amino acid. Thus, shifting (backward or forward) the reading frame of the nucleotides sequence by any number (not divisible by 3) will create different sequences that will be translated into different viral proteins. According to this technique, the virus can create millions of new particles than will damage millions of human cells. There are many types of frameshifting techniques; however, the most popular is +1 frameshifting as follows [40]:

    • +1 frameshifting technique

    The elements of the parent virus particle (parent solution) are moved in the right direction by 1 step. As a result of +1 frameshifting, the first element is lost. In the proposed algorithm; the first element is set a random value in the range [Lb, Ub] as follows:
    Sk1=randLb,Ub, 10
    Sk2:D=P1:D-1, 11
    where P refers to the parent solution, Sk is the kth generated viral protein, D is the problem dimension, and Lb and Ub are the lower and upper bounds for the variables in each solution.
  3. Virus mutation

    Coronavirus uses the mutation technique to resist the human immune system [40]. In the proposed algorithm, the mutation is applied to the previously created new virus particle (solution) to produce a new one as follows:
    Zi=rif rand0,1<MRXiotherwise 12
    where X is the solution before mutation, Z is the mutated solution, Xi and Zi are the ith element in the old and new solutions, respectively, i =1, …, D, and r is a random value in the range [Lb, Ub]. MR is the mutation rate.
  4. New virion release

    The newly created virus particle leaves the infected cell targeting new healthy cells. In the proposed algorithm, if the fitness of the new solution is better than the parent solution fitness, the parent solution is replaced by the new one. Otherwise, the parent solution remains. The pseudocode of the COVID algorithm is as follows:

Fig. 2.

Fig. 2

Coronavirus replication lifecycle

Fig. 3.

Fig. 3

Frameshifting technique

COVIDOA with a chaotic map

In COVIDOA, each virus particle represents a solution in the population. The dimension of each solution is equal to the number of threshold values needed for segmentation plus 1. The first population solution is initialized randomly, where each element in the solution vector is assigned a value within the range of pixel intensities of the grayscale image. For the remaining solutions in the population, the initialization is done using chaotic maps to generate a uniformly distributed initial population [44, 45]. We used eight chaotic maps to enhance the quality of the initial population.

In the chaotic initialization, given the solution vector Sj. The solution vector Sj+1 can be driven by the following formula:

  1. Sine Chaotic map:
    Sj+1=q4sinπSj,q=4 13
  2. Singer Chaotic Map:
    Sj+1=β7.86Sj-23.31Sj2+28.75Sj3-13.302875Sj4,β=1.07 14
  3. Sinusoidal Chaotic Map:
    Sj+1=uSj2sin(πSj),u=2.3 15
  4. Chebyshev Chaotic Map:
    Sj+1=cos(arccosSj) 16
  5. Tent Chaotic Map:
    Sj+1=Sj0.7Sj<0.71031-SjSj0.7 17
  6. Logistic Chaotic Map:
    Sj+1=uSj1-Sj,u=4 18
  7. Iterative Chaotic Map:
    Sj+1=sinuπSj,u=0.7 19
  8. Gauss/Mouse Chaotic Map:
    Sj+1=e-αSj2+β,α=4.90,β=-0.58 20

Chaotic initialization is a modern technique used to ensure that the solutions of the initial population are uniformly distributed, which helps avoid the problem of getting stuck into local minima or maxima [46]. As discussed in the results section, we found that the Logistic chaotic map is the one that gives the best results.

Results and discussion

In this section, we firstly provide a brief description of the datasets used for testing. Then, we show the parameter settings for the proposed and state-of-the-art algorithms. After that, the evaluation metrics used for comparing the results are explained in detail. Finally, we present the numerical results of running the proposed algorithm and its peers.

Datasets

Six satellite images are selected from “NASA Visible Earth” [47] to prove the efficiency of the proposed algorithm in image segmentation. In addition to six benchmark images. These images have many variations, such as size and resolution. The test images and their histograms are shown in Table 1.

Table 1.

Test images and their histograms

graphic file with name 521_2022_7718_Tab1_HTML.jpg

Parameter setting

The results of multilevel thresholding using the proposed algorithm are compared with eleven well-known metaheuristic algorithms. In comparison, we focused on the recently proposed algorithms to prove the superiority of the proposed algorithm. These algorithms are: Harris Hawks Optimization algorithm (HHO) [48], Reptile Search Algorithm (RSA) [49], Seagull Optimization algorithm (SOA) [50], Black Widow Optimization Algorithm (BWOA) [51], Marine Predators Algorithm (MPA) [52], Aquila optimizer (AO) [53], Slime Mold Algorithm (SMA) [54], Arithmetic Optimization Algorithm (AOA) [55], Jellyfish Optimization algorithm (JOA) [56], Moth–flame optimization algorithm (MFO) [57], Sine Cosine Algorithm (SCA) [58]. The reasons for selecting these algorithms for comparison are as follows:

  • They have proved their superior performance in optimization problems, especially image segmentation.

  • Most of them are recent and published in reputable sources.

  • Their MATLAB implementations are publicly available on the MATLAB website (https://www.mathworks.com/).

The parameters of all algorithms are set as mentioned in their original papers. In all algorithms, the population size is 50, and the maximum number of iterations to 100. All algorithms were run 20 times, and the best-obtained results are reported in the results section.

Performance metrics

The performance of the proposed algorithm is evaluated using several performance metrics, including Mean Square Error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), Feature Similarity Index (FSIM), Normalized Correlation Coefficient (NCC), and best fitness in addition to the Wilcoxon rank-sum test.

PSNR, SSIM, and NCC are used to measure the quality of the segmented images, while best fitness is measured to prove the ability of the proposed algorithm to find optimum solutions, and the Wilcoxon rank-sum test is utilized to prove the statistical significance of the proposed algorithm as follows:

  1. Best fitness

    The maximum fitness is obtained from running the proposed ad state-of-the-art algorithms with the proposed hybrid fitness function equations (9). By trial and error approach, we found that the proposed algorithm yields better results at a = 0.5 and b = 0.5.

  2. Mean Square Error (MSE)

    MSE is commonly used to estimate the error between the original and segmented images. It can be calculated as follows:
    MSE=1M×Ni=1Mj=1NFi,j-f(i,j)2 21

    F(i, j) is the original image, f(i, j) is the segmented image, and M×N refers to the image size.

  3. Peak signal-to-noise ratio (PSNR)

    PSNR is commonly used to quantify the quality of images. It refers to the ratio between the segmented image power and noise power
    PSNR=10Log102552MSE 22
  4. Structural similarity index (SSIM)

    SSIM is used to quantify the structural similarity between the original and segmented images as follows:
    SSIM(F,f)=(2μFμf+C1)(2σFf+C2)(μF2μf2+C1)(σF2σf2+C2) 23
    where F and f are the original and segmented images. μF and μf are the mean intensity of F and f, respectively. σF2 and σf2 are the variance of F and f, respectively. C1 = 6.502 and C2 = 58.522.
  5. Feature similarity index (FSIM)

    FSIM is used to measure the similarity in the structure of the two images as follows:
    FSIMF,f=xΩSLx·PCm(x)xΩPCm(x) 24
    where SLx refers to the similarity between the two images, PC is the phase congruence, and Ω refers to the spatial domain of the image. The maximum value of the FSIM that corresponds to complete similarity is 1.
  6. Normalized correlation coefficient (NCC)

    NCC is used to measure the extent to which two images are related. The absolute value of NCC ranges from 0 to 1, where 0 indicates that the two images have no relation and 1 indicates the strongest possible relation. The higher the absolute value of NCC, the stronger the relationship between the two images. NCC between the original and segmented images F(i, j) and f(i, j) is calculated as follows:
    NCC=i=0M-1j=0N-1(F(i,i)×f(i,j))i=0M-1j=0N-1(F(i,i)×F(i,j))×i=0M-1j=0N-1(f(i,i)×f(i,j)) 25
  7. Wilcoxon rank-sum test

    The Wilcoxon rank-sum test is a nonparametric statistical test used to measure the statistical difference between two related methods [59]. We conducted the Wilcoxon rank-sum test with a 5% significance level to prove the proposed algorithm's statistical significance compared to the other algorithms.

Experimental results

This section presents the numerical results of running the proposed algorithm to select the optimum threshold values using the proposed hybrid fitness function with chaotic initialization. These results are compared with the state-of-the-art algorithms in best fitness, MSE, PSNR, SSIM, FSIM, NCC, and Wilcoxon rank-sum test. The experiments have been performed using 6, 10, 14, 18, 22, and 26 thresholds.

Firstly, a comparison between the results of the various chaotic maps is conducted to demonstrate that the logistic map gives the best results among the others, as shown in Table 2, where k represents the number of threshold values. The results in the table are calculated by taking the average value for each criterion for all the images in the two mentioned datasets. It is obvious from the table that using chaotic maps increases the diversity of the solutions and yields better results.

Table 2.

The results obtained from using different chaotic maps in the initialization phase of COVIDOA

Chaotic map K MSE PSNR SSIM FSIM NCC Fitness
No map 6 168.8419 21.4969 0.6504 0.8924 0.9782 1894.9935
10 106.5881 27.0012 0.6890 0.9566 0.9834 1928.7658
14 84.7620 28.5479 0.7705 0.9642 0.9935 1941.5097
18 60.7663 28.7492 0.7875 0.9722 0.9912 1945.4065
22 52.8740 30.6873 0.8045 0.9805 0.9928 1953.8932
26 30.1434 32.6737 0.8799 0.9810 0.9972 1958.2405
Sine 6 168.5419 22.1969 0.6604 0.8924 0.9852 1895.0965
10 106.2856 27.0572 0.7559 0.9587 0.9959 1929.3268
14 82.5727 28.7403 0.7758 0.9672 0.9972 1941.5097
18 58.0161 30.2405 0.7973 0.9791 0.9982 1949.4645
22 50.9747 31.0563 0.8129 0.9815 0.9984 1955.3632
26 29.8427 33.3797 0.8893 0.9819 0.9987 1959.4009
Singer 6 151.2242 23.1725 0.6781 0.9084 0.9874 1897.9444
10 101.0654 26.7873 0.7408 0.9486 0.9952 1928.789
14 87.9834 28.3421 0.7717 0.9684 0.9971 1940.9694
18 65.3103 29.8663 0.7918 0.9766 0.9980 1949.2349
22 55.7129 30.6173 0.8007 0.9809 0.9984 1955.1724
26 29.2908 33.4635 0.9035 0.9817 0.9987 1959.7431
Sinusoidal 6 153.5743 23.4933 0.6871 0.9163 0.9893 1899.6754
10 102.7959 27.3056 0.7541 0.9580 0.9961 1931.157
14 89.7622 28.3461 0.7706 0.9675 0.9970 1941.1573
18 61.2596 30.1179 0.7952 0.9773 0.9982 1948.9674
22 48.5882 31.1851 0.8137 0.9835 0.9986 1955.0124
26 26.5781 33.8854 0.9086 0.9829 0.9988 1960.2382
Chebyshev 6 152.2352 23.3680 0.6861 0.9132 0.9884 1899.5238
10 105.2388 26.5905 0.7511 0.9511 0.9947 1929.4676
14 78.5240 28.9274 0.7760 0.9706 0.9975 1941.7624
18 65.4571 29.9182 0.7971 0.9776 0.9981 1949.1023
22 50.1469 31.1088 0.8109 0.9822 0.9986 1955.387
26 44.1702 31.6593 0.8181 0.9851 0.9987 1960.009
Tent 6 151.6123 22.4326 0.6678 0.9032 0.9835 1896.6805
10 105.7787 26.9881 0.7495 0.9575 0.9957 1929.9373
14 85.7759 28.5388 0.7738 0.9720 0.9974 1941.6714
18 63.0602 30.0181 0.7932 0.9780 0.9982 1949.1906
22 52.6716 30.8763 0.8067 0.9824 0.9986 1955.206
26 26.8906 33.8348 0.9207 0.9846 0.9988 1960.4115
Logistic 6 153.1303 23.4859 0.6864 0.9180 0.9891 1899.3585
10 103.7412 27.1904 0.7520 0.9580 0.9960 1930.1119
14 74.1476 29.1405 0.7818 0.9742 0.9978 1942.1868
18 59.4670 30.2672 0.7981 0.9795 0.9983 1949.7015
22 51.2212 30.9980 0.8087 0.9833 0.9986 1955.3627
26 42.8955 31.7859 0.8208 0.9854 0.9988 1959.9374
Iterative 6 166.2826 22.2247 0.6631 0.8945 0.9847 1895.9168
10 111.5121 26.9058 0.7519 0.9586 0.9959 1929.6884
14 74.6758 28.9529 0.7859 0.9713 0.9973 1941.4396
18 60.6064 30.2592 0.7953 0.9779 0.9983 1949.5098
22 51.4856 31.0078 0.8123 0.9808 0.9984 1954.9514
26 44.7721 31.6008 0.8176 0.9845 0.9987 1960.1318
Gaussian 6 150.6483 23.7096 0.6915 0.9160 0.9899 1899.3918
10 117.9716 26.3555 0.7336 0.9523 0.9948 1929.4217
14 79.1685 28.5785 0.7713 0.9706 0.9971 1941.2494
18 61.5068 29.8459 0.7900 0.9755 0.9981 1948.758
22 53.2253 30.8262 0.8035 0.9814 0.9985 1954.8612
26 23.6472 34.3930 0.9258 0.9258 0.9864 0.9990

The higher PSNR, SSIM, FSIM, NCC, and fitness values and lower MSE values resulting from the chaotic logistic map demonstrate its robustness. Hence, the chaotic logistic map is utilized while performing further experiments.

Table 3 proves that the hybrid fitness function is more robust than using the Otsu or Kapur methods separately. It is clear from the table that the quality of the segmented images using COVIDOA with the hybrid fitness function is higher than Otsu and Kapur methods according to MSE, PSNR, SSIM, FSIM, and NCC values.

Table 3.

Comparison between the performance of Otsu, Kapur, and hybrid fitness function

Fitness function K MSE PSNR SSIM FSIM NCC
Otsu 6 153.7986 23.2120 0.6822 0.9143 0.9877
10 106.6566 26.8796 0.7419 0.9573 0.9955
14 73.2163 29.1834 0.7821 0.9729 0.9977
18 60.5699 30.2128 0.7971 0.9784 0.9982
22 47.8161 31.1670 0.8098 0.9834 0.9986
26 29.2131 33.4745 0.8753 0.9835 0.9987
Kapur 6 165.0680 22.6135 0.6831 0.9048 0.9870
10 166.7912 23.1803 0.7316 0.9319 0.9902
14 118.5607 26.7798 0.7461 0.9512 0.9954
18 89.7075 27.8912 0.7638 0.9564 0.9956
22 55.0984 30.7032 0.8051 0.9796 0.9984
26 54.2876 30.7673 0.8069 0.9792 0.9982
Hybrid 6 153.1303 23.4859 0.6864 0.9180 0.9891
10 103.7412 27.1904 0.7520 0.9580 0.9960
14 73.1476 29.1405 0.7818 0.9742 0.9978
18 59.4670 30.2672 0.7981 0.9795 0.9983
22 47.2212 30.9980 0.8087 0.9838 0.9986
26 25.6045 33.7859 0.8608 0.9854 0.9988

All algorithms have been applied to solve multilevel thresholding problems for both the standard and satellite images to show the effectiveness of the proposed algorithm against other proposed methods. The results for the six benchmark images are shown in Tables 4, 5, 6, 7, 8 and 9 for fitness, MSE, PSNR, SSIM, FSIM, and NCC, respectively. In contrast, the results for the six satellite images are shown in Tables 10, 11, 12, 13, 14 and 15. The values in these tables, highlighted in bold, indicate the best results.

Table 4.

The fitness results of benchmark image segmentation using hybrid fitness function for all algorithms

Image K RSA [47] SOA [48] BWOA [49] MPA [50] AO [51] SMA [52] AOA [53] JOA [54] MFO [55] HHO [46] SCA [56] Proposed COVID
Image1 6 1872.4 1878.7 1881.4 1896.1 1894.8 1899.6 1896.3 1899.6 1899.6 1899.7 1883.5 1899.8
10 1915.7 1925.2 1919.4 1915.3 1929.6 1931.1 1922.8 1929.4 1930.8 1931.0 1900.1 1931.2
14 1924.6 1927.7 1935.0 1938.7 1939.7 1941.6 1931.6 1940.6 1942.0 1940.2 1921.8 1942.1
18 1940.3 1946.8 1944.3 1948.1 1949.3 1950.1 1941.1 1948.3 1950.2 1950.2 1941.3 1949.9
22 1950.4 1952.7 1950.6 1954.1 1953.9 1955.4 1949.2 1953.9 1956.1 1956.1 1950.3 1958.9
26 1953.3 1957.2 1955.0 1959.7 1959.4 1959.6 1950.2 1958.9 1959.9 1960.9 1953.2 1960.5
Image2 6 1616.7 1628.0 1637.2 1651.5 1653.4 1656.7 1653.2 1656.2 1656.6 1656.7 1652.2 1656.7
10 1671.2 1678.0 1674.6 1674.9 1679.7 1680.4 1673.7 1677.9 1680.5 1680.4 1670.7 1680.6
14 1684.5 1686.8 1684.0 1689.8 1688.5 1690.9 1687.4 1689.7 1690.7 1690.0 1683.0 1690.9
18 1691.1 1691.2 1692.3 1697.9 1695.1 1697.4 1688.8 1696.7 1697.8 1695.8 1691.3 1698.0
22 1696.0 1698.8 1698.3 1700.6 1702.1 1702.5 1695.1 1700.9 1702.9 1701.7 1695.7 1703.1
26 1705.5 1704.5 1702.5 1703.6 1703.1 1707.2 1698.8 1706.8 1707.0 1707.3 1699.1 1707.7
Image3 6 941.15 944.71 948.23 950.34 950.00 950.43 947.88 950.12 950.45 949.21 945.85 950.34
10 977.67 979.66 978.22 984.81 988.45 989.27 981.34 985.53 986.70 988.45 985.64 989.67
14 991.60 995.73 995.45 1001.7 1001.3 1002.0 993.02 1001.4 1001.3 1001.3 998.56 1001.8
18 999.35 1002.7 1001.0 1010.9 1008.8 1009.3 1000.8 1008.4 1010.1 1008.0 1001.5 1010.2
22 1009.0 1009.2 1012.6 1018.1 1017.5 1016.8 1008.9 1009.45 1010.2 1013.5 1010 1018.9
26 1011.4 1017.0 1018.7 1020.0 1018.5 1020.1 1011.7 1011.2 1011.43 1022.0 1011.3 1023.5
Image4 6 1408.8 1431.6 1405.3 1433.0 1432.0 1432.9 1425.0 1432.8 1432.9 1433.0 1428.1 1432.7
10 1448.9 1443.4 1455.5 1475.8 1472.8 1475.8 1464.7 1474.4 1475.9 1475.9 1455.7 1478.7
14 1490.5 1486.5 1481.6 1493.7 1491.0 1491.5 1478.3 1491.7 1492.3 1491.3 1485.2 1492.5
18 1491.5 1496.3 1493.6 1499.5 1498.1 1500.1 1492.2 1499.6 1501.0 1498.9 1485.7 1501.1
22 1501.5 1499.5 1500.8 1507.8 1504.2 1507.9 1494.7 1507.5 1506.9 1507.8 1497.0 1508.1
26 1502.9 1505.4 1505.5 1513.2 1508.8 1512.9 1504.0 1511.9 1512.4 1511.6 1505.9 1513.3
Image5 6 1033.0 1032.3 1050.1 1050.2 1054.3 1051.7 1052.61 1048.35 1046.20 1054.2 1049.6 1054.4
10 1052.0 1051.8 1052.6 1052.4 1057.2 1054.1 1056.4 1052.2 1068.9 1065.5 1052.5 1057.6
14 1078.9 1082.8 1087.2 1090.3 1086.8 1086.0 1080.2 1078.4 1081.3 1088.2 1083.4 1088.2
18 1088.9 1091.2 1090.0 1096.5 1092.3 1089.3 1088.3 1081.8 1086.4 1095.6 1085.3 1096.7
22 1095.4 1098.7 1095.3 1099.0 1094.3 1094.4 1092.6 1087.3 1090.3 1100.3 1088.0 1100.2
26 1099.3 1100.2 1099.2 1102.6 1100.5 1095.3 1096.2 1093.4 1095.6 1103.4 1093.2 1103.2
Image6 6 1855.7 1872.8 1873.1 1873.8 1873.0 1871.1 1878.4 1837.8 1846.7 1873.5 1863.4 1878.5
10 1882.1 1893.3 1903.6 1903.9 1905.3 1893.8 1878.7 1899.0 1894.5 1906.1 1880.4 1906.1
14 1895.9 1916.2 1916.8 1919.8 1916.9 1909.2 1901.2 1910.0 1907.8 1919.2 1899.1 1918.2
18 1905.6 1922.5 1922.3 1926.5 1917.3 1920.3 1908.8 1924.7 1913.8 1927.5 1890.0 1928.6
22 1917.3 1928.5 1926.8 1928.8 1918.4 1927.8 1920.6 1928.9 1915.3 1931.9 1906.7 1932.5
26 1923.7 1928.4 1929.8 1931.0 1919.2 1931.1 1924.4 1931.2 1919.0 1935.1 1912.8 1934.5
Average 1506.2 1511.2 1511.6 1517.0 1515.9 1516.8 1510.2 1514.3 1514.7 1518.6 1507.1 1519.4

Table 5.

The MSE results of benchmark image segmentation using hybrid fitness function for all algorithms

Image K Algorithm
RSA SOA BWOA MPA AO SMA AOA JOA MFO HHO SCA Proposed COVID
Image1 6 154.23 159.45 165.34 147.34 152.65 153.65 176.45 157.76 155.25 156.98 169.45 148.41
10 133.10 112.85 136.24 99.51 102.81 109.12 140.15 108.31 105.86 108.74 142.65 104.23
14 110.65 88.34 89.65 78.65 80.47 85.37 122.76 86.34 79.34 77.45 103.67 76.34
18 88.94 56.84 72.23 68.87 49.58 49.93 90.47 67.11 41.28 50.56 85.07 48.30
22 67.34 43.54 65.75 58.65 45.65 34.67 76.45 53.34 39.45 43.67 67.34 32.56
26 58.50 30.39 56.99 30.77 40.69 23.93 55.32 31.49 28.05 21.84 30.88 23.56
Image2 6 233.54 248.65 244.63 259.65 242.54 234.76 253.65 255.46 230.54 216.91 254.64 215.10
10 139.96 165.35 161.12 160.41 138.22 143.53 174.94 170.24 142.36 135.71 168.90 117.44
14 61.76 101.10 71.69 59.34 80.60 73.48 76.23 60.81 61.54 68.55 112.43 57.18
18 58.23 64.63 49.64 55.74 39.65 38.65 70.45 52.65 46.34 70.05 62.63 29.85
22 55.79 40.84 42.59 44.53 37.95 31.01 66.22 42.48 31.91 36.30 36.48 27.95
26 63.15 36.52 63.19 26.98 32.29 19.66 37.82 23.45 25.61 24.00 25.87 17.06
Image3 6 176.86 175.07 177.91 169.00 171.53 169.22 161.47 170.55 167.91 171.99 163.58 167.43
10 105.34 123.56 127.65 112.56 106.35 104.64 129.45 184.35 113.83 114.24 143.54 101.34
14 90.46 90.97 83.24 71.47 80.23 67.93 96.38 177.78 87.45 72.79 112.54 64.17
18 81.59 82.33 77.01 43.87 59.45 46.06 94.01 137.46 44.02 61.36 72.82 43.59
22 73.53 59.75 47.53 41.46 44.23 39.45 72.45 125.45 40.34 39.34 86.3533 35.34
26 59.81 40.86 37.45 33.22 36.90 25.34 43.93 118.31 28.42 25.67 64.68 24.30
Image4 6 181.30 184.23 189.09 181.67 180.97 182.04 182.96 180.90 181.79 181.93 183.11 180.00
10 154.65 152.65 153.65 137.45 154.76 142.65 138.65 122.90 124.64 125.36 147.345 122.65
14 122.54 105.34 116.34 114.45 110.24 100.34 102.53 86.99 82.92 84.16 120.34 86.36
18 86.96 72.55 74.22 71.99 67.15 65.08 85.00 66.28 59.57 67.41 99.34 55.99
22 62.30 65.22 70.01 42.40 57.19 39.24 86.16 40.11 42.27 40.90 78.34 38.22
26 58.44 49.26 51.27 31.71 44.47 28.07 45.56 33.56 30.97 32.21 51.05 26.23
Image5 6 141.90 157.28 169.74 152.86 153.74 150.53 152.37 206.52 239.85 153.04 165.23 115.91
10 99.34 110.43 114.24 94.23 89.34 122.54 102.34 144.31 225.34 90.43 142.45 85.32
14 80.43 82.43 65.34 45.71 59.65 80.34 77.52 123.34 213.06 57.61 117.71 55.11
18 71.42 68.72 50.26 40.53 48.53 67.87 64.24 104.31 195.23 45.34 96.34 43.54
22 57.76 44.35 39.76 38.43 42.53 53.23 51.34 81.35 168.43 39.33 82.53 38.23
26 41.98 29.65 27.13 25.26 34.22 42.45 40.59 82.92 147.73 27.37 66.05 27.96
Image6 6 198.71 195.46 199.33 201.92 192.74 205.87 199.33 213.90 221.96 220.35 234.875 210.34
10 176.45 165.34 149.93 154.23 173.75 168.76 177.44 176.54 198.76 143.09 176.26 140.07
14 134.35 116.33 97.72 104.25 125.30 123.26 131.73 125.50 170.02 102.47 115.16 83.40
18 103.65 92.67 88.65 83.72 92.65 99.54 105.45 95.3422 132.43 78.46 89.34 55.34
22 66.34 64.56 84.64 48.23 90.34 85.36 95.23 69.2345 103.46 48.23 82.65 45.34
26 43.57 40.24 51.97 25.73 87.74 58.76 64.53 55.0519 82.38 26.72 80.98 23.50
Average 102.63 97.71 98.97 87.68 92.97 90.73 106.71 112.01 113.61 85.01 112.01 76.87

Table 6.

The PSNR results of benchmark image segmentation using hybrid fitness function for all algorithms

Image K Algorithm
RSA SOA BWOA MPA AO SMA AOA JOA MFO HHO SCA Proposed COVID
Image1 6 20.64 21.54 21.53 23.54 23.11 23.54 21.56 22.56 23.14 23.22 24.68 27.71
10 24.12 25.96 25.03 27.15 27.00 27.08 25.53 26.92 27.21 27.06 25.98 28.23
14 26.32 29.16 27.54 28.64 29.45 29.67 26.45 27.53 28.89 28.45 26.87 29.74
18 28.04 30.29 29.09 29.33 31.29 32.03 28.19 30.79 31.91 31.88 28.31 30.94
22 29.54 31.43 30.12 30.67 30.01 33.53 29.54 31.53 32.53 32.53 30.53 32.84
26 30.16 33.15 30.49 33.24 32.03 34.50 30.57 32.98 33.64 34.73 33.01 34.80
Image2 6 20.21 20.57 20.42 20.78 21.35 20.454 18.45 20.17 20.96 20.72 19.53 20.95
10 24.24 24.71 24.74 25.02 25.82 24.95 22.95 24.76 25.65 25.76 24.00 26.37
14 28.55 27.54 28.24 30.10 28.50 29.27 28.84 29.97 29.88 29.46 26.51 30.25
18 29.56 29.45 28.56 31.02 30.53 31.46 28.22 30.76 31.56 29.60 29.56 33.26
22 30.18 31.09 28.81 31.52 32.09 33.21 29.49 31.79 33.00 32.40 26.73 33.62
26 27.42 32.36 30.04 33.76 32.66 35.17 31.41 34.42 33.99 34.32 30.00 35.80
Image3 6 21.67 21.82 21.13 22.22 22.14 22.20 20.88 20.16 22.31 22.09 22.14 22.30
10 25.54 25.55 24.89 25.88 25.43 25.75 23.63 22.56 26.69 26.58 23.29 26.78
14 27.83 27.77 28.21 29.49 29.55 29.65 27.01 23.13 29.77 29.37 26.44 29.78
18 27.88 28.73 29.12 31.73 30.35 31.42 27.78 24.41 31.65 30.20 28.56 31.68
22 28.45 30.54 30.89 32.23 31.34 32.67 28.94 25.77 32.68 32.78 29.21 33.22
26 29.91 31.99 32.39 32.91 32.42 33.15 30.99 28.37 33.95 34.03 29.98 34.27
Image4 6 19.69 20.48 19.86 20.48 20.61 20.55 20.46 20.56 20.53 20.45 20.12 20.63
10 22.71 23.67 22.78 23.62 23.89 24.94 22.54 24.63 24.55 24.34 22.84 24.64
14 24.78 25.39 27.45 26.39 26.97 27.10 26.43 28.42 28.38 28.55 25.43 28.38
18 27.66 28.65 30.30 29.55 29.46 29.98 28.14 29.86 29.84 29.78 27.91 30.52
22 29.86 29.77 29.29 31.85 30.54 32.19 27.89 32.07 31.81 32.01 28.22 32.20
26 30.05 30.92 29.45 33.11 31.63 33.64 31.39 32.87 33.22 33.04 30.10 33.92
Image5 6 23.69 23.05 20.27 23.12 23.02 23.53 23.11 19.89 13.17 23.15 22.54 24.12
10 25.44 25.68 20.87 27.33 26.49 26.37 25.78 20.56 16.97 27.40 23.01 27.45
14 27.54 27.80 21.14 30.88 29.51 28.34 27.02 23.25 18.54 30.20 23.56 29.84
18 29.16 30.60 21.23 31.67 30.34 30.15 29.01 25.98 20.44 31.66 25.76 31.87
22 30.43 31.44 21.54 32.71 31.87 31.57 30.37 27.41 21.76 32.44 28.21 32.75
26 31.78 32.80 22.47 34.10 32.65 32.43 31.40 28.05 23.09 33.75 29.57 33.57
Image6 6 16.74 17.44 17.20 17.16 17.48 17.69 17.37 18.44 18.04 19.14 14.24 19.32
10 18.34 18.81 20.04 19.43 8.78 18.44 19.21 20.22 18.71 20.45 15.40 20.67
14 21.08 20.21 22.83 21.33 19.88 19.78 20.92 21.85 19.48 22.76 22.79 25.09
18 25.85 25.31 23.42 25.97 22.07 22.63 24.84 24.60 22.65 25.98 23.85 26.68
22 27.71 27.22 25.11 27.64 24.62 24.57 26.89 27.45 25.34 27.76 25.24 27.89
26 31.60 31.83 25.99 30.29 27.16 28.89 29.92 29.11 28.26 32.75 27.74 31.97
Average 26.23 27.07 25.34 27.94 27.00 27.84 26.19 26.21 26.22 28.35 25.60 29.00

Table 7.

The SSIM results of benchmark image segmentation using hybrid fitness function for all algorithms

Image K Algorithm
RSA SOA BWOA MPA AO SMA AOA JOA MFO HHO SCA Proposed COVID
Image1 6 0.6478 0.6679 0.6437 0.6856 0.6740 0.6902 0.6478 0.6511 0.6547 0.6876 0.6805 0.6934
10 0.7161 0.8293 0.7198 0.7580 0.7505 0.7612 0.7329 0.7524 0.7592 0.7574 0.7167 0.7596
14 0.7432 0.8422 0.8156 0.7710 0.8239 0.8349 0.7783 0.8490 0.8657 0.8783 0.7750 0.8867
18 0.7713 0.8590 0.8557 0.7864 0.8720 0.9110 0.7924 0.8976 0.9025 0.9208 0.7971 0.9294
22 0.8002 0.8867 0.9053 0.8809 0.8890 0.9255 0.8089 0.9278 0.9100 0.9330 0.9217 0.9321
26 0.8152 0.9195 0.92278 0.9322 0.8936 0.9438 0.8224 0.9368 0.9296 0.9501 0.9321 0.9412
Image2 6 0.9790 0.8021 0.8066 0.7989 0.8067 0.8110 0.7867 0.7726 0.8092 0.8122 0.7879 0.8119
10 0.8616 0.8737 0.8765 0.8638 0.8690 0.8975 0.8738 0.8567 0.8941 0.8602 0.8778 0.8975
14 0.8878 0.9118 0.9310 0.9168 0.9368 0.9302 0.9045 0.9186 0.9341 0.9299 0.9011 0.9446
18 0.8978 0.9255 0.9322 0.9243 0.9421 0.9438 0.9214 0.9276 0.9435 0.9430 0.9092 0.9559
22 0.9037 0.9461 0.9354 0.9319 0.9526 0.9570 0.9376 0.9490 0.9508 0.9440 0.9201 0.9651
26 0.9387 0.9537 0.9383 0.9569 0.9495 0.9671 0.9197 0.9585 0.9678 0.9537 0.9231 0.9708
Image3 6 0.7421 0.7524 0.7359 0.7605 0.7600 0.7606 0.7148 0.7572 0.7619 0.7589 0.7659 0.7604
10 0.8043 0.8122 0.8155 0.8623 0.8381 0.8477 0.7834 0.7790 0.8719 0.8761 0.8452 0.8811
14 0.8815 0.8882 0.8959 0.9167 0.9032 0.9195 0.8744 0.7909 0.9177 0.9168 0.8977 0.9178
18 0.8953 0.9022 0.9104 0.9445 0.9231 0.9421 0.8906 0.8029 0.9395 0.9293 0.9040 0.9404
22 0.9149 0.9236 0.9378 0.9448 0.9422 0.9544 0.9108 0.8111 0.8546 0.9521 0.9100 0.9548
26 0.9224 0.9367 0.9453 0.9538 0.9505 0.9648 0.9271 0.8380 0.8695 0.9628 0.9223 0.9650
Image4 6 0.7817 0.7466 0.7565 0.7468 0.7483 0.7496 0.7459 0.7468 0.7508 0.7472 0.7277 0.7497
10 0.8548 0.8773 0.8256 0.8534 0.8611 0.8802 0.8624 0.9107 0.9117 0.9120 0.8517 0.9212
14 0.8978 0.9182 0.9089 0.9128 0.9048 0.9367 0.8948 0.9319 0.9356 0.9359 0.9115 0.9369
18 0.9154 0.9366 0.9315 0.9483 0.9399 0.9581 0.9210 0.9512 0.9459 0.9512 0.9241 0.9544
22 0.9433 0.9445 0.9404 0.9663 0.9558 0.9682 0.9212 0.9652 0.9665 0.9686 0.9376 0.9694
26 0.9482 0.9570 0.9356 0.9743 0.9623 0.9760 0.9571 0.9724 0.9734 0.9738 0.9520 0.9762
Image5 6 0.8200 0.8149 0.7229 0.8117 0.8101 0.8102 0.8174 0.7622 0.7187 0.8123 0.8185 0.8200
10 0.9005 0.8945 0.7423 0.9012 0.8898 0.8873 0.8789 0.7790 0.8217 0.9012 0.8271 0.9103
14 0.9178 0.8898 0.7656 0.9336 0.9241 0.8980 0.8802 0.7909 0.8289 0.9218 0.8576 0.9284
18 0.9306 0.9168 0.7847 0.9390 0.9285 0.9143 0.9155 0.8867 0.83 0.9356 0.9231 0.9348
22 0.9403 0.9255 0.9143 0.9450 0.9377 0.9252 0.9214 0.9045 0.8442 0.9453 0.9401 0.9520
26 0.9454 0.9435 0.9226 0.9540 0.9480 0.9410 0.9370 0.9114 0.8513 0.9507 0.9460 0.9583
Image6 6 0.4321 0.4556 0.4516 0.4510 0.4603 0.6710 0.4746 0.6245 0.6288 0.6028 0.5786 0.6391
10 0.5514 0.5329 0.5901 0.5484 0.5021 0.6793 0.6088 0.6571 0.6664 0.6149 0.6176 0.6985
14 0.6518 0.6706 0.7308 0.6720 0.6006 0.7921 0.6500 0.7375 0.6892 0.6868 0.7676 0.7927
18 0.8955 0.8562 0.7634 0.7065 0.7108 0.8875 0.8141 0.8522 0.8210 0.9075 0.8018 0.9088
22 0.9120 0.9014 0.7890 0.8840 0.8078 0.9101 0.8572 0.9005 0.8670 0.9275 0.8378 0.9200
26 0.9178 0.9289 0.8234 0.9312 0.8789 0.9120 0.8946 0.9115 0.8818 0.9378 0.8673 0.9380
Average 0.8411 0.8539 0.8284 0.8519 0.8457 0.8794 0.8327 0.8436 0.8519 0.8777 0.8465 0.8893

Table 8.

The FSIM results of benchmark image segmentation using hybrid fitness function for all algorithms

Image K Algorithm
RSA SOA BWOA MPA AO SMA AOA JOA MFO HHO SCA Proposed COVID
Image1 6 0.8859 0.9055 0.8953 0.9177 0.9145 0.9121 0.8982 0.9102 0.9186 0.9111 0.9067 0.9186
10 0.9238 0.9397 0.9263 0.9591 0.9537 0.9549 0.9373 0.9542 0.9590 0.9589 0.9278 0.9592
14 0.9443 0.9564 0.9459 0.9543 0.9522 0.9587 0.9433 0.9565 0.9623 0.9645 0.9367 0.9654
18 0.9598 0.9662 0.9627 0.9760 0.9749 0.9796 0.9627 0.9763 0.9791 0.9814 0.9523 0.9830
22 0.9712 0.9763 0.9677 0.9801 0.9799 0.9801 0.9787 0.9823 0.9810 0.9859 0.9789 0.9855
26 0.9751 0.9801 0.9689 0.9853 0.9830 0.9873 0.9769 0.9853 0.9833 0.9894 0.9815 0.9900
Image2 6 0.8472 0.8606 0.8567 0.8648 0.8870 0.8812 0.8571 0.8634 0.8781 0.8896 0.8688 0.8868
10 0.9148 0.9463 0.9311 0.9461 0.9516 0.9608 0.9338 0.9473 0.9586 0.9442 0.9298 0.9622
14 0.9382 0.9633 0.9672 0.9716 0.9780 0.9779 0.9661 0.9745 0.9737 0.9765 0.9560 0.9808
18 0.9531 0.9621 0.9688 0.9798 0.9715 0.9769 0.9703 0.9789 0.9766 0.9769 0.9623 0.9882
22 0.9665 0.9714 0.9728 0.9821 0.9858 0.9899 0.9743 0.9865 0.9855 0.9802 0.9676 0.9908
26 0.9736 0.9819 0.9811 0.9898 0.9805 0.9921 0.9614 0.9912 0.9910 0.9898 0.9663 0.9924
Image3 6 0.9011 0.9003 0.8939 0.9054 0.9078 0.9059 0.8748 0.8001 0.9061 0.9074 0.8998 0.9165
10 0.9351 0.9377 0.9378 0.9537 0.9473 0.9579 0.9234 0.8724 0.9590 0.9677 0.9358 0.9677
14 0.9651 0.9658 0.9657 0.9827 0.9784 0.9820 0.9614 0.9053 0.9621 0.9816 0.9564 0.9812
18 0.9688 0.9763 0.9783 0.9890 0.9849 0.9884 0.9684 0.9198 0.9668 0.9850 0.9647 0.9892
22 0.9780 0.9817 0.9826 0.9912 0.9841 0.9911 0.9715 0.9194 0.9720 0.9933 0.9723 0.9928
26 0.9805 0.9873 0.9897 0.9920 0.9886 0.9933 0.9770 0.9208 0.9854 0.9951 0.9790 0.9955
Image4 6 0.9088 0.9141 0.9140 0.9128 0.9175 0.9135 0.9110 0.9175 0.9116 0.9106 0.9102 0.9198
10 0.9378 0.9437 0.9401 0.9545 0.9522 0.9512 0.9403 0.9457 0.9418 0.9532 0.9311 0.9558
14 0.9522 0.9544 0.9573 0.9779 0.9721 0.9699 0.9687 0.9839 0.9830 0.9831 0.9662 0.9849
18 0.9737 0.9762 0.9758 0.9911 0.9844 0.9867 0.9800 0.9901 0.9874 0.9886 0.9699 0.9918
22 0.9872 0.9862 0.9819 0.9941 0.9901 0.9941 0.9787 0.9923 0.9911 0.9940 0.9762 0.9944
26 0.9857 0.9880 0.9791 0.9955 0.9917 0.9953 0.9872 0.9956 0.9946 0.9946 0.9787 0.9956
Image5 6 0.9082 0.9082 0.8523 0.9072 0.9055 0.9070 0.9078 0.8867 0.7758 0.9079 0.9055 0.9219
10 0.8911 0.9101 0.8831 0.9519 0.9552 0.9485 0.9388 0.8895 0.8476 0.9432 0.9134 0.9601
14 0.9575 0.9576 0.9678 0.9800 0.9700 0.9623 0.9412 0.8933 0.8528 0.9770 0.9394 0.9744
18 0.9705 0.9612 0.9727 0.9820 0.9734 0.9697 0.9712 0.9411 0.8832 0.9780 0.9532 0.9824
22 0.9720 0.9745 0.9798 0.9880 0.9783 0.9717 0.9732 0.9424 0.9000 0.9810 0.9680 0.9856
26 0.9731 0.9814 0.9825 0.9900 0.9832 0.9771 0.9783 0.9477 0.9018 0.9895 0.9712 0.9900
Image6 6 0.8191 0.8124 0.8138 0.8102 0.8147 0.8176 0.7919 0.7783 0.7527 0.8201 0.7034 0.8240
10 0.8034 0.8697 0.8491 0.8501 0.8552 0.8843 0.8158 0.7800 0.8078 0.8461 0.7265 0.8951
14 0.8177 0.8837 0.8804 0.8907 0.8751 0.9053 0.8371 0.7826 0.8290 0.8887 0.8236 0.9086
18 0.8855 0.8993 0.8810 0.9027 0.8762 0.9101 0.8509 0.8078 0.9309 0.9054 0.8433 0.9189
22 0.9246 0.9289 0.8829 0.9318 0.8992 0.9248 0.8834 0.8356 0.8401 0.9290 0.8836 0.9322
26 0.9559 0.9593 0.8885 0.9570 0.9278 0.9345 0.9503 0.9397 0.9346 0.9560 0.9014 0.9574
Average 0.9335 0.9435 0.9354 0.9524 0.9479 0.9526 0.9345 0.9192 0.9267 0.9534 0.9252 0.9594

Table 9.

The NCC results of standard image segmentation using hybrid fitness function for all algorithms

Image K Algorithm
RSA SOA BWOA MPA AO SMA AOA JOA MFO HHO SCA Proposed COVID
Image1 6 0.9777 0.9782 0.9820 0.9890 0.9938 0.9892 0.9883 0.9895 0.9905 0.9879 0.9835 0.9905
10 0.9889 0.9926 0.9920 0.9960 0.9955 0.9960 0.9944 0.9956 0.9960 0.9959 0.9940 0.9960
14 0.9920 0.9944 0.9935 0.9974 0.9968 0.9965 0.9959 0.9967 0.9973 0.9978 0.9945 0.9980
18 0.9960 0.9972 0.9962 0.9980 0.9980 0.9982 0.9964 0.9979 0.9982 0.9983 0.9958 0.9985
22 0.9966 0.9979 0.9968 0.9983 0.9982 0.9985 0.9975 0.9980 0.9965 0.9986 0.9969 0.9989
26 0.9975 0.9984 0.9972 0.9987 0.9985 0.9990 0.9981 0.9984 0.9988 0.9990 0.9982 0.9991
Image2 6 0.9844 0.9878 0.9872 0.9875 0.9874 0.9876 0.9831 0.9866 0.9868 0.9860 0.9859 0.9872
10 0.9920 0.9936 0.9930 0.9936 0.9936 0.9932 0.9915 0.9939 0.9937 0.9937 0.9933 0.9943
14 0.9936 0.9961 0.9954 0.9973 0.9967 0.9975 0.9955 0.9975 0.9976 0.9976 0.9951 0.9976
18 0.9952 0.9968 0.9960 0.9977 0.9972 0.9982 0.9960 0.9980 0.9981 0.9981 0.9964 0.9984
22 0.9970 0.9975 0.9967 0.9981 0.9980 0.9989 0.9969 0.9984 0.9987 0.9979 0.9955 0.9989
26 0.9956 0.9981 0.9978 0.9986 0.9979 0.9992 0.9964 0.9989 0.9987 0.9990 0.9970 0.9992
Image3 6 0.9707 0.9707 0.9655 0.9731 0.9734 0.9732 0.9626 0.9320 0.9728 0.9728 0.9686 0.9769
10 0.9870 0.9802 0.9771 0.9842 0.9828 0.9842 0.0801 0.9539 0.9840 0.9835 0.9799 0.9843
14 0.9909 0.9903 0.9912 0.9946 0.9932 0.9946 0.9884 0.9735 0.9875 0.9943 0.9892 0.9945
18 0.9912 0.9930 0.9936 0.9965 0.9953 0.9963 0.9907 0.9745 0.9890 0.9953 0.9910 0.9967
22 0.9932 0.9953 0.9960 0.9968 0.9961 0.9969 0.9932 0.9756 0.9933 0.9968 0.9926 0.9970
26 0.9935 0.9961 0.9967 0.9973 0.9964 0.9977 0.9945 0.9789 0.9966 0.9980 0.9939 0.9979
Image4 6 0.9740 0.9733 0.9722 0.9717 0.9735 0.9725 0.9718 0.9734 0.9718 0.9714 0.9711 0.9742
10 0.9815 0.9862 0.9871 0.9834 0.9855 0.9867 0.9823 0.9846 0.9860 0.9880 0.9823 0.9884
14 0.9901 0.9921 0.9924 0.9948 0.9944 0.9959 0.9930 0.9954 0.9954 0.9954 0.9908 0.9957
18 0.9927 0.9944 0.9943 0.9966 0.9952 0.9970 0.9936 0.9966 0.9964 0.9967 0.9936 0.9970
22 0.9956 0.9957 0.9950 0.9979 0.9968 0.9981 0.9938 0.9976 0.9977 0.9980 0.9948 0.9980
26 0.9955 0.9966 0.9940 0.9984 0.9974 0.9985 0.9967 0.9982 0.9983 0.9984 0.9954 0.9985
Image5 6 0.9847 0.9845 0.9663 0.9828 0.9819 0.9845 0.9834 0.9697 0.9002 0.9833 0.9754 0.9862
10 0.9889 0.9902 0.9912 0.9924 0.9912 0.9910 0.9883 0.9747 0.9281 0.9897 0.9815 0.9924
14 0.9921 0.9938 0.9940 0.9963 0.9951 0.9924 0.9914 0.9795 0.9577 0.9957 0.9753 0.9963
18 0.9936 0.9943 0.9944 0.9966 0.9950 0.9930 0.9934 0.9824 0.9678 0.9960 0.9798 0.9968
22 0.9943 0.9953 0.9956 0.9970 0.9961 0.9945 0.9953 0.9874 0.9754 0.9970 0.9862 0.9972
26 0.9957 0.9965 0.9967 0.9980 0.9972 0.9957 0.9964 0.9910 0.9801 0.9979 0.9938 0.9976
Image6 6 0.9732 0.9782 0.9758 0.9761 0.9765 0.9701 0.9710 0.9705 0.9673 0.9754 0.8635 0.9788
10 0.957 0.9778 0.9769 0.9730 0.9775 0.9748 0.9731 0.9722 0.9712 0.9767 0.8718 0.9819
14 0.9785 0.9794 0.9791 0.9778 0.9789 0.9787 0.9755 0.9734 0.9779 0.9786 0.9807 0.9870
18 0.9860 0.9884 0.9842 0.9797 0.9760 0.9862 0.9826 0.9847 0.9856 0.9876 0.9852 0.9924
22 0.9950 0.9951 0.9867 0.9945 0.9912 0.9938 0.9944 0.9933 0.9932 0.9950 0.9883 0.9953
26 0.9977 0.9976 0.9885 0.9974 0.9937 0.9958 0.9974 0.9958 0.9959 0.9972 0.9936 0.9974
Average 0.9888 0.9904 0.9891 0.9915 0.9911 0.9914 0.9642 0.9849 0.9838 0.9918 0.9817 0.9932

Table 10.

The fitness results of satellite image segmentation using hybrid fitness function for all algorithms

Image K Algorithm
RSA SOA BWOA MPA AO SMA AOA JOA MFO HHO SCA Proposed COVID
Sat_img1 6 873.5 881.3 857.0 883.1 882.1 883.3 879.7 883.1 883.2 883.1 874.1 883.3
10 899.3 915.3 917.3 921.0 919.3 921.6 899.3 921.5 921.7 920.5 910.1 921.9
14 916.8 925.6 930.7 933.8 934.1 935.8 932.1 935.8 936.6 936.4 924.5 936.5
18 935.2 939.2 936.9 945.6 944.7 945.1 934.3 944.7 945.2 944.7 935.7 945.5
22 940.3 944.5 942.4 949.5 948.3 950.4 939.4 950.3 951.4 952.1 942.4 951.9
26 946.2 950.0 949.7 954.0 954.1 955.1 947.7 955.4 956.5 955.9 946.9 956.9
Sat_img2 6 866.5 874.1 876.2 876.5 875.1 872.5 872.6 874.5 875.2 875.3 871.1 876.1
10 876.3 890.4 892.5 897.1 893.8 891.5 885.5 892.5 893.6 894.2 886.3 895.5
14 898.1 901.9 904.1 905.9 905.3 901.5 897.2 902.5 905.5 905.8 898.2 905.9
18 906.7 909.9 909.2 911.2 911.4 906.3 904.0 905.5 909.2 908.6 904.9 911.8
22 912.4 914.3 916.4 917.6 918.3 916.3 911.4 910.4 915.6 918.5 915.1 918.5
26 916.4 918.1 920.1 924.6 921.7 920.5 916.7 916.5 920.6 923.8 917.2 922.5
Sat_img3 6 1878.5 1900.2 1891.5 1904.1 1903.8 1903.5 1900.9 1903.7 1903.8 1903.8 1895.1 1903.8
10 1923.4 1922.1 1933.2 1933.5 1933.3 1931.6 1924.4 1931.5 1932.5 1931.6 1923.5 1933.8
14 1958.4 1951.3 1948.3 1957.2 1951.3 1957.1 1944.3 1952.8 1957.1 1955.9 1940.9 1957.5
18 1957.8 1961.4 1959.6 1965.9 1963.4 1966.5 1952.4 1964.7 1966.2 1965.7 1960.5 1966.5
22 1962.5 1967.4 1968.3 1972.6 1972.5 1972.8 1960.5 1972.1 1972.5 1972.6 1.9652 1973.5
26 1969.7 1971.8 1972.3 1975.6 1976.9 1977.7 1968.7 1977.3 1977.6 1977.2 1971.1 1978.1
Sat_img4 6 4329.4 4328.9 4329.4 4332.4 4330.1 4332.3 4321.9 4332.3 4332.4 4332.2 4326.1 4332.7
10 4357.4 4355.4 4358.4 4363.3 4361.4 4366.2 4352.6 4366.3 4366.4 4368.0 4359.3 4366.7
14 4373.5 4375.6 4375.7 4380.1 4377.4 4380.9 4368.7 4380.1 4381.3 4380.2 4372.5 4381.7
18 4380.6 4384.7 4378.6 4387.8 4386.2 4387.1 4380.9 4388.5 4388.5 4389.7 4382.8 4388.7
22 4388.4 4390.4 4389.1 4393.6 4392.5 4394.4 4388.5 4394.5 4394.7 4394.7 4387.8 4395.0
26 4391.2 4396.6 4390.8 4397.6 4397.3 4399.4 4390.7 4399.2 4399.5 4399.5 4392.8 4399.9
Sat_img5 6 1061.2 1075.9 1074.5 1077.4 1077.3 1077.4 1073.3 1077.2 1077.4 1077.5 1069.9 1077.4
10 1104.4 1108.3 1111.3 1115.8 1115.5 1115.5 1108.4 1115.5 1115.7 1115.8 1104.0 1116.1
14 1118.3 1127.4 1123.8 1129.4 1130.3 1131.0 1119.6 1130.1 1130.5 1131.1 1123.0 1131.5
18 1127.9 1135.4 1133.9 1138.5 1137.6 1148.4 1131.0 1139.5 1139.4 1139.1 1134.1 1139.5
22 1124.4 1141.6 1142.4 1145.1 1144.3 1146.3 1141.4 1145.3 1145.4 1146.1 1136.9 1145.9
26 1136.3 1144.5 1146.4 1147.9 1147.6 1150.4 1142.7 1150.4 1150.4 1150.6 1140.8 1150.9
Sat_img6 6 1672.4 1682.3 1672.5 1682.8 1682.4 1682.7 1677.9 1682.6 1682.8 1682.3 1643.4 1682.8
10 1722.4 1727.3 1724.3 1730.6 1730.1 1731.1 1728.4 1731.1 1731.2 1730.5 1712.3 1733.3
14 1731.4 1739.4 1736.0 1744.0 1745.9 1747.2 1737.0 1746.5 1747.1 1747.1 1740.1 1747.5
18 1742.3 1750.5 1752.2 1755.8 1752.4 1754.3 1751.7 1755.9 1756.1 1755.3 1743.3 1757.4
22 1748.4 1758.4 1760.3 1763.3 1762.8 1763.3 1762.5 1765.1 1762.4 1762.6 1751.7 1767.3
26 1758.0 1761.6 1760.3 1765.9 1764.2 1764.5 1756.6 1767.0 1768.3 1768.8 1759.1 1768.8
Average 1827.9 1833.9 1832.9 1838.3 1837.3 1838.3 1830.6 1837.8 1838.7 1838.7 1774.9 1839.5

Table 11.

The MSE results of satellite image segmentation using hybrid fitness function for all algorithms

Image K Algorithm
RSA SOA BWOA MPA AO SMA AOA JOA MFO HHO SCA Proposed COVID
Sat_img1 6 181.84 164.55 177.03 164.67 158.65 164.18 164.10 166.31 164.29 163.37 171.23 162.03
10 139.45 132.66 130.64 131.75 127.45 122.86 142.75 120.12 123.54 125.3 142.45 120.43
14 107.57 78.34 80.80 83.06 86.68 70.67 82.12 68.74 72.75 71.69 94.54 69.85
18 92.43 48.83 77.56 49.60 52.40 46.54 85.02 52.49 47.06 49.34 88.75 41.31
22 78.45 37.35 65.34 38.34 44.34 36.45 66.75 39.33 38.56 35.34 71.45 33.55
26 59.46 39.20 51.07 32.64 35.65 24.91 45.86 30.87 24.43 27.20 45.59 23.53
Sat_img2 6 144.07 146.96 139.53 146.90 155.61 157.35 142.55 223.21 155.38 156.45 159.87 150.54
10 124.65 98.45 133.65 102.35 99.34 95.34 124.35 198.35 98.34 112.20 120.35 90.73
14 95.16 68.54 104.21 59.34 75.69 63.54 95.26 168.97 61.45 71.31 74.82 56.05
18 73.40 45.52 53.85 39.72 61.91 52.45 83.96 142.86 48.54 64.47 116.32 44.45
22 63.86 47.46 46.34 32.64 55.03 35.74 66.34 114.45 32.95 42.64 65.35 32.72
26 36.29 30.32 38.71 27.21 30.38 24.35 53.43 82.82 22.54 26.43 33.16 20.90
Sat_img3 6 188.55 190.39 194.96 191.66 190.21 188.93 194.34 189.83 191.69 189.09 198.54 185.59
10 142.75 148.34 142.39 135.92 140.46 139.53 146.75 171.47 140.43 142.53 153.72 129.79
14 117.85 103.66 127.85 86.45 85.75 85.34 121.5 110.75 80.82 96.41 87.45 79.11
18 86.18 75.53 81.69 59.89 66.59 66.34 95.75 69.66 53.14 62.76 86.49 58.15
22 53.75 59.45 64.84 46.45 46.74 39.65 87.84 47.45 39.28 38.65 69.56 35.63
26 51.95 48.07 50.70 36.69 36.20 32.64 74.44 37.65 31.46 30.96 53.71 27.93
Sat_img4 6 113.67 109.36 107.26 113.24 109.24 113.62 105.58 112.69 113.13 113.16 111.65 102.29
10 93.54 82.64 85.67 95.35 78.45 82.64 87.46 77.854 78.56 80.65 83.99 75.76
14 76.40 60.74 60.95 77.98 55.83 60.15 62.675 59.067 56.17 59.66 66.83 53.71
18 55.92 53.66 57.45 41.57 37.93 39.56 58.004 38.46 35.65 39.67 46.09 35.27
22 37.57 32.54 48.71 36.34 32.65 22.90 44.76 26.99 25.82 28.13 41.64 23.58
26 37.44 29.09 38.32 23.44 27.56 22.67 35.54 21.06 18.09 20.63 34.10 17.68
Sat_img5 6 147.57 164.31 163.32 163.87 164.81 163.50 162.83 163.44 163.87 163.93 165.98 160.67
10 131.75 127.46 131.76 128.57 111.75 125.75 133.65 123.65 114.64 112.05 122.64 110.76
14 87.09 71.28 85.28 77.56 65.78 69.42 95.72 72.87 67.19 72.56 80.36 66.84
18 75.28 61.25 68.64 49.11 56.61 44.28 81.18 48.19 48.75 51.84 60.78 43.27
22 64.76 52.64 47.45 44.75 42.56 31.26 65.74 41.45 38.65 38.35 55.34 35.75
26 52.40 39.74 38.61 40.88 31.95 25.74 52.71 26.71 25.80 26.36 46.90 22.86
Sat_img6 6 172.75 177.65 179.01 177.92 177.62 177.01 180.65 178.00 177.95 175.99 174.21 172.04
10 154.64 122.64 143.65 136.74 120.6 134.6 127.45 119.56 143.54 112.68 140.68 104.54
14 109.67 96.07 104.66 98.21 85.33 82.48 110.59 84.18 88.45 85.34 128.56 80.47
18 79.60 76.08 62.07 64.73 57.85 59.67 73.04 60.07 55.61 60.66 99.77 51.60
22 57.46 56.75 57.45 47.86 41.44 40.79 70.345 45.76 33.65 35.65 69.34 32.72
26 48.38 49.35 50.64 38.38 31.45 33.54 67.82 31.01 29.34 28.55 58.21 28.41
Average 95.37 84.07 91.44 81.16 79.95 77.17 96.91 93.50 76.15 78.11 95.01 71.68

Table 12.

The PSNR results of satellite image segmentation using hybrid fitness function for all algorithms

Image k Algorithm
RSA SOA BWOA MPA AO SMA AOA JOA MFO HHO SCA Proposed COVID
Sat_img1 6 21.49 22.57 19.43 22.33 22.14 22.42 21.17 22.60 22.33 22.88 21.76 22.88
10 22.76 23.65 23.77 24.21 23.86 25.14 23.65 25.48 25.53 25.44 24.34 25.65
14 25.33 27.34 28.22 28.58 28.51 29.43 27.94 29.42 29.47 29.33 26.96 29.58
18 26.46 30.86 28.90 31.17 30.82 31.38 28.26 30.88 31.34 31.14 28.16 31.87
22 28.54 30.54 29.544 30.17 30.67 32.10 29.89 31.76 32.39 32.48 28.75 32.54
26 30.11 32.18 30.97 32.97 32.59 34.09 31.28 33.23 34.25 33.78 30.79 35.16
Sat_img2 6 21.351 20.52 20.36 20.58 20.79 20.37 20.19 16.35 19.76 20.58 20.17 20.64
10 22.54 25.35 23.64 27.22 25.35 26.98 21.53 16.76 26.76 25.96 25.34 27.49
14 24.701 29.40 25.96 30.45 28.97 30.46 22.90 17.62 29.33 28.59 27.41 30.50
18 29.16 31.34 30.48 32.81 27.67 32.23 27.60 23.62 32.54 30.69 24.16 32.75
22 30.53 32.14 29.54 32.95 31.45 32.55 28.94 25.76 32.67 32.24 30.54 32.96
26 32.20 33.21 31.74 35.77 33.29 34.65 30.57 27.41 34.34 32.90 32.74 34.45
Sat_img3 6 18.39 19.51 18.59 19.06 19.25 19.33 18.67 19.25 19.15 19.29 19.04 19.59
10 21.56 23.87 24.14 23.24 21.64 23.88 22.64 20.81 23.81 23.56 22.99 24.04
14 25.75 27.45 26.74 28.43 28.21 27.53 25.49 27.07 27.39 28.02 25.74 28.58
18 27.89 29.11 28.56 30.29 29.53 30.31 26.86 29.30 30.25 30.05 28.42 30.33
22 28.54 30.54 29.45 30.85 31.27 32.28 28.16 31.67 32.10 31.75 29.35 32.77
26 30.80 31.20 30.94 32.48 32.54 33.14 28.91 32.56 32.56 33.19 30.56 33.66
Sat_img4 6 23.19 22.69 23.58 23.01 23.06 22.98 22.16 23.07 23.06 23.03 23.54 24.13
10 25.92 25.45 25.58 26.46 26.72 27.14 25.84 26.83 27.22 25.35 26.31 27.45
14 27.55 28.75 28.88 29.76 29.84 30.03 27.86 29.76 30.26 29.80 27.38 30.31
18 29.30 30.04 29.60 31.43 31.44 32.27 29.64 32.62 32.54 32.34 29.96 32.61
22 29.93 31.34 30.35 32.49 31.45 33.16 30.39 33.77 33.80 33.45 29.46 33.86
26 31.81 33.35 31.07 34.32 33.62 34.56 32.23 34.89 35.35 34.94 32.37 35.19
Sat_img5 6 22.42 22.65 22.65 22.59 22.58 22.64 22.49 22.72 22.59 22.59 21.39 22.94
10 26.12 26.85 26.22 26.24 25.47 25.35 25.71 26.35 26.87 26.87 25.38 26.99
14 26.79 29.23 28.15 29.01 29.74 29.53 27.17 27.22 29.57 28.01 27.88 28.88
18 28.59 29.94 29.39 31.20 30.52 31.60 28.26 28.29 31.22 30.92 29.90 31.63
22 28.15 30.14 31.87 31.61 32.10 33.18 28.47 29.34 32.24 31.34 28.45 32.56
26 30.53 32.03 32.25 32.01 33.08 33.60 30.68 31.22 34.01 33.92 30.73 34.71
Sat_img6 6 21.29 21.44 21.22 21.43 21.49 21.51 21.09 21.47 21.43 21.69 21.27 21.97
10 22.56 22.48 22.36 23.21 23.24 23.44 22.65 22.65 24.42 24.45 23.76 25.45
14 25.65 27.34 26.40 28.02 28.46 28.54 26.61 28.66 29.11 28.87 25.33 29.36
18 28.00 28.71 30.04 30.01 29.67 30.76 28.25 30.32 30.70 30.24 26.96 30.97
22 30.68 31.52 30.82 31.42 31.94 32.35 29.64 32.25 32.78 32.34 27.89 32.95
26 31.19 30.93 30.70 32.28 32.65 33.26 30.09 33.20 33.52 33.22 29.89 33.93
Average 26.60 27.93 27.28 28.61 28.21 29.00 26.49 27.11 29.07 28.75 26.80 29.48

Table 13.

The SSIM results of satellite image segmentation using hybrid fitness function for all algorithms

Image K Algorithm
RSA SOA BWOA MPA AO SMA AOA JOA MFO HHO SCA Proposed COVID
Sat_img1 6 0.9052 0.9205 0.8417 0.9151 0.9041 0.9173 0.8817 0.9201 0.9152 0.9189 0.9031 0.9223
10 0.9247 0.9533 0.9178 0.9511 0.9533 0.9535 0.9433 0.9533 0.9532 0.9524 0.9356 0.9545
14 0.9423 0.9712 0.9688 0.9733 0.9724 0.9770 0.9662 0.9761 0.9765 0.9769 0.9620 0.9770
18 0.9533 0.9810 0.9700 0.9827 0.9810 0.9860 0.9696 0.9820 0.9842 0.9830 0.9638 0.9862
22 0.9714 0.9822 0.9734 0.9844 0.9829 0.9889 0.9786 0.9843 0.9884 0.9858 0.9784 0.9889
26 0.9750 0.9853 0.9795 0.9890 0.9858 0.9910 0.9825 0.9866 0.9914 0.9898 0.9839 0.9915
Sat_img2 6 0.7648 0.7692 0.7514 0.7685 0.7567 0.7623 0.7365 0.5053 0.7487 0.7532 0.7951 0.7852
10 0.8254 0.9154 0.8429 0.9233 0.8534 0.9233 0.9143 0.5567 0.9229 0.9000 0.8745 0.9239
14 0.8660 0.9396 0.8934 0.9523 0.9358 0.9520 0.8362 0.5915 0.9513 0.9382 0.9041 0.9523
18 0.9344 0.9604 0.9514 0.9612 0.9460 0.9600 0.9153 0.8328 0.9610 0.9423 0.9201 0.9614
22 0.9536 0.9645 0.9533 0.9687 0.9526 0.9621 0.9433 0.8954 0.9681 0.9568 0.9436 0.9687
26 0.9640 0.9688 0.9585 0.9817 0.9698 0.9755 0.9578 0.9210 0.9772 0.9737 0.9695 0.9802
Sat_img3 6 0.7435 0.7849 0.7591 0.7726 0.7772 0.7783 0.7607 0.7770 0.7751 0.7780 0.7665 0.7859
10 0.8472 0.8573 0.8282 0.8654 0.8282 0.8544 0.8435 0.8562 0.8512 0.8521 0.9033 0.8632
14 0.9423 0.9567 0.9412 0.9627 0.9563 0.9612 0.9412 0.9547 0.9388 0.9641 0.9243 0.9636
18 0.9563 0.9689 0.9593 0.9730 0.9700 0.9688 0.9476 0.9589 0.9733 0.9689 0.9661 0.9741
22 0.9599 0.9722 0.9731 0.9779 0.9802 0.9745 0.9525 0.9687 0.9826 0.9765 0.9688 0.9833
26 0.9646 0.9784 0.9755 0.9837 0.9832 0.9840 0.9557 0.9783 0.9840 0.9833 0.9712 0.9859
Sat_img4 6 0.7281 0.7566 0.7544 0.7518 0.7554 0.7515 0.7335 0.7525 0.7517 0.7519 0.7645 0.7735
10 0.7548 0.8077 0.8167 0.8222 0.8132 0.7956 0.8067 0.8244 0.8154 0.8189 0.8224 0.8245
14 0.7963 0.8418 0.8787 0.8563 0.8537 0.8614 0.8547 0.8611 0.8544 0.8582 0.8577 0.8687
18 0.8330 0.8872 0.8823 0.9346 0.9307 0.9328 0.9271 0.9322 0.8867 0.9245 0.8635 0.9371
22 0.8842 0.9247 0.8875 0.9464 0.9453 0.9455 0.9294 0.9491 0.9041 0.9315 0.8756 0.9467
26 0.9146 0.9387 0.9113 0.9540 0.9501 0.9568 0.9324 0.9605 0.9510 0.9512 0.8861 0.9523
Sat_img5 6 0.9198 0.9164 0.9137 0.9136 0.9150 0.9156 0.9103 0.9168 0.9146 0.9147 0.8925 0.9205
10 0.9354 0.9588 0.9487 0.9604 0.9611 0.9615 0.9522 0.9606 0.9612 0.9613 0.9447 0.9617
14 0.9587 0.9730 0.9684 0.9807 0.9776 0.9810 0.9645 0.9778 0.9815 0.9778 0.9689 0.9787
18 0.9722 0.9813 0.9791 0.9870 0.9846 0.9870 0.9747 0.9851 0.9854 0.9853 0.9806 0.9867
22 0.9752 0.9852 0.9821 0.9898 0.9857 0.9895 0.9894 0.9862 0.9885 0.9889 0.9855 0.9898
26 0.9767 0.9894 0.9866 0.9903 0.9896 0.9905 0.9820 0.9870 0.9903 0.9928 0.9836 0.9925
Sat_img6 6 0.8250 0.8360 0.8248 0.8333 0.8359 0.8363 0.8340 0.8348 0.8331 0.8358 0.8377 0.8445
10 0.8993 0.8845 0.8867 0.9101 0.8845 0.9101 0.9110 0.8973 0.9021 0.9100 0.9057 0.9115
14 0.9446 0.9149 0.9297 0.9448 0.9403 0.9380 0.9314 0.9361 0.9368 0.9405 0.9342 0.9489
18 0.9620 0.9417 0.9612 0.9515 0.9476 0.9646 0.9348 0.9610 0.9730 0.9732 0.9551 0.9759
22 0.9664 0.9642 0.9642 0.9812 0.9577 0.9810 0.9380 0.9802 0.9798 0.9811 0.9655 0.9825
26 0.9682 0.9620 0.9673 0.9840 0.9586 0.9822 0.9447 0.9817 0.9828 0.9829 0.9724 0.9845
Average 0.9057 0.9248 0.9133 0.9327 0.9243 0.9319 0.9132 0.8967 0.9287 0.9298 0.9175 0.9369

Table 14.

The FSIM results of satellite image segmentation using hybrid fitness function for all algorithms

Image K Algorithm
RSA SOA BWOA MPA AO SMA AOA JOA MFO HHO SCA Proposed COVID
Sat_img1 6 0.9548 0.9517 0.9109 0.9476 0.9428 0.9499 0.9251 0.9584 0.9459 0.9579 0.9500 0.9601
10 0.9662 0.9657 0.9645 0.9677 0.9684 0.9678 0.9467 0.9687 0.9756 0.9760 0.9674 0.9768
14 0.9719 0.9823 0.9730 0.9861 0.9887 0.9882 0.9816 0.9882 0.9887 0.9883 0.9738 0.9892
18 0.9781 0.9898 0.9888 0.9929 0.9910 0.9928 0.9839 0.9919 0.9916 0.9931 0.9831 0.9935
22 0.9865 0.9917 0.9895 0.9934 0.9932 0.9943 0.9857 0.9926 0.9933 0.9952 0.9854 0.9954
26 0.9900 0.9934 0.9916 0.9944 0.9948 0.9960 0.9889 0.9952 0.9964 0.9962 0.9878 0.9964
Sat_img2 6 0.8514 0.8934 0.8862 0.8921 0.8807 0.8939 0.8775 0.6590 0.8922 0.8865 0.8800 0.8934
10 0.9070 0.9378 0.9178 0.9418 0.9264 0.9422 0.8878 0.6879 0.9415 0.9320 0.8875 0.9420
14 0.9227 0.9595 0.9339 0.9579 0.9576 0.9656 0.8930 0.7015 0.9641 0.9496 0.9067 0.9659
18 0.9523 0.9720 0.9633 0.9714 0.9451 0.9733 0.9407 0.8977 0.9711 0.9625 0.9136 0.9737
22 0.9657 0.9744 0.9694 0.9724 0.9577 0.9792 0.9487 0.9154 0.9726 0.9702 0.9564 0.9795
26 0.9699 0.9791 0.9747 0.9858 0.9728 0.9824 0.9587 0.9230 0.9788 0.9768 0.9799 0.9844
Sat_img3 6 0.8922 0.9095 0.9011 0.9025 0.9113 0.9180 0.8967 0.9136 0.9028 0.9149 0.8982 0.9193
10 0.9320 0.9339 0.9581 0.9369 0.9340 0.9368 0.9243 0.9282 0.9322 0.9345 0.9495 0.9499
14 0.9553 0.9722 0.9747 0.9736 0.9744 0.9722 0.9658 0.9759 0.9650 0.9723 0.9664 0.9764
18 0.9725 0.9834 0.9799 0.9863 0.9857 0.9867 0.9687 0.9826 0.9841 0.9860 0.9814 0.9879
22 0.9767 0.9867 0.9867 0.9906 0.9912 0.9910 0.9786 0.9879 0.9910 0.9902 0.843 0.9915
26 0.9799 0.9883 0.9891 0.9921 0.9925 0.9919 0.9826 0.9899 0.9921 0.9922 0.9867 0.9925
Sat_img4 6 0.9004 0.9036 0.9024 0.8939 0.9040 0.8931 0.8921 0.8985 0.8934 0.8939 0.9043 0.9193
10 0.9187 0.9243 0.9136 0.9231 0.9243 0.9490 0.9265 0.9511 0.9500 0.9512 0.9449 0.9520
14 0.9243 0.9345 0.9368 0.9453 0.9534 0.9732 0.9522 0.9750 0.9760 0.9762 0.9654 0.9758
18 0.9642 0.9731 0.9698 0.9834 0.9818 0.9844 0.9645 0.9853 0.9855 0.9846 0.9713 0.9855
22 0.9668 0.9822 0.9712 0.9845 0.9858 0.9890 0.9743 0.9884 0.9884 0.9874 0.9786 0.9895
26 0.9752 0.9868 0.9761 0.9894 0.9872 0.9867 0.9820 0.9905 0.9902 0.9902 0.9819 0.9905
Sat_img5 6 0.9194 0.9377 0.9373 0.9332 0.9375 0.9342 0.9269 0.9402 0.9332 0.9334 0.9239 0.9424
10 0.9356 0.9668 0.9654 0.9636 0.9668 0.9675 0.9543 0.9678 0.9688 0.9703 0.9432 0.9710
14 0.9585 0.9763 0.9700 0.9849 0.9810 0.9848 0.9691 0.9818 0.9854 0.9855 0.9678 0.9857
18 0.9725 0.9830 0.9828 0.9898 0.9890 0.9895 0.9830 0.9864 0.9895 0.9895 0.9837 0.9898
22 0.9832 0.9886 0.9857 0.9912 0.9899 0.9905 0.9844 0.9882 0.9900 0.9912 0.9846 0.9914
26 0.9889 0.9917 0.9879 0.9942 0.9905 0.9936 0.9857 0.9889 0.9905 0.9942 0.9854 0.9941
Sat_img6 6 0.9169 0.9194 0.9110 0.9145 0.9198 0.9166 0.9140 0.9183 0.9140 0.9232 0.9176 0.9267
10 0.9345 0.9215 0.9227 0.9437 0.9336 0.9389 0.9367 0.9375 0.9391 0.9455 0.9457 0.9480
14 0.9677 0.9611 0.9662 0.9723 0.9733 0.9753 0.9703 0.9727 0.9710 0.9729 0.9573 0.9753
18 0.9788 0.9743 0.9813 0.9831 0.9811 0.9862 0.9731 0.9861 0.9864 0.9861 0.9726 0.9869
22 0.9821 0.9783 0.9837 0.9902 0.9855 0.9911 0.9746 0.9893 0.9900 0.9908 0.9778 0.9914
26 0.9845 0.9829 0.9843 0.9925 0.9910 0.9924 0.9750 0.9908 0.9917 0.9927 0.9856 0.9925
Average 0.9527 0.9626 0.9583 0.9655 0.9634 0.9682 0.9520 0.9415 0.9670 0.9675 0.9524 0.9715

Table 15.

The NCC results of satellite image segmentation using hybrid fitness function for all algorithms

Image K Algorithm
RSA SOA BWOA MPA AO SMA AOA JOA MFO HHO SCA Proposed COVID
Sat_img1 6 0.9666 0.9700 0.9462 0.9676 0.9644 0.9684 0.9569 0.9727 0.9668 0.9729 0.9652 0.9749
10 0.9784 0.9853 0.9675 0.9850 0.9858 0.9870 0.9854 0.9866 0.9872 0.9875 0.9787 0.9886
14 0.9817 0.9921 0.9897 0.9924 0.9926 0.9938 0.9892 0.9935 0.9939 0.9936 0.9862 0.9942
18 0.9886 0.9945 0.9920 0.9962 0.9951 0.9960 0.9910 0.9952 0.9957 0.9957 0.9910 0.9962
22 0.9917 0.9949 0.9945 0.9969 0.9959 0.9967 0.9932 0.9965 0.9986 0.9966 0.9917 0.9970
26 0.9937 0.9960 0.9949 0.9970 0.9967 0.9976 0.9944 0.9971 0.9978 0.9975 0.9928 0.9978
Sat_img2 6 0.9727 0.9841 0.9822 0.9821 0.9804 0.9838 0.9791 0.8894 0.9822 0.9818 0.9781 0.9841
10 0.9730 0.9905 0.9848 0.9902 0.9890 0.9902 0.9842 0.9087 0.9899 0.9901 0.9797 0.9907
14 0.9732 0.9932 0.9865 0.9936 0.9940 0.9934 0.9823 0.9346 0.9935 0.9936 0.9817 0.9946
18 0.9928 0.9943 0.9944 0.9942 0.9937 0.9942 0.9894 0.9825 0.9940 0.9941 0.9847 0.9949
22 0.9937 0.9957 0.9956 0.9958 0.9950 0.9954 0.9943 0.9853 0.9951 0.9957 0.9950 0.9964
26 0.9953 0.9964 0.9948 0.9964 0.9970 0.9965 0.9954 0.9893 0.9963 0.9974 0.9962 0.9970
Sat_img3 6 0.9797 0.9821 0.9806 0.9837 0.9850 0.9859 0.9824 0.9852 0.9833 0.9856 0.9817 0.9865
10 0.9871 0.9914 0.9916 0.9881 0.9896 0.9925 0.9901 0.9920 0.9907 0.9920 0.9868 0.9931
14 0.9938 0.9949 0.9943 0.9954 0.9947 0.9960 0.9935 0.9959 0.9943 0.9963 0.9883 0.9963
18 0.9952 0.9966 0.9960 0.9978 0.9969 0.9972 0.9943 0.9968 0.9975 0.9974 0.9962 0.9977
22 0.9965 0.9969 0.9968 0.9980 0.9978 0.9981 0.9957 0.9978 0.9981 0.9983 0.9968 0.9983
26 0.9974 0.9975 0.9974 0.9986 0.9984 0.9986 0.9960 0.9981 0.9985 0.9988 0.9975 0.9988
Sat_img4 6 0.9904 0.9913 0.9925 0.9924 0.9922 0.9925 0.9883 0.9925 0.9925 0.9924 0.9920 0.9928
10 0.9934 0.9947 0.9956 0.9961 0.9963 0.9964 0.9897 0.9963 0.9964 0.9963 0.9959 0.9967
14 0.9971 0.9982 0.9978 0.9983 0.9981 0.9985 0.9982 0.9983 0.9986 0.9984 0.9968 0.9986
18 0.9979 0.9986 0.9980 0.9987 0.9985 0.9988 0.9982 0.9986 0.9998 0.9986 0.9980 0.9992
22 0.9983 0.9991 0.9984 0.9990 0.9990 0.9994 0.9986 0.9993 0.9994 0.9992 0.9988 0.9994
26 0.9988 0.9993 0.9986 0.9993 0.9993 0.9995 0.9989 0.9995 0.9996 0.9994 0.9990 0.9996
Sat_img5 6 0.9746 0.9763 0.9772 0.9754 0.9758 0.9757 0.9740 0.9768 0.9754 0.9754 0.9638 0.9787
10 0.9844 0.9890 0.9886 0.9898 0.9904 0.9905 0.9852 0.9899 0.9900 0.9905 0.9840 0.9909
14 0.9869 0.9938 0.9919 0.9945 0.9948 0.9948 0.9893 0.9935 0.9952 0.9935 0.9902 0.9948
18 0.9926 0.9946 0.9941 0.9964 0.9958 0.9967 0.9920 0.9964 0.9965 0.9962 0.9937 0.9967
22 0.9943 0.9968 0.9955 0.9968 0.9963 0.9970 0.9935 0.9964 0.9972 0.9966 0.9942 0.9970
26 0.9943 0.9965 0.9965 0.9972 0.9973 0.9978 0.9951 0.9916 0.9980 0.9981 0.9948 0.9980
Sat_img6 6 0.9783 0.9813 0.9770 0.9812 0.9817 0.9814 0.9795 0.9817 0.9812 0.9828 0.9790 0.9833
10 0.9800 0.9841 0.9829 0.9854 0.9955 0.9848 0.9832 0.9850 0.9852 0.9870 0.9866 0.9950
14 0.9925 0.9940 0.9923 0.9959 0.9961 0.9963 0.9936 0.9961 0.9960 0.9959 0.9890 0.9965
18 0.9948 0.9951 0.9959 0.9974 0.9972 0.9973 0.9952 0.9974 0.9975 0.9972 0.9927 0.9978
22 0.9968 0.9964 0.9966 0.9982 0.9981 0.9983 0.9959 0.9940 0.9982 0.9980 0.9941 0.9985
26 0.9972 0.9969 0.9969 0.9988 0.9984 0.9984 0.9963 0.9985 0.9986 0.9987 0.9959 0.9988
Average 0.9887 0.9922 0.9901 0.9927 0.9928 0.9932 0.9897 0.9855 0.9930 0.9933 0.9890 0.9941

These experiments proved the ability of the proposed algorithm to find the threshold values that most fit segmentation. In terms of the best fitness, it is noticed from Tables 4 and 10 that the proposed algorithm achieved the optimum fitness in 24 from 36 cases for the benchmark images and in 28 from 36 cases for the satellite images. The proposed algorithm produced fitness values very close to the optimum in the remaining cases. The HHO algorithm ranks second after COVID, where it achieved the highest fitness in 8 from 36 cases.

The MSE values in Tables 5 and 11 illustrate that the proposed algorithm has the minimum MSE values in 29 from 36 cases for the benchmark images and 27 for the satellite images. MPA, HHO, and MFO produce results close to the proposed algorithm; however, the proposed algorithm outperforms them significantly. The PSNR is evaluated to measure the power of the segmented image against noise. The PSNR values produced by running all algorithms at different threshold values are shown in Tables 6 and 12 for the benchmark and satellite images.

Regarding PSNR, the proposed algorithm outperforms the other algorithms in 28 from 36 cases for the benchmark images and 30 from 36 cases for the satellite images. Also, the SSIM and FSIM metrics are measured to evaluate the similarity between the original and segmented images. The SSIM results of all algorithms are shown in Tables 7 and 13 for the two datasets. The proposed algorithm is superior in 26 from 36 cases for the benchmark images and 28 from 38 for the satellite images.

According to FSIM, the proposed algorithm is superior in 30 and 29 of 36 cases for the benchmark and satellite images, respectively, as shown in Tables 8 and 14. However, MPA, SMA, and HHO algorithms perform close to the proposed algorithm. The proposed algorithm outperforms them in most the cases.

Finally, the NCC is evaluated to measure the correlation between the original and segmented images. According to the NCC results shown in Tables 9 and 15, it’s clear that the proposed algorithm is superior in 29 and 31 of 36 cases for both datasets. The previous results show that the proposed algorithm's SSIM, FSIM, and NCC values are close to 1, the best possible value. Thus, the proposed algorithm finds the optimum threshold values for image segmentation.

The proposed algorithm is compared to its peers in terms of the total average values for fitness, MSE, PSNR, SSIM, FSIM, and NCC, and the results are shown in Fig. 4. In terms of fitness, the proposed algorithm exceeds all other algorithms, averaging 1519.4 for the standard dataset and 1839.5 for the satellite dataset. However, HHO performs similarly; the proposed algorithm is slightly superior.

Fig. 4.

Fig. 4

The average fitness, MSE, PSNR, SSIM, FSIM, and NCC results of segmentation of a standard images and b satellite images for all algorithms

As shown in Fig. 4, the proposed algorithm has the minimum total average MSE for both datasets. It is obvious from the figure that there is a clear gap between the average MSE results produced by the proposed algorithm and those produced by the other algorithms. The bar charts for all the six metrics demonstrate that the proposed algorithm is superior. The highest PSNR, SSIM, FSIM, and NCC values achieved by the proposed algorithm demonstrate the high quality of the segmented images produced by the proposed algorithm.

The segmented images produced by the proposed algorithm at different thresholds are shown in Figs. 5, 6, 7 and 8. The high quality of the segmented images is clear from their visual appearance.

Fig. 5.

Fig. 5

Results for using the proposed algorithm for segmentation of Image2 at different threshold levels. a Original image, b histogram of the original image, ce, ik 6-level to 26-level thresholding based segmented images, and fh, ln 6-level to 26-level corresponding histograms

Fig. 6.

Fig. 6

Results for using the proposed algorithm for segmentation of Image4 at different threshold levels. a Original image, b histogram of the original image, ce, ik 6-level to 26-level thresholding based segmented images, and fh, ln 6-level to 26-level corresponding histograms

Fig. 7.

Fig. 7

Results for using the proposed algorithm to segment Sat_img1 at different threshold levels. a Original image, b histogram of the original image, ce, ik 6-level to 26-level thresholding based segmented images, and fh, ln 6-level to 26-level corresponding histograms

Fig. 8.

Fig. 8

Results for using the proposed algorithm to segment Sat_img3 at different threshold levels. a Original image, b histogram of the original image, ce, ik 6-level to 26-level thresholding based segmented images, and fh, ln 6-level to 26-level corresponding histograms

Additionally, some convergence curves are displayed in Fig. 9 to show the proposed algorithm's convergence ability. The proposed algorithm has a high convergence rate compared with the other algorithms as it rapidly reaches the highest fitness value.

Fig. 9.

Fig. 9

Comparison of convergence curves of all algorithms for segmentation of Sat_img3 with number of thresholds: a 6, b 10, c 14, d 18, e 22 and f 26

Due to the random process in optimization algorithms, the results differ at each run. The results of 5 separate runs of the proposed algorithm for segmentation of Image1 and Sat_img1 are shown in Table 16, and the best results are highlighted in bold. However, the results of each run are not the same; they are very close, which ensures the stability of the proposed algorithm.

Table 16.

The results of 5 different runs of the proposed algorithm for segmentation Image1 and Sat_img1

Metric Image1 Sat_img1
K = 6 K = 10 K = 14 K = 18 K = 22 K = 26 K = 6 K = 10 K = 14 K = 18 K = 22 K = 26
Run1 Fitness 1899.358 1929.535 1941.70 1949.211 1955.393 1959.80 882.077 920.923 936.4828 944.831 951.28 956.24
MSE 153.1303 107.8424 66.8752 60.9820 50.6567 26.3142 160.488 110.516 68.2388 48.1278 34.342 25.384
PSNR 23.4859 27.1080 29.7456 30.1669 31.0628 33.926 22.5662 27.558 29.9685 31.7148 32.752 34.078
SSIM 0.6864 0.7430 0.7855 0.7949 0.8157 0.9370 0.9189 0.9686 0.9775 0.9858 0.9884 0.9896
FSIM 0.9180 0.9491 0.9736 0.9783 0.9843 0.9852 0.9520 0.9782 0.9888 0.9915 0.9946 0.9956
NCC 0.9891 0.9959 0.9978 0.9985 0.9987 0.9989 0.9693 0.9874 0.9935 0.9955 0.9969 0.9976
Run2 Fitness 1898.815 1929.969 1941.39 1949.752 1954.805 1959.86 882.930 919.595 935.8556 944.983 951.07 956.19
MSE 162.2831 110.7264 81.6184 57.3263 51.9169 43.8623 166.312 121.541 70.7002 47.1469 38.975 24.503
PSNR 23.3905 26.9553 28.9696 30.5657 30.8559 31.7088 22.5589 25.9177 29.8522 32.1676 32.822 34.238
SSIM 0.6993 0.7533 0.7832 0.8014 0.8057 0.8334 0.9198 0.9573 0.9769 0.9825 0.985 0.9906
FSIM 0.9195 0.9548 0.9674 0.9797 0.9825 0.9855 0.9515 0.9781 0.9883 0.9917 0.9947 0.9972
NCC 0.9900 0.9955 0.9975 0.9984 0.9987 0.9987 0.9692 0.9869 0.9930 0.9955 0.9966 0.9975
Run3 Fitness 1899.142 1930.100 1941.60 1949.616 1954.693 1959.41 882.529 920.940 935.6971 944.633 951.58 956.17
MSE 155.2112 111.3618 71.7428 55.1395 50.0202 27.0324 162.284 112.317 71.7087 50.1352 30.445 23.876
PSNR 23.0967 26.9552 28.9838 30.8667 31.1677 33.8918 22.7439 26.7419 29.2506 32.0419 33.446 34.827
SSIM 0.6907 0.7508 0.7772 0.7988 0.8202 0.9399 0.9246 0.9615 0.9756 0.9839 0.9888 0.9908
FSIM 0.9145 0.9566 0.9715 0.9805 0.9822 0.9876 0.9555 0.9810 0.9878 0.9915 0.9944 0.9958
NCC 0.9878 0.9960 0.9978 0.9982 0.9986 0.9988 0.9722 0.9885 0.9930 0.9952 0.9972 0.9978
Run4 Fitness 1899.576 1930.926 1942.03 1949.275 1954.997 1960.01 882.767 921.304 936.1029 945.085 951.17 956.63
MSE 156.4345 102.8089 78.5719 60.2595 50.1078 28.0079 161.988 113.127 66.2915 51.0218 32.949 25.746
PSNR 23.2773 27.6671 29.0128 30.1015 31.1047 33.6565 22.3728 26.8638 29.3662 32.0259 32.694 34.023
SSIM 0.6894 0.7620 0.7777 0.7955 0.8119 0.9344 0.9254 0.9579 0.9755 0.9827 0.9878 0.9910
FSIM 0.9144 0.9601 0.9745 0.9798 0.9818 0.9867 0.9496 0.9776 0.9882 0.9918 0.9945 0.9956
NCC 0.9887 0.9960 0.9976 0.9984 0.9986 0.9988 0.9684 0.9878 0.9934 0.9956 0.9967 0.9976
Run5 Fitness 1899.789 1929.897 1942.30 1950.106 1955.312 1959.80 882.981 921.344 935.2058 944.915 951.10 956.14
MSE 152.1230 106.5899 75.6387 58.0894 51.3986 29.0113 164.264 107.302 67.7529 45.6485 32.360 22.758
PSNR 23.8876 26.9943 28.9731 30.4123 31.0033 33.7049 22.5806 26.6298 29.6812 32.1921 33.116 34.192
SSIM 0.6947 0.7655 0.7825 0.7987 0.8209 0.9339 0.9215 0.9692 0.9768 0.9824 0.9885 0.9915
FSIM 0.9220 0.9575 0.9732 0.9801 0.9821 0.9864 0.9567 0.9768 0.9855 0.9935 0.9942 0.9954
NCC 0.9906 0.9959 0.9977 0.9983 0.9985 0.9988 0.9718 0.9876 0.9925 0.9958 0.9968 0.9978

In addition to the previously mentioned evaluation criteria, the Wilcoxon rank-sum test is utilized to prove the statistical significance of the proposed algorithm. This test compares two methods based on the null hypothesis, which assumes no significant difference between the two methods. The P values produced by the Wilcoxon rank-sum test must be ≤ 0.05 to be good evidence against the null hypothesis.

The P values produced by comparing the proposed algorithm with all other algorithms are shown in Tables 17 and 18. All the P values shown in the table are ≤ 0.05, which proves the alternative hypothesis that assumes a significant difference between the two methods. The overall results prove the efficiency of the proposed algorithm in image segmentation.

Table 17.

The P values computed by Wilcoxon's rank-sum test for segmentation of benchmark images

Benchmark images
Image COVID versus RSOA COVID versus SOA COVID versus BWOA COVID versus AO COVID versus AOA COVID versus JOA COVID versus SMO COVID versus MFO COVID versus HHO COVID versus SCA
Image1 1.9365e−42 1.0942e−40 5.0076e−39 1.1849e−13 4.1998e−40 4.4888e−14 4.7950e−21 7.5760e−16 5.1721e−06 7.8921e−37
Image2 2.8361e−41 2.2067e−39 4.3256e−42 5.9331e−09 5.2181e−42 1.6584e−22 2.7321e−16 5.7751e−21 4.8709e−08 2.9425e−38
Image3 1.4777e−44 1.7535e−36 3.2046e−42 3.3224e−14 7.0377e−42 9.3245e−09 2.4728e−13 5.0899e−13 9.9852e−06 2.4780e−40
Image4 9.1065e−44 1.2034e−40 3.2241e−39 1.1358e−09 2.1267e−43 4.2730e−08 1.0263e−16 9.0875e−21 3.1708e−10 7.5621e−39
Image5 1.4777e−44 5.8168e−38 2.5466e−39 4.8209e−09 3.1631e−43 1.7981e−12 1.420e−20 5.8680e−23 1.3722e−13 6.2710e−37
Image6 2.2404e−40 1.2704e−40 4.0104e−39 1.1946e−07 2.5718e−42 2.621e−16 8.1879e−15 3.3620e−13 1.1222e−10 1.1783e−36
Average 4.24e−41 3.02e−37 2.47e−39 7.19e−08 7.26e−41 8.68e−09 4.26e−14 1.41e−13 2.53e−06 4.39e−37

Table 18.

The P values computed by Wilcoxon's rank-sum test for segmentation of satellite images

Satellite images
Image COVID versus RSOA COVID versus SOA COVID versus BWOA COVID versus AO COVID versus AOA COVID versus JOA COVID versus SMO COVID versus MFO COVID versus HHO COVID versus SCA
Sat_img1 3.2950e−39 9.6055e−39 6.7688e−34 8.8471e−07 6.0305e−36 0.00276 4.1448e−04 4.0816e−14 1.7974e−12 3.5241e−36
Sat_img2 2.1450e−38 2.8740e−33 5.6072e−35 4.9599e−12 4.1518e−22 7.3150e−05 1.4589e−07 3.7710e−11 2.9632e−11 1.9025e−35
Sat_img3 1.1344e−38 3.3244e−36 9.3573e−32 2.1921e−22 1.8013e−34 1.0675e−06 6.1799e−04 1.0844e−15 1.0851e−13 5.9112e−35
Sat_img4 6.2761e−36 5.9516e−32 6.7688e−34 1.0167e−21 1.1419e−29 1.9288e−05 2.1584e−06 9.3069e−19 2.7708e−10 3.5221e−34
Sat_img5 4.2923e−33 2.1586e−35 2.1698e−34 6.2436e−18 6.7921e−39 2.5615e−05 5.4034e−08 1.2381e−10 1.6474e−11 1.8610e−34
Sat_img6 5.2142e−34 4.2254e−36 1.8022e−35 4.1430e−20 2.3102e−36 1.3020e−06 2.1694e−12 5.3655e−14 1.8087e−13 1.6125e−35
Average 8.03e−34 1.04e−32 1.59e−32 1.47e−07 6.92e−23 4.80e−04 1.72e−04 2.69e−11 5.42e−11 1.06e−34

Conclusions and future work

Satellite image segmentation aims to get a map composed of a few categories (buildings, roads, tracks, trees, crops and water, etc.) from a multispectral satellite image in many applications such as geoscience studies, astronomy, and geographical information systems. This paper proposes an improved Coronavirus Disease Optimization algorithm for solving satellite image's multi-level thresholding segmentation problem. The concept of chaotic initialization is embedded into the proposed algorithm to improve the searchability of the initial population and to void the problem of getting stuck into local minima or maxima. Additionally, a hybrid fitness function is utilized to measure the fitness of solutions instead of the classic Otsu and Kapur methods. Two separate datasets are segmented using the proposed algorithm, and several evaluation criteria have been utilized to measure the performance. The experimental results proved that the proposed algorithm with chaotic initialization and the hybrid fitness function results in image segmentation with better performance than other metaheuristics. Future work will apply the proposed algorithm to image segmentation of color images.

Funding

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Declarations

Ethical approval

This article does not contain any studies with human participants performed by any authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Footnotes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Castleman KR. Digital image processing. Hoboken: Prentice-Hall Press; 1996. [Google Scholar]
  • 2.Haralick RM, Shapiro LG. Image segmentation techniques. Comput Vis Graphics Image Process. 1985;29(1):100–132. doi: 10.1016/S0734-189X(85)90153-7. [DOI] [Google Scholar]
  • 3.Chen Y, Vemuri BC, Wang L. Image denoising and segmentation via nonlinear diffusion. Comput Math Appl. 2000;39(5–6):131–149. doi: 10.1016/S0898-1221(00)00050-X. [DOI] [Google Scholar]
  • 4.Bandyopadhyay R, Kundu R, Oliva D, Sarkar R. Segmentation of brain MRI using an altruistic Harris Hawks’ Optimization algorithm. Knowl Based Syst. 2021;232:107468. doi: 10.1016/j.knosys.2021.107468. [DOI] [Google Scholar]
  • 5.Pandey BN, Rana A (2018, December) A literature survey of optimization techniques for satellite image segmentation. In: 2018 International conference on advanced computation and telecommunication (ICACAT), 4. IEEE, pp 1–5
  • 6.Huang YC, Tung YS, Chen JC, Wang SW, Wu JL (2005, November) An adaptive edge detection-based colorization algorithm and its applications. In: Proceedings of the 13th annual ACM international conference on multimedia. pp 351–354
  • 7.Abonyi J, Feil B, Nemeth S, Arva P (2003, August) Fuzzy clustering-based segmentation of time series. In: International symposium on intelligent data analysis. Springer, Berlin, pp 275–285
  • 8.Kohler R. A segmentation system based on thresholding. Comput Graphics Image Process. 1981;15(4):319–338. doi: 10.1016/S0146-664X(81)80015-9. [DOI] [Google Scholar]
  • 9.Abd El Aziz M, Ewees AA, Hassanien AE. Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst Appl. 2017;83:242–256. doi: 10.1016/j.eswa.2017.04.023. [DOI] [Google Scholar]
  • 10.Horng MH. Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Syst Appl. 2011;38(11):13785–13791. [Google Scholar]
  • 11.Chai Y, Lempitsky V, Zisserman A (2011, November) Bicos: a bi-level co-segmentation method for image classification. In: 2011 International conference on computer vision. IEEE, pp 2579–2586
  • 12.Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–66. doi: 10.1109/TSMC.1979.4310076. [DOI] [Google Scholar]
  • 13.Pun T. A new method for grey-level picture thresholding using the entropy of the histogram. Signal Process. 1980;2(3):223–237. doi: 10.1016/0165-1684(80)90020-1. [DOI] [Google Scholar]
  • 14.Duraisamy SP, Kayalvizhi R. A new multilevel thresholding method using swarm intelligence algorithm for image segmentation. J Intell Learn Syst Appl. 2010;2(03):126. [Google Scholar]
  • 15.Bhandari AK, Kumar A, Singh GK. Modified artificial bee colony-based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu, and Tsallis functions. Expert Syst Appl. 2015;42(3):1573–1601. doi: 10.1016/j.eswa.2014.09.049. [DOI] [Google Scholar]
  • 16.Jia H, Sun K, Song W, Peng X, Lang C, Li Y. Multi-strategy emperor penguin optimizer for RGB histogram-based color satellite image segmentation using Masi entropy. IEEE Access. 2019;7:134448–134474. doi: 10.1109/ACCESS.2019.2942064. [DOI] [Google Scholar]
  • 17.Jia H, Lang C, Oliva D, Song W, Peng X. Hybrid grasshopper optimization algorithm and differential evolution for multilevel satellite image segmentation. Remote Sens. 2019;11(9):1134. doi: 10.3390/rs11091134. [DOI] [Google Scholar]
  • 18.Jia H, Lang C, Oliva D, Song W, Peng X. Dynamic harris hawks optimization with mutation mechanism for satellite image segmentation. Remote Sens. 2019;11(12):1421. doi: 10.3390/rs11121421. [DOI] [Google Scholar]
  • 19.Pare S, Bhandari AK, Kumar A, Singh GK, Khare S (2015, July) Satellite image segmentation based on different objective functions using genetic algorithm: a comparative study. In: 2015 IEEE international conference on digital signal processing (DSP). IEEE, pp 730–734
  • 20.Kapoor S, Zeya I, Singhal C, Nanda SJ. A grey wolf optimizer-based automatic clustering algorithm for satellite image segmentation. Procedia Comput Sci. 2017;115:415–422. doi: 10.1016/j.procs.2017.09.100. [DOI] [Google Scholar]
  • 21.Muangkote N, Sunat K, Chiewchanwattana S (2016, July) Multilevel thresholding for satellite image segmentation with moth-flame-based optimization. In: 2016 13th International joint conference on computer science and software engineering (JCSSE). IEEE, pp 1–6
  • 22.Liu L, Zhao D, Yu F, Heidari AA, Li C, Ouyang J, Pan J. Ant colony optimization with Cauchy and greedy Levy mutations for multilevel COVID 19 X-ray image segmentation. Comput Biol Med. 2021;136:104609. doi: 10.1016/j.compbiomed.2021.104609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Abualigah L, Diabat A, Sumari P, Gandomi AH. A novel evolutionary arithmetic optimization algorithm for multilevel thresholding segmentation of Covid-19 CT images. Processes. 2021;9(7):1155. doi: 10.3390/pr9071155. [DOI] [Google Scholar]
  • 24.Wang R, Zhou Y, Zhao C, Wu H. A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation. Bio-Med Mater Eng. 2015;26(s1):S1345–S1351. doi: 10.3233/BME-151432. [DOI] [PubMed] [Google Scholar]
  • 25.Tarkhaneh O, Shen H. An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation. Expert Syst Appl. 2019;138:112820. doi: 10.1016/j.eswa.2019.07.037. [DOI] [Google Scholar]
  • 26.Kotte S, Pullakura RK, Injeti SK. Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind-driven optimization. Measurement. 2018;130:340–361. doi: 10.1016/j.measurement.2018.08.007. [DOI] [Google Scholar]
  • 27.Abd Elaziz M, Ewees AA, Yousri D, Alwerfali HSN, Awad QA, Lu S, Al-Qaness MA. An improved marine predators algorithm with fuzzy entropy for multi-level thresholding: real-world example of COVID-19 CT image segmentation. IEEE Access. 2020;8:125306–125330. doi: 10.1109/ACCESS.2020.3007928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Dhawale D, Kamboj VK, Anand P (2021) An improved Chaotic Harris Hawks Optimizer for solving numerical and engineering optimization problems. Eng Comput 1–46
  • 29.Hongwei LI, Jianyong LIU, Liang CHEN, Jingbo BAI, Yangyang SUN, Kai LU. Chaos-enhanced moth-flame optimization algorithm for global optimization. J Syst Eng Electron. 2019;30(6):1144–1159. doi: 10.21629/JSEE.2019.06.10. [DOI] [Google Scholar]
  • 30.Tuba E, Capor-Hrosik R, Alihodzic A, Jovanovic R, Tuba M (2018, February) Chaotic elephant herding optimization algorithm. In: 2018 IEEE 16th world symposium on applied machine intelligence and informatics (SAMI). IEEE, pp 000213–000216
  • 31.Aggarwal S, Chatterjee P, Bhagat RP, Purbey KK, Nanda SJ. A social spider optimization algorithm with chaotic initialization for robust clustering. Procedia Comput Sci. 2018;143:450–457. doi: 10.1016/j.procs.2018.10.417. [DOI] [Google Scholar]
  • 32.Kaur G, Arora S. Chaotic whale optimization algorithm. J Comput Des Eng. 2018;5(3):275–284. [Google Scholar]
  • 33.Teng ZJ, Lv JL, Guo LW. An improved hybrid grey wolf optimization algorithm. Soft Comput. 2019;23(15):6617–6631. doi: 10.1007/s00500-018-3310-y. [DOI] [Google Scholar]
  • 34.Afrabandpey H, Ghaffari M, Mirzaei A, Safayani M (2014, February) A novel bat algorithm based on chaos for optimization tasks. In: The 2014 Iranian conference on intelligent systems (ICIS). IEEE, pp 1–6
  • 35.Dhawale D, Kamboj VK, Anand P (2021) An effective solution to numerical and multi-disciplinary design optimization problems using chaotic slime mold algorithm. Eng Comput 1–39 [DOI] [PMC free article] [PubMed]
  • 36.Xu Y, Chen H, Heidari AA, Luo J, Zhang Q, Zhao X, Li C. An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks. Expert Syst Appl. 2019;129:135–155. doi: 10.1016/j.eswa.2019.03.043. [DOI] [Google Scholar]
  • 37.Khalid Asmaa M, Hosny Khalid M, Seyedali M. COVIDOA: a novel evolutionary optimization algorithm based on coronavirus replication lifecycle. Res Square. 2022 doi: 10.21203/rs.3.rs-1592094/v1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Kelly JA, Olson AN, Neupane K, Munshi S, San Emeterio J, Pollack L, et al. Structural and functional conservation of the programmed—1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2) J Biol Chem. 2020;295(31):10741–10748. doi: 10.1074/jbc.AC120.013449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Ahn DG, Lee W, Choi JK, Kim SJ, Plant EP, Almazán F, et al. Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Antivir Res. 2011;91(1):1–10. doi: 10.1016/j.antiviral.2011.04.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Brian DA, Baric RS (2020) Coronavirus genome structure and replication. In: Coronavirus replication and reverse genetics. pp 1–30 [DOI] [PMC free article] [PubMed]
  • 41.Dhiman G, Singh KK, Soni M, Nagar A, Dehghani M, Slowik A, et al. MOSOA: a new multi-objective seagull optimization algorithm. Expert Syst Appl. 2021;167:114150. doi: 10.1016/j.eswa.2020.114150. [DOI] [Google Scholar]
  • 42.Khalid AM, Hamza HM, Mirjalili S, Hosny KM. BCOVIDOA: a novel binary coronavirus disease optimization algorithm for feature selection. Knowl Based Syst. 2022;248:108789. doi: 10.1016/j.knosys.2022.108789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging. 2004;13(1):146–165. doi: 10.1117/1.1631315. [DOI] [Google Scholar]
  • 44.Jafarizadeh MA, Behnia S, Khorram S, Nagshara H. Hierarchy of chaotic maps with an invariant measure. J Stat Phys. 2001;104(5):1013–1028. doi: 10.1023/A:1010449627146. [DOI] [Google Scholar]
  • 45.Tian D (2017) Particle swarm optimization with chaos-based initialization for numerical optimization. Intell Autom Soft Comput 1–12
  • 46.Lu H, Wang X, Fei Z, Qiu M (2014) The effects of using chaotic map on improving the performance of multi-objective evolutionary algorithms. Math Probl Eng
  • 47.NASA Visible Earth-Home
  • 48.Rodríguez-Esparza E, Zanella-Calzada LA, Oliva D, Heidari AA, Zaldivar D, Pérez-Cisneros M, Foong LK. An efficient Harris hawks-inspired image segmentation method. Expert Syst Appl. 2020;155:113428. doi: 10.1016/j.eswa.2020.113428. [DOI] [Google Scholar]
  • 49.Abualigah L, Abd Elaziz M, Sumari P, Geem ZW, Gandomi AH. Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer. Expert Syst Appl. 2022;191:116158. doi: 10.1016/j.eswa.2021.116158. [DOI] [Google Scholar]
  • 50.Dhiman G, Kumar V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl Based Syst. 2019;165:169–196. doi: 10.1016/j.knosys.2018.11.024. [DOI] [Google Scholar]
  • 51.Houssein EH, Helmy BED, Oliva D, Elngar AA, Shaban H. A novel black widow optimization algorithm for multilevel thresholding image segmentation. Expert Syst Appl. 2021;167:114159. doi: 10.1016/j.eswa.2020.114159. [DOI] [Google Scholar]
  • 52.Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH. Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl. 2020;152:113377. doi: 10.1016/j.eswa.2020.113377. [DOI] [Google Scholar]
  • 53.Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-Qaness MA, Gandomi AH. Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng. 2021;157:107250. doi: 10.1016/j.cie.2021.107250. [DOI] [Google Scholar]
  • 54.Li S, Chen H, Wang M, Heidari AA, Mirjalili S. Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst. 2020;111:300–323. doi: 10.1016/j.future.2020.03.055. [DOI] [Google Scholar]
  • 55.Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH. The arithmetic optimization algorithm. Comput Methods Appl Mech Eng. 2021;376:113609. doi: 10.1016/j.cma.2020.113609. [DOI] [Google Scholar]
  • 56.Chou JS, Truong DN. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl Math Comput. 2021;389:125535. [Google Scholar]
  • 57.Shehab M, Abualigah L, Al Hamad H, Alabool H, Alshinwan M, Khasawneh AM. Moth–flame optimization algorithm: variants and applications. Neural Comput Appl. 2020;32(14):9859–9884. doi: 10.1007/s00521-019-04570-6. [DOI] [Google Scholar]
  • 58.Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst. 2016;96:120–133. doi: 10.1016/j.knosys.2015.12.022. [DOI] [Google Scholar]
  • 59.Rosner B, Glynn RJ, Ting Lee ML. Incorporation of clustering effects for the Wilcoxon rank-sum test: a large-sample approach. Biometrics. 2003;59(4):1089–1098. doi: 10.1111/j.0006-341X.2003.00125.x. [DOI] [PubMed] [Google Scholar]

Articles from Neural Computing & Applications are provided here courtesy of Nature Publishing Group

RESOURCES