Abstract
Road network studies attracted unprecedented and overwhelming interest in recent years due to the clear relationship between human existence and city evolution. Current studies cover many aspects of a road network, for example, road feature extraction from video/image data, road map generalisation, traffic simulation, optimisation of optimal route finding problems, and traffic state prediction. However, analysing road networks as a complex graph is a field to explore. This study presents comparative studies on the Porto, in Portugal, road network sections, mainly of Matosinhos, Paranhos, and Maia municipalities, regarding degree distributions, clustering coefficients, centrality measures, connected components, k-nearest neighbours, and shortest paths. Further insights into the networks took into account the community structures, page rank, and small-world analysis. The results show that the information exchange efficiency of Matosinhos is 0.8, which is 10 and 12.8% more significant than that of the Maia and Paranhos networks, respectively. Other findings stated are: (1) the studied road networks are very accessible and densely linked; (2) they are small-world in nature, with an average length of the shortest pathways between any two roads of 29.17 units, which as found in the scenario of the Maia road network; and (3) the most critical intersections of the studied network are ’Avenida da Boavista, 4100-119 Porto (latitude: 41.157944, longitude: − 8.629105)’, and ’Autoestrada do Norte, Porto (latitude: 41.1687869, longitude: − 8.6400656)’, based on the analysis of centrality measures.
Keywords: Complex network analysis, Degree centrality, Closeness centrality, Betweenness centrality, Eigenvector centrality, Power-law distribution, Community detection
Acknowledgements
This article results from the project Safe Cities - “Inovação para Construir Cidades Seguras”, with reference POCI-01-0247-FEDER-041435, co-funded by the European Regional Development Fund (ERDF), through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under the PORTUGAL 2020 Partnership Agreement.
Data availability
The used data is public available at: https://www.openstreetmap.org/ (accessed in July 2022).
Declarations
Conflict of interests
The authors declare no conflict of interest.
Footnotes
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contributor Information
Selim Reza, Email: up202003355@fe.up.pt.
Marta Campos Ferreira, Email: mferreira@fe.up.pt.
J.J.M. Machado, Email: jjmm@fe.up.pt
João Manuel R.S. Tavares, Email: tavares@fe.up.pt
References
- 1.Watts DJ, Strogatz SH. Collective dynamics of ’small-world’networks. Nature. 1998;393(6684):440–442. doi: 10.1038/30918. [DOI] [PubMed] [Google Scholar]
- 2.Barabási A-L, Albert R. Emergence of scaling in random networks. Science. 1999;286(5439):509–512. doi: 10.1126/science.286.5439.509. [DOI] [PubMed] [Google Scholar]
- 3.Gao S, Wang Y, Gao Y, Liu Y. Understanding urban traffic-flow characteristics: a rethinking of betweenness centrality. Environment and Planning B: Planning and Design. 2013;40(1):135–153. doi: 10.1068/b38141. [DOI] [Google Scholar]
- 4.Ahmadzai F, Rao KL, Ulfat S. Assessment and modelling of urban road networks using integrated graph of natural road network (a gis-based approach) Journal of Urban Management. 2019;8(1):109–125. doi: 10.1016/j.jum.2018.11.001. [DOI] [Google Scholar]
- 5.Duan Y, Lu F. Robustness of city road networks at different granularities. Physica A Stat. Mechan. Appl. 2014;411:21–34. doi: 10.1016/j.physa.2014.05.073. [DOI] [Google Scholar]
- 6.Davidović S, Bogdanović V, Garunović N, Papić Z, Pamučar D. Research on speeds at roundabouts for the needs of sustainable traffic management. Sustainability. 2021;13(1):399. doi: 10.3390/su13010399. [DOI] [Google Scholar]
- 7.Khojasteh H, Khanteymoori A, Olyaee MH. Comparing protein–protein interaction networks of sars-cov-2 and (h1n1) influenza using topological features. Sci. Rep. 2022;12(1):1–11. doi: 10.1038/s41598-022-08574-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.De Montis A, Barthélemy M, Chessa A, Vespignani A. The structure of interurban traffic: a weighted network analysis. Environ. Plann. B Plann. Design. 2007;34(5):905–924. doi: 10.1068/b32128. [DOI] [Google Scholar]
- 9.Masucci AP, Stanilov K, Batty M. Exploring the evolution of london’s street network in the information space: A dual approach. Phys. Rev. E. 2014;89(1):012805. doi: 10.1103/PhysRevE.89.012805. [DOI] [PubMed] [Google Scholar]
- 10.Xiao, Z., Jian-Ping, C., Jia-Li, S., Li-Dong, B.: Analysis on topological properties of beijing urban public transit based on complex network theory. Acta Physica Sinica 61(19) (2012)
- 11.Scardoni G, Laudanna C. Identifying critical traffic jam areas with node centralities interference and robustness. Networks & Heterogeneous Media. 2012;7(3):463. doi: 10.3934/nhm.2012.7.463. [DOI] [Google Scholar]
- 12.Yang Y, Cao J, Qin Y, Jia L, Dong H, Zhang A. Spatial correlation analysis of urban traffic state under a perspective of community detection. Int. J. Modern Phys. B. 2018;32(12):1850150. doi: 10.1142/S0217979218501503. [DOI] [Google Scholar]
- 13.Hong Y, Yao Y. Hierarchical community detection and functional area identification with osm roads and complex graph theory. Int. J. Geogr. Inf. Sci. 2019;33(8):1569–1587. doi: 10.1080/13658816.2019.1584806. [DOI] [Google Scholar]
- 14.Feng W, Li B, Chen Z, Liu P. City size based scaling of the urban internal nodes layout. PLoS ONE. 2021;16(4):0250348. doi: 10.1371/journal.pone.0250348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Tsiotas D. Drawing indicators of economic performance from network topology: The case of the interregional road transportation in greece. Res. Transp. Econ. 2021;90:101004. doi: 10.1016/j.retrec.2020.101004. [DOI] [Google Scholar]
- 16.Borgatti SP. Centrality and network flow. Soc. Netw. 2005;27(1):55–71. doi: 10.1016/j.socnet.2004.11.008. [DOI] [Google Scholar]
- 17.Newman M. Networks. 2nd edn. Oxford: Oxford University Press; 2018. [Google Scholar]
- 18.Otte E, Rousseau R. Social network analysis: a powerful strategy, also for the information sciences. J. inform. Sci. 2002;28(6):441–453. doi: 10.1177/016555150202800601. [DOI] [Google Scholar]
- 19.Bodendorf, F., Kaiser, C.: Detecting opinion leaders and trends in online social networks. In: Proceedings of the 2nd ACM Workshop on Social Web Search and Mining, pp. 65–68 (2009)
- 20.Crucitti P, Latora V, Porta S. Centrality measures in spatial networks of urban streets. Phys. Rev. E. 2006;73(3):036125. doi: 10.1103/PhysRevE.73.036125. [DOI] [PubMed] [Google Scholar]
- 21.Jayasinghe A, Sano K, Nishiuchi H. Explaining traffic flow patterns using centrality measures. Int. J. Traff. Transport Eng. 2015;5(2):134–149. doi: 10.7708/ijtte.2015.5(2).05. [DOI] [Google Scholar]
- 22.Freeman LC. Centrality in social networks conceptual clarification. Soc. Netw. 1978;1(3):215–239. doi: 10.1016/0378-8733(78)90021-7. [DOI] [Google Scholar]
- 23.Chea E, Livesay DR. How accurate and statistically robust are catalytic site predictions based on closeness centrality? BMC Bioinformatics. 2007;8(1):1–14. doi: 10.1186/1471-2105-8-153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Porta S, Strano E, Iacoviello V, Messora R, Latora V, Cardillo A, Wang F, Scellato S. Street centrality and densities of retail and services in bologna, italy. Environment and Planning B: Planning and Design. 2009;36(3):450–465. doi: 10.1068/b34098. [DOI] [Google Scholar]
- 25.Sabidussi G. The centrality index of a graph. Psychometrika. 1966;31(4):581–603. doi: 10.1007/BF02289527. [DOI] [PubMed] [Google Scholar]
- 26.Barthelemy M, Bordin P, Berestycki H, Gribaudi M. Self-organization versus top-down planning in the evolution of a city. Scientif. Rep. 2013;3(1):1–8. doi: 10.1038/srep02153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Brandes U. On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 2008;30(2):136–145. doi: 10.1016/j.socnet.2007.11.001. [DOI] [Google Scholar]
- 28.Hansen, D., Shneiderman, B., Smith, M.A.: Analyzing Social Media Networks with nodeXL: Insights from a Connected World. Morgan Kaufmann (2010)
- 29.Xia S, Xiong Z, Luo Y, Dong L, Zhang G. Location difference of multiple distances based k-nearest neighbors algorithm. Knowl.-Based Syst. 2015;90:99–110. doi: 10.1016/j.knosys.2015.09.028. [DOI] [Google Scholar]
- 30.Yao, D., van der Hoorn, P., Litvak, N.: Average nearest neighbor degrees in scale-free networks. arXiv:1704.05707 (2017)
- 31.Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A. The architecture of complex weighted networks. Proc. Nat. Acad. Sci. 2004;101(11):3747–3752. doi: 10.1073/pnas.0400087101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Yang, B., Liu, D., Liu, J.: Discovering Communities from Social Networks: Methodologies and Applications. In: Handbook of Social Network Technologies and Applications, pp 331–346. Springer (2010)
- 33.Reddy, P.K., Kitsuregawa, M., Sreekanth, P., Rao, S.S.: A graph based approach to extract a neighborhood customer community for collaborative filtering. In: International Workshop on Databases in Networked Information Systems, pp 188–200. Springer (2002)
- 34.Fortunato S, Hric D. Community detection in networks: a user guide. Phys. Rep. 2016;659:1–44. doi: 10.1016/j.physrep.2016.09.002. [DOI] [Google Scholar]
- 35.Girvan M, Newman ME. Community structure in social and biological networks. Proc. Nat. Acad. Sci. 2002;99(12):7821–7826. doi: 10.1073/pnas.122653799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Chapter four-Island biogeography of food webs. In: Bohan, D.A., Dumbrell, A.J., Massol, F. (eds.) Networks of Invasion: A Synthesis of Concepts. Advances in Ecological Research, vol. 56, pp. 183–262 Academic Press (2017)
- 37.Clauset A, Newman ME, Moore C. Finding community structure in very large networks. Phys. Rev. E. 2004;70(6):066111. doi: 10.1103/PhysRevE.70.066111. [DOI] [PubMed] [Google Scholar]
- 38.Lu H, Halappanavar M, Kalyanaraman A. Parallel heuristics for scalable community detection. Parallel Comput. 2015;47:19–37. doi: 10.1016/j.parco.2015.03.003. [DOI] [Google Scholar]
- 39.Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J. Stat. Mechan. Theor. Exp. 2008;2008(10):10008. doi: 10.1088/1742-5468/2008/10/P10008. [DOI] [Google Scholar]
- 40.Dugué, N., Perez, A.: Directed Louvain: Maximizing Modularity in Directed Networks. PhD thesis, Université d’Orléans (2015)
- 41.Hagberg, A., Swart, P., S Chult, D.: Exploring Network Structure, Dynamics, and Function Using Networkx. Technical Report, Los Alamos National Lab.(LANL). Los Alamos, NM (United States) (2008)
- 42.Boeing G. Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban. Syst. 2017;65:126–139. doi: 10.1016/j.compenvurbsys.2017.05.004. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
The used data is public available at: https://www.openstreetmap.org/ (accessed in July 2022).
