Abstract
Neuropsychiatric diseases are a group of disorders that cause significant morbidity and disability. The symptoms of psychiatric disorders include anxiety, depression, eating disorders, autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder, and conduct disorder. Various medicinal plants are frequently used as therapeutics in traditional medicine in different parts of the world. Nowadays, using medicinal plants as an alternative medication has been considered due to their biological safety. Despite the wide range of medications, many patients are unable to tolerate the side effects and eventually lose their response. By considering the therapeutic advantages of medicinal plants in the case of side effects, patients may prefer to use them instead of chemical drugs. Today, the use of medicinal plants in traditional medicine is diverse and increasing, and these plants are a precious heritage for humanity. Investigation about traditional medicine continues, and several studies have indicated the basic pharmacology and clinical efficacy of herbal medicine. In this article, we discuss five of the most important and common psychiatric illnesses investigated in various studies along with conventional therapies and their pharmacological therapies. For this comprehensive review, data were obtained from electronic databases such as MedLine/PubMed, Science Direct, Web of Science, EMBASE, DynaMed Plus, ScienceDirect, and TRIP database. Preclinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common psychiatric disorders. The mechanisms of action of the analyzed biocompounds are presented in detail. The bioactive compounds analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in the pharmacotherapy of neuropsychiatric diseases. Although comparative studies have been carefully reviewed in the preclinical pharmacology field, no clinical studies have been found to confirm the efficacy of herbal medicines compared to FDA-approved medicines for the treatment of mental disorders. Therefore, future clinical studies are needed to accelerate the potential use of natural compounds in the management of these diseases.
Keywords: neuropsychiatric disorders, natural compounds, pharmacological mechanisms, bioactive compounds, preclinical pharmacology
1 Introduction
Neuropsychiatric disorders are a group of disorders that cause great morbidity and disability. Globally, the psychiatric disorder’s prevalence is estimated at 6.7%. The symptoms of psychiatric disorders include anxiety, depression, eating disorders, autism spectrum, attention-deficit/hyperactivity, and conduct disorder. Different studies have been probed to clarify the basic molecular mechanism involved in such a disease’s occurrence. Recently, it has been shown that early-life experiences can affect adulthood behaviour. Nurturance, genetics, and environment are important factors that influence behaviour in adulthood. Like other multifactorial disorders, non-genetic factors are important factors in the aetiology of this condition (Martens and van loo, 2007; Cannon and Greenamyre, 2011).
Neuropsychiatric disorders are dealing with mental and cerebral disorders often associated with brain dysfunction (Yudofsky and Hales, 2002; Nussbaum et al., 2017). Many researchers use beneficial therapies with the least side effects to treat these patients. Therefore, choosing the right type of treatment depends on the variety of diseases that the person is suffering from (Reddy et al., 2020). Patients with any brain injury are more sensitive to the side effects of chemical drugs than patients without injury. Therefore, the physician should be careful in choosing the appropriate type of medication, dose, and duration of treatment (Silver et al., 1990; Silver et al., 1991; Silver et al., 1994). Numerous studies on animal models have shown that some chemical drugs, such as haloperidol, benzodiazepines, and clonidines, may interfere with the recovery of neuronal damage and eventually disrupt the normal physiological processes in the brain (Kuhn et al., 2019). Current medications for neuropsychiatric diseases mainly target disease symptoms. Therefore, there is a critical necessity to develop therapeutics which can delay, stop or reverse the progression of the condition (Paul and Snyder, 2019).
Clinical studies use antioxidants to interfere in disease progression, but the results are not satisfactory. Most of the antioxidants non-specifically target neuroprotective pathways. Consequently, new studies are needed to discover new potential agents that restore redox balance along with reducing neuronal damage (Underwood et al., 2010). Nowadays, using medicinal plants as an alternative medication has been considered due to their biological safety (Quetglas-Llabrés et al., 2022). In this article, we discuss the most important and common psychiatric illnesses mentioned in various studies along with conventional therapies and their pharmacological therapies.
2 Search methodology
For this comprehensive review, data were obtained from electronic databases such as MedLine/PubMed, Science Direct, Web of Science, EMBASE, DynaMed Plus, ScienceDirect, and TRIP database. The following MeSH terms were used for the search: “Plants, Medicinal”, “Antidepressive Agents/isolation and purification,” “Antidepressive Agents/pharmacology,” “Action Potentials/drug effects,” “Animals,” “Disease Models,” “Animal, Plant Bark/chemistry,” “Plant Extracts/chemistry,” “Serotonin/metabolism,” “Synapsis agonists,” “Brain/drug effects,” “Brain/metabolism,” “Seizures/prevention and control,” “Attention Deficit Disorder with Hyperactivity/drug therapy,” “Phytotherapy/methods,” “Phytotherapy/adverse effects,” “Evidence-Based Medicine,” “Treatment Outcome,” “Autism/natural products/treatment,” “schizophrenia/natural products/treatment.” Preclinical pharmacological studies were included to explain the effects and potential mechanisms of natural bioactive compounds in some common neuropsychiatric disorders. Only papers written in English that included the potential mechanisms of natural compounds in psychiatric disorders were selected. The plants’ taxonomy has been validated according to PlantList (Heinrich et al., 2020; Plantlist, 2021). Duplicate papers, communications, and studies that included homeopathic preparations or other brain conditions such as tumors were excluded.
3 Treatment of neuropsychiatric disorders in conventional meaning, using approved drugs and bioactive compounds: Underlying potential mechanisms
3.1 Major depressive disorder
Major depressive disorder (MDD) is identified by two characteristics: depressive state in several conditions and apathy with somatic and cognitive disturbances (World Health Organization, 1992; Otte et al., 2016; Vlad et al., 2020). The most common time of onset is between the ages of 20 and 30, and women are twice as likely as men to be affected (American Psychiatric Association, 1980; Wulff et al., 2015). Its lifetime prevalence is 16.6% per person (Weissman and Olfson, 1995; Kessler et al., 2005). The physiopathology of the disease is not yet clear, but it is associated with abnormalities in the brain’s monoamine receptors or neurotransmitters, metinflammation conditions and as well as the serotonergic, noradrenergic, and neuropeptide systems are abnormal (Manji et al., 2001; Charney and Manji, 2004). Numerous studies have shown that the hypothalamic-pituitary-adrenal (HPA) axis is involved in this process and contributes to neuronal atrophy (Nestler et al., 2002; Mann and Currier, 2006).
3.1.1 Treatment of major depressive disorder using approved drugs
Conventional disease treatments include lifestyle changes such as exercise and smoking cessation (Goldberg et al., 2005; Taylor et al., 2014), somatic treatments such as electroconvulsive therapy (effective in resistant depression) (Paul et al., 1981; Prudic et al., 1996), focused psychotherapies (such as relaxation and mindfulness, behavioural therapy, and interpersonal therapy) (DeRubeis et al., 2005), and pharmacotherapy.
Pharmacotherapeutic therapies include selective serotonin reuptake inhibitors (SSRIs) such as citalopram, escitalopram, paroxetine, etc. (Papakostas, 2010); serotonin-norepinephrine reuptake inhibitors (SNRIs) such as venlafaxine (Stahl et al., 2005); tricyclic antidepressants such as ampitripitillin, clomipramine, doxepine, etc. (Moore and O’Keeffe, 1999); and monoamine oxidase inhibitors (MAOIs) such as phenelzine, vortioxetine and others (Table 1 (Quitkin et al., 1984; Quitkin et al., 1988).
TABLE 1.
Approved drugs and their biological function in the treatment of important neuropsychiatric disorders.
| Disease | Main group of drugs | Biological functional | References |
|---|---|---|---|
| MDD | Citalopram (Celexa) | Serotonin reuptake inhibitors (SSRIs) | (Fava et al., 2004; Papakostas, 2010; Ravindran and Stein, 2010) |
| Escitalopram (Lexapro) | |||
| Paroxetine (Paxil, Paxil CR) | |||
| Sertraline (Zoloft) | |||
| Fluvoxamine (Luvox) | |||
| Fluoxetine (Prozac) | |||
| Venlafaxine (Effexor, Effexor XR) | Serotonin-norepinephrine reuptake inhibitors (SNRIs) | Stahl et al. (2005) | |
| Desvenlafaxine (Pristiq) | |||
| Duloxetine (Cymbalta) | |||
| Amitriptyline (Elavil) | Blocking the activity of serotonin 5-HT2 receptors | (Snyder and Yamamura, 1977; Preskorn and Simpson, 1982; Lavoie et al., 1990; Atkinson et al., 1998; Moore and O’Keeffe, 1999; Menza et al., 2009) | |
| Clomipramine (Anafranil) | |||
| Doxepin (Adapin) | |||
| Imipramine (Tofranil) | |||
| Trimipramine (Surmontil) Desipramine (Norpramin) Nortriptyline (Pamelor) Protriptyline (Vivactil) | |||
| Amoxapine (Asendin) | |||
| Maprotiline (Ludiomil) | |||
| Phenelzine (Nardil) Tranylcypromine (Parnate) Isocarboxazid (Marplan) | Monoamine oxidase inhibitors (MAOIs) | (Quitkin et al., 1984; Quitkin et al., 1988; Lane and Baldwin, 1997; Association, 2006) | |
| Selegiline (Eldepryl) | |||
| Selegiline transdermal (Emsam) | |||
| Schizophrenia | First-generation antipsychotics (Phenothiazines, Butyrophenones, Thioxanthenes, Dihydroindolones, Dibenzepines, Diphenylbutylpiperidines) | Dopamine antagonist (Blocking dopamine receptors) | Freedman, (2010) |
| Second-generation antipsychotics (clozapine, olanzapine, quetiapine, risperidone, paliperidone, ziprasidone, and molindone | Serotonin-Dopamine Antagonists (D2, 5-HT1A, and 5-HT2A receptors) | (Gupta et al., 1994; Seeger et al., 1995; Möller, 2005; Schmid et al., 2014; Brenner and Stevens, 2017) | |
| Third-generation antipsychotics (aripiprazole, brexpiprazole and cariprazine) | D2 partial agonists | (Burris et al., 2002; Shapiro et al., 2003; De Deurwaerdère, 2016; Hope et al., 2018) | |
| Autism | Risperidone | Serotonin-Dopamine Antagonists | (Leskovec et al., 2008; Rapin and Tuchman, 2008; Ji and Findling, 2015) |
| Aripiprazole | |||
| Fluoxetine and fluvoxamine | Serotonin reuptake inhibitors (SSRIs) | Johnson and Myers, (2007) | |
| Methylphenidate | Norepinephrine—dopamine reuptake inhibitor (NDRI) | ||
| Bipolar Disorder | mood stabilizers (Lithium, Divalproex, Carbamazepine) | ↓ norepinephrine release and increasing serotonin synthesis | (Allen et al., 2006; Malhi et al., 2009; Miura et al., 2014) |
| antipsychotic drugs (aripiprazole, Quetiapine, Risperidone, Olanzapine, Paliperidone) | Blocking dopamine D2 receptors | Jain, (2020) | |
| ADHD | Methylphenidate | Norepinephrine—dopamine reuptake inhibitor (NDRI) | Storebø et al. (2015) |
| Viloxazine | Norepinephrine reuptake inhibitor | Banaschewski et al. (2004) | |
| Atomoxetine | Norepinephrine reuptake inhibitor | ||
| Bupropion | Norepinephrine–dopamine reuptake inhibitor (NDRI) and antagonist of several nicotinic acetylcholine receptors | ||
| Guanfacine | Activating α2A adrenoceptors | ||
| clonidine | Agonist of alpha-2A adrenergic receptor | ||
| Epilepsy | Phenytoin | Sodium channel blocker | (Nevitt et al., 2018; Nevitt et al., 2019) |
| Carbamazepine | Uk, (2012) | ||
| Valproate | |||
| Lamotrigine | |||
| Levetiracetam | |||
| Phenobarbital | ↑chloride ions into post-synaptic neuron s | ||
| ↓excitability of the neurons | Newton and Garcia, (2012) |
3.1.2 Treatment of major depressive disorder and bioactive compounds
MDD is a significant prospect of global mental and economic burden. In most patients, the specific clinical features following symptoms such as sleep dysregulation, depressed mood, fatigue, suicidal thoughts, and loss of interest and appetite are observed (Yeni et al., 2022). The change in serotonin, norepinephrine and dopamine levels has been linked to clinical symptoms based on the monoamine hypothesis (Shyn and Hamilton, 2010; Willner et al., 2013).
Some plants are effective in modifying the mood by the effect on the monoamine neurotransmission, similar to Hypericum perforatum, as well as have an impact on GABA, opioid, and cannabinoid systems (Table 2) (Spinella, 2001; Heinrich et al., 2017).
TABLE 2.
Summarizes the effects and potential effects for the most important phytochemicals as a promising therapy for treating major depressive disorders.
| Compounds | Main group of compounds | Verified effective concentrations/model | Potential effects | References |
|---|---|---|---|---|
| Alkaloids | membrane-like alkaloids | Dose = 25 mg randomized double-blind placebo-controlled study | ↑amygdala response to scary facial expressions | (Chiu et al., 2014) (Chiu et al., 2017) (Gericke and Van Wyk, 2001b) (Napoletano et al., 2001; Houslay et al., 2005) |
| ↑serotonin | ||||
| ↓cAMP | ||||
| Curcumin | Dose = 5–10 mg/kg mice | ↑NA | (Xu et al., 2005b; Darvesh et al., 2012) | |
| ↑serotonin in the frontal cortex and hippocampal brain | Xu et al. (2007) | |||
| ↓MAO-A, ↓MAO-B | Wang et al. (2008) | |||
| Phenolic Phytochemicals | in vivo | ↑hippocampal neurogenesis | Li et al. (2009) | |
| Modulation of the serotoninergic system | Lin et al. (2011) | |||
| ↓AC/cAMP, ↓cAMP | (Wang et al., 2008; Wang et al., 2010) | |||
| ↓glutamate | Kulkarni et al. (2008) | |||
| ↑neurotrophic factors | ||||
| ↑serotonin, ↑dopamine | ||||
| Amentoflavone | Dose = 6.25–50 mg/kg mice | ↓immobility inhibition flumazenil binding to GABA receptor | Ishola et al. (2012), Baureithel et al. (1997) | |
| in vivo | ||||
| Chlorogenic acid | Dose = 200–400 mg/kg mice | ↓MAOB, ↓ ROS | (Wu et al., 2016; Lim et al., 2018) (Park et al., 2010) (Chen et al., 2021) | |
| in vivo | ↑ axon and dendrite growth | |||
| ↑serotonin release through enhancing synapsin expression act through the opioidergic pathway | ||||
| ↑ neuroinflammation and oxidative stress | ||||
| Ellagic acid | Dose = 25–100 mg/kg mice | ↓immobility period in both FST and TST effect in monoaminergic neurotransmitter receptors | Girish et al. (2012) | |
| in vivo | ||||
| Ferulic acid | Dose = 0.01–10 mg/kg mice | ↓ serotonin reuptake anti-inflammatory | (Zeni et al., 2012) (Sasaki et al., 2019) | |
| in vivo | antioxidant | |||
| neuroprotective | ||||
| Fisetin | Dose = 10–25 mg/kg mice | ↓MAO | (Zheng et al., 2008; Zhen et al., 2012; Yao et al., 2020) | |
| in vivo | ↓5-HT, ↓NA, ↓DA reuptake | |||
| ↓oxido-nitrosative stress, ↓ROS, anti-inflammatory effect | ||||
| Quercetin | Dose = 50–100 mg/kg mice | depression-like effect through the participation of α2 adrenergic receptors in its mechanism of action | (Anjaneyulu et al., 2003; Clarke and Ramsay, 2011) | |
| in vivo | ↓MAO isoenzymes | Yoshino et al. (2011) | ||
| ↑ BDNF | (Fang et al., 2020) | |||
| Regulation of Copine 6 and TREM1/2 imbalance | ||||
| Resveratrol | Dose = 20–80 mg/kg mice | ↓immobility period in mouse models of behavioral despair without affecting locomotor activity.↑noradrenaline, ↑serotonin | (Yáñez et al., 2006; Xu et al., 2010a) | |
| in vivo | ↓MAO isoenzymes | |||
| ↓ serotonin uptake | ||||
| Hesperidin | Dose = 0,1–1 mg/kg mice | ↓immobility period and the antidepressant-like activity was independent of alterations in locomotor activity anti-inflammatory | (Raza et al., 2011; Carlos Filho et al., 2013) | |
| in vivo | antioxidant activity | |||
| Rutin | Dose = 0,1–3 mg/kg mice | ↓inactivity in TST modulation of monoaminergic neurotransmitter systems | (Machado et al., 2008; Ramos-Hryb et al., 2018)) | |
| in vivo | ||||
| Naringenin | Dose = 0,1–50 mg/kg mice | ↓immobility in the TST | (Olsen et al., 2008) (Olsen et al., 2008) (Olsen et al., 2008) (Olsen et al., 2008) (Olsen et al., 2008) (Olsen et al., 2008) (Olsen et al., 2008) (Olsen et al., 2008) (Olsen et al., 2008) | |
| in vivo | ↓pro-inflammatory mediators | |||
| Proanthocyanidins polyphenols | Dose = 25–50 mg/kg mice | ↓alterations in the locomotor activity | (Xu et al., 2010b; Wang et al., 2012) | |
| in vivo | ↑serotonin | |||
| ↑noradrenaline | ||||
| ↑synaptic plasticity | ||||
| Nobiletin | Dose = 25–100 mg/kg mice | ↓immobility period in both FST and TST serotoninergic, noradrenergic, dopaminergic effects | Yi et al. (2011) | |
| in vivo | ||||
| Tannins | Tannic acid | Dose = 30 mg/kg rats | ↑levels of monoaminergic neurotransmitters in the brain | Luduvico et al. (2020) |
| in vivo | Non-selective inhibitor of monoamine oxidase | |||
| Iridoids | Geniposide | Dose = 25, 50, 100 mg/kg rats | Upregulation the hypothalamic GRα mRNA level | Cai et al. (2015) |
| in vivo | Upregulation the GRα protein expression | |||
| Coumarins | Scopoletin | Dose = 1–100 mg/kg mice | Activation of postsynaptic α1- and α2-adrenoceptors | Capra et al. (2010) |
| in vivo | ||||
| Umbelliferone | Dose = 15 mg/kg, 30 mg/kg rats | Downregulation of Rho-associated protein kinase (ROCK) signaling | Qin et al. (2017) | |
| in vivo | Upregulation of protein kinase B (Akt) signaling | |||
| Hypericum perforatum | Monoamine reuptake inhibitor | Sarris et al. (2021) | ||
| Supportive towards the hypothalamic pituitary adrenal axis |
Symbols: ↑, increase, ↓, decrease.
For example, membrane-like alkaloids in plants like Narcissus (Amaryllidaceae) and Sceletium have potential antidepressant properties (Hanks, 2002; Berkov et al., 2020). Narcissus is a source of neuroactive substances like galantamine that has been used in the treatment of Alzheimer’s disease (Smith et al., 1996). Mesembrine-like alkaloids demonstrated some SSRI activity in mood disorders (Gericke and Van Wyk, 2001a). In addition, mesembrine alkaloids have been shown to phosphodiesterase-4 (PDE-4) inhibition. They act by changing the levels of cyclic AMP (cAMP) as well as the induction of Brain-Derived Neurotrophic Factor (BDNF) mRNA, which has an antidepressant effect in patients who accompany MDD (Fujimaki et al., 2000).
Polyphenols like curcumin (Curcuma longa) are strongly recommended in the treatment procedures for MDD (Darvesh et al., 2012) (Table 2). Some authors reported that curcumin affects stressed mice by modulation of the various neurotransmitter systems in forced swim test (FST), similar to imipramine affection (Xu et al., 2005a; Xu et al., 2007). In another study, modulation of the serotoninergic system was approved via the cAMP pathway induced by curcumin (Li et al., 2009). Also, glutamate receptors are involved in curcumin’s antidepressant effect by inhibiting the presynaptic voltage-gated calcium channels (Lin et al., 2011). In one study, the inhibitory effect of curcumin on glutamate release and the enhancement of the antidepressant activity of fluoxetine were reported (Kulkarni et al., 2008; Wang et al., 2008; Wang et al., 2010; Lin et al., 2011; Zhang et al., 2013). In the reports, apigenin, one of the bioflavonoids in behavioral test models, displayed significant anti-immobility action and neurotransmitters turnover induction in the mice model (Nakazawa et al., 2003). Moreover, haloperidol reversed the antidepressant action of apigenin (Han et al., 2007). The molecular mechanism behind its antidepressant activity was the inhibition of interleukin 1β and the activation of NLRP3 inflammasome in rat brains (20 mg/kg b. w., intragastrically) (Li et al., 2016). Amentoflavone is a bioflavonoid apigenin dimer (Hossain et al., 2021; Rajib et al., 2021), inhibited the flumazenil binding to rat brain at GABA receptors (Gutmann et al., 2002; Colovic et al., 2008; Ishola et al., 2012). Some authors reported that oral administration of amentoflavone in forced swim test (FST) was more potent than imipramine (Ishola et al., 2012).
In other studies, chlorogenic acid, a polyphenol (in coffee), could enhance mood in patients (Cropley et al., 2012). The mechanism of the antidepressant action of chlorogenic acid was hypothesized to act through the opioidergic pathway (Kwon et al., 2010; Park et al., 2010; Girish et al., 2012), but also reduce neuroinflammation and oxidative stress conditions (Chen et al., 2021). Ferulic acid (FA) induces an anti-immobility effect in behavioral despair models, including FST and TST (Zeni et al., 2012) and can be effectively supplemented in depressive disorders accompanying epilepsy (Singh and Goel, 2016). Some research showed the antidepressant activity of quercetin bioflavonoid by inhibiting MAO activity in the brain (Figure 1) (Butterweck et al., 2000; Haleagrahara et al., 2009; Clarke and Ramsay, 2011; Lam et al., 2012; Soofiyani et al., 2021) and by regulating the copine 6 and TREM1/2 imbalance related to the BDNF factor (Fang et al., 2020). In addition, quercetin showed antidepressant-like action in streptozotocin-induced diabetic mice compared to fluoxetine or imipramine (Kaur et al., 2007; Kawabata et al., 2010). Quercetin in some studies showed the inhibition of the breakdown of serotonin neurotransmitters in mouse brain mitochondria (Yoshino et al., 2011). The other molecule, hesperidin reduced the immobility period in the locomotor activity animal model (Souza et al., 2013).
FIGURE 1.
Schematic illustration of the possible mechanisms of natural compounds in neuropsychiatric disorders. Abbreviations and symbols: ↑, increase; ↓, decrease; TNF-α, Ca2+ tumour necrosis alpha; IL, interleukin; SOD, superoxide dismutase; MAO, monoaminoxidase; PDE-4, phosphodiesterase 4; cAMP, cyclic adenosine monophosphate; BDNF, brain-derived neurotrophic factor.
Other acts of hesperidin are anti-inflammatory (reduction of TNF-α, Interleukin 1 beta (IL-1b) levels) and antioxidant activity in strokes (Figure 1) (Raza et al., 2011). Hypericum perforatum has a glycoside flavonol—rutin–that is used for the treatment of depression (Machado et al., 2008; Galeotti, 2017 ) and exhibits anti-inflammatory properties (Parashar et al., 2017) and immobility time-reducing action (30–120 mg/kg p.o. in mice) (Yusha’u et al., 2017). Rutin showed spatial memory enhancement and increased the levels of natural polyphenols in managing significant depression in the hippocampus of aged rat brains (Pyrzanowska et al., 2012). Resveratrol, another phenolic compound in grapes, significantly decreases the immobility period in animal models of locomotor activity and increases noradrenaline and serotonin levels (Yáñez et al., 2006; Xu et al., 2010b; Park et al., 2012; Zhang et al., 2012). The antidepressant action of resveratrol increased dopamine in the brain of female mice, similar to synthetic estrogen (Di Liberto et al., 2012). The antidepressant activity of the anthocyanidins in animal models was indicated by scientists and antidepressant activity in the animal model was due to the change in the locomotor activity (Xu et al., 2010a; Yi et al., 2011).
3.2 Schizophrenia
3.2.1 Treatment of schizophrenia using approved drugs
Another mental disorder characterized by periods of continuous or recurrent psychosis with symptoms such as delusions, hallucinations, disorganized speech or behaviour, and impaired cognitive ability is called schizophrenia (World Health Organization, 1992; Lavretsky, 2008). The most important pathophysiological cause of the disease is abnormalities in neurotransmitters such as dopamine, serotonin, glutamate, aspartate, glycine, and gamma-aminobutyric acid (GABA) (Lavretsky, 2008). The prevalence of the disease in the United States is estimated to be between 0.6 and 1.9, and the prevalence is the same in men and women, but the onset of symptoms is seen faster in men than in women (Wu et al., 2006; Van Os and Kapur, 2009).
3.2.2 Treatment of schizophrenia and bioactive compounds
Schizophrenia treatment is divided into two categories: pharmacological and non-pharmacological: non-pharmacological treatments include targeting symptoms, preventing recurrence of the disease, and increasing adaptive function to eventually return the person to the community (Dipiro et al., 2014). The individual, group, and cognitive-behavioural psychotherapeutic therapies can also be used in non-pharmacological treatments (Dickerson and Lehman, 2011). Drug therapies include the use of first-generation antipsychotics, which are dopamine and serotonin antagonists such as lumateperone, risperidone (Marder and Meibach, 1994; Blair, 2020), clozapine (Leponex) (Stahl and Meyer, 2020), olanzapine (Zyprexa) (Bhana et al., 2001), quetiapine (Komossa et al., 2010), and ziprasidone (Lüllmann and Mohr, 2006). Also, fluoxetine was proved to bring positive outcomes when administered to patients, as it induced slight decrease in depressive symptoms (Spina et al., 1994). Some classifications of natural products are determined for their antipsychotic potentials, such as terpenoids, beta-caryophyllene, and limonene. Also, the antipsychotic saponin, polygalasaponin, was recognized for possessing antipsychotic properties by inhibiting cannabinoid receptors (Chung et al., 2002; Ajao et al., 2018). In the study of Abdul Rahim et al. 2022 Polygonum minus leaf extract (100 mg/L, 4 days) was found to decrease the level of cortisol in a zebrafish anxiety model, similarly to fluoxetine. In another study, a coumarin–scopoletin was described as an antidopaminergic agent with a U-shaped dose dependent activity towards the stereotyped behaviors in mice. The dose of 0.1 mg/kg b. w. (per os) was found effective in the alleviation of positive symptoms of schizophrenia psychosis. Another natural product, the derivative of anthracene–emodin was found to interfere with the schizophrenic responses induced in murine models (Mitra et al., 2018). The attenuation of pre-pulse inhibition and improvement of startle reponses were observed in neonatal rats treated with 15 and 50 mg/kg emodin in a subchronic model. Its possible mechanism of action may be related to the stimulation of the phosphorylation process of both ErbB1 and ErbB2. The efficacy of curcumin was determined in several in vivo clinical trials. This phenolic compound from turmeric tuber was administered to 36 schizophrenic patients (360 mg/day for 8 weeks) in a double-blind, placebo-controlled study to research its impact on the BDNF that is engaged in the neurodegeneration and cell survival processes (x). The compound was found to increase the level of BDNF. Furthermore, Hosseininasab and co-investigators (2021) described the influence of curcumin on both positive and negative symptoms in an 8-weeks- long clinical trial with 300 mg of curcumin added to the conventional medication. Curcumin was proved to alleviate memory processes and decrease the IL-6 levels and was well-tolerated by the patients. Table 3 presents natural products and their mechanism of action which were tested in the treatment of schizophrenia.
TABLE 3.
The most representative bioactive compounds and their major effects in treatment and prevention of schizophrenia.
| Disease | Main group of compounds | Neuro-biological functions | References | |
|---|---|---|---|---|
| Schizophrenia | Alkaloids | Huperzine A | reversible AChE inhibitor | (Zangara, 2003; Wang et al., 2006) |
| L-SPD | agonist on D1 receptors in the medial prefrontal cortex (mPFC) | Mo et al. (2007) | ||
| Polygonum minus leaf extract | ↓ cortisol level in zebrafish model | (Nurhidayaha et al., 2022) | ||
| Coumarin | Scopoletin | ↓positive symptoms and stereotyped behavior | Pandy and Vijeepallam (2017) | |
| Antidopaminergic activity | ||||
| Anthraquinone | Emodin | ↑ phosphorylation process of both ErbB1 and ErbB2 | Mitra et al. (2022) | |
| ↓ pre-pulse inhibition and improvement of startle reponses in rats dose = 15–50 mg/kg b.w | ||||
| Phenolic compounds | Curcumin | improvement of positive and negative scales | Hossain et al. (2021) | |
| ↓ IL-6, ↑BDNF | Wynn et al. (2018) | |||
| 24-weeks, double-blind, randomized, placebo-controlled study on thirty-eight patients with chronic schizophrenia. 3,000 mg/d curcumin or placebo combined with antipsychotics. significant response to curcumin in the treatment of negative symptoms | Miodownik et al. (2019) | |||
3.3 Bipolar disorder
Bipolar disorder or chronic manic depression manifests as a recurrent illness with symptoms of depression or manic (Jann, 2014). The disease most often affects adolescents or adults, and sometimes the elderly (Tiihonen et al., 2017). The disease is classified into two categories: type I (episodes of depression and persistent mania) and type II (episodes of depression and hypomania) (Cooper, 2018). The prevalence of this disease worldwide is 1%–3% and its incidence is the same in men and women considering different ethnicities and races (Ferrari et al., 2011; Moreira et al., 2017). The exact pathophysiology of the disease has not yet been determined, but more than 85% of cases are due to heredity (McGuffin et al., 2003). It has been shown that there is a relative overlap of the catechol-o-methyltransferase (COMT) gene for schizophrenia and bipolar disorder, which controls dopamine metabolism (Berrettini, 2003; Murray et al., 2004).
3.3.1 Treatment of bipolar disorder using approved drugs
To treat Bipolar Disorder, two psychosocial methods (using physical methods to establish individual relationships to help change the behaviour of the individual in society) (Woodward, 2015) and pharmacological therapies are used. Medications include the use of mood stabilizers such as lamotrigine, lithium, clozapine, divalproex, carbamazepine, olanzapine, and atypical antipsychotics such as quetiapine, risperidone, aripiprazole, and ziprasidone; and antidepressants such as bupropion and SSRIs (Jain, 2020). Herbal products can be considered to treat symptoms of insomnia and anxiety in bipolar patients. Valerian, chamomile, ginkgo, hops, and passionflower might be beneficial. However, some of their constituents’ effectiveness and safety have not been approved and need more studies (Baek et al., 2014).
3.3.2 Treatment of bipolar disorder and bioactive compounds
Oxidative stress is one of the major factors described in the etiology of mania. That is why several experimental studies focus on the development of drug candidates that could restore oxidation-reduction balance. In the light of this information, natural products that are proved to exhibit antioxidant properties are important to drug candidates in the reduction of manic episodes (Recart et al., 2021). Herbal intervention in bipolar disorder is recommended and prescribed, accompanied by mood stabilizers (Currier and Trenton, 2002; Mohr et al., 2005). Hypericum perforatum might not be used in patients alone. A clinical trial using ashwagandha provided substantial benefits for cognitive performance compared with a placebo (Chengappa et al., 2013). Ethanolic extracts of saffron (Crocus sativus) have been used in preclinical animal models, and its constituents, safranal, and crocin have shown antidepressant effects (Hosseinzadeh and Noraei, 2009). Curcuma longa (turmeric) and H. perforatum (St John’s wort) are other plants used in various nervous system disorders and have been used over the past decades in the treatment of MDD (Gopi et al., 2017; Kunnumakkara et al., 2017). Acute and chronic administration of carvone (50 and 100 mg/kg, i. p.)—a monoterpene present in volatile oils of several plant species, e.g., Mentha spp., Carum carvi, and others–in a methylphenidate mice mania model resulted in a decreased locomotor activity in the tested animals, possibly thanks to the GABAergic activity and sodium channels blockage (Nogoceke et al., 2016). Gallic acid (GA) a phenolic acid that is widely spread in the plant kingdom was used in the treatment of ketamine-induced mania in rats and compared to the action of lithium. Similarly to lithium (45 mg/g twice a day) GA (50 and 100 mg/kg) administered for 14 days decreased the hyperlocomotion of the animals, induced the antioxidant properties and prevented the cholinergic disfunctions in the brain (Recart et al., 2021). In the studies of Kanazawa and collaborators (2016, 2017) quercetine administered intraperitoneally (10–40 mg/kg b. w.) showed antioxidant properties and inhibition of protein kinase C. In turn the flavonoid regulated sleep deprivation and diminished the induced hyperlocomotion in mice. Table 4 summarizes natural compounds which are used in the treatment of bipolar disorders.
TABLE 4.
Bioactive compounds and their major effects in the treatment of bipolar disorders.
| Disease | Main group of compounds | Neuro-biological functions | References |
|---|---|---|---|
| Bipolar Disorder | Ginkgo | ↑cerebrovascular blood flow | Nourbala and Akhoundzadeh, (2006) |
| ↓hyperactivity | |||
| Monoterpenes | GABAergic activity | Nogoceke et al. (2016) | |
| Carvone | ↓ locomotor activity sodium channels blockage | ||
| Phenolic compounds | ↓ free radicals formation | Recart et al. (2021) | |
| Gallic acid | ↓ hyperactivity prevented cholinergic dysfunctions | ||
| Quercetin | ↓protein kinase C | (Kanazawa et al. (2016), Kanazawa et al. (2017) | |
| ↓ hyperlocomotion |
3.4 Autism spectrum disorders
Autism is a disorder of the nervous system that is associated with poor communication, social interaction, and repetitive behaviours, and usually manifests itself in childhood or adolescence (Landa, 2008; Tuchman et al., 2010; Edition, 2013). Causes of autism include immaturity of brain parts (London, 2007), brain-intestinal axis abnormalities (Wasilewska and Klukowski, 2015; Israelyan and Margolis, 2019), synaptic dysfunction (Levy and Ds, 2009), and mutations in the genes of cellular adhesion proteins involved in the synaptic region (Walsh et al., 2008). The prevalence of this disease is 10–16 per 10,000 people, and boys are more likely to develop autism than girls (Fombonne, 2006; Fombonne, 2009). The rate of disease in the United States is increasing every year (Newschaffer et al., 2007).
3.4.1 Treatment of autism spectrum disorders using approved drugs
The treatment for autism includes two categories: pharmacological and non-pharmacological: non-pharmacological treatments include parent education (Kilpatrick et al., 2001), applied behavioural analysis (ABA) (Cooper et al., 2007), treatment and education of children with autism (Schopler et al., 2010), and cognitive-behavioural therapy (CBT) (Wood et al., 2009; Reaven et al., 2012). Atypical antipsychotic drugs called risperidone and aripiprazole can be used to treat aggressive and self-harming behaviours caused by autism (Leskovec et al., 2008; Rapin and Tuchman, 2008; Ji and Findling, 2015). Fluoxetine and fluvoxamine can be used to reduce ritualistic and repetitive behaviours. Methylphenidate is also used to treat hyperactivity in children with autism (Dubowitz et al., 2008).
3.4.2 Treatment of autism spectrum disorders and bioactive compounds
Luteolin, a natural plant flavonoid, significantly counteracted IL-6 in astrocytes (Gullotta et al., 1985; Zuiki et al., 2017; Deb et al., 2020) and exhibited neuroprotective, anti-inflammatory activities (Bertolino et al., 2017). Luteolin formulation (NeuroProtek®) was prescribed accompanied to the drugs of children with ASD (Theoharides et al., 2012). Thus, luteolin was used for managing autistic behaviour and improvement of social behaviour (Chen et al., 2008; Tsilioni et al., 2015; Xu et al., 2015). Luteolin also inhibited the stimulation of activated T cells and reduced inflammatory molecules (Kritas et al., 2013). Daily intake of green tea extract (Camellia sinensis), a polyphenols source, is proved to exhibit health effects (Schimidt et al., 2017). This plant enhanced the locomotion activity in valproate-induced autistic mice (Banji et al., 2011; Takeda et al., 2011; Sundberg and Sahin, 2015; Kumaravel et al., 2017; Urdaneta et al., 2018). Major antioxidant enzymes such as superoxide dismutase were increased by catechin, in autistic children (Rossignol and Frye, 2014). The action of the piperine, a major alkaloid isolated from pepper species, displays considerable anti-oxidative effects and enhancement of memory with the regulation of Ca2+ ion entry into the neurons and the presynaptic release of glutamine (Wattanathorn et al., 2008; Fu et al., 2010; Pragnya et al., 2014). Piperine is progressing its future beneficial effects in autistic children (Wattanathorn et al., 2008).
Curcumin in Curcuma longa was found for its neuroprotective activities and cellular signalling role in regulating oxidative stress (Salehi et al., 2020). Moreover, curcumin could reduce inflammatory factors in diseases and exhibit antioxidant radical scavenging activities (Salehi et al., 2019a; Quispe et al., 2022). As a potential treatment for autism, Ginkgo Biloba extract was used accompanied by risperidone. The results showed that the treated group indicated fewer adverse effects as compared to the control group (Hasanzadeh et al., 2012). Several studies investigated the role of antioxidants and natural anti-inflammatory products such as curcumin, resveratrol, naringenin, and piperine to reduce the symptoms of autism spectrum disorder (in vivo and in vitro). In a study, curcumin increased the level of antioxidant enzymes and helped diminish dysfunctions. Curcumin in the dose of 200 mg/kg in autistic rats can attenuate oxidative stress and release tumor necrosis factor (TNF-α). However, exploring their potential clinical effects and drug delivery methods is essential (Fu et al., 2010; Al-Askar et al., 2017). Table 5 summarizes the effects of bioactive compounds as potential agents in the treatment of autism.
TABLE 5.
Natural products used in the treatment of autism.
| Disease | Main group of compounds | Neuro-biological functions | References | |
|---|---|---|---|---|
| Autism | Polyphenols | Luteolin | neuroprotective | Bertolino et al. (2017) |
| anti-inflammatory | Kritas et al. (2013) | |||
| ↓mast cell-dependent stimulation of activated T cells | ||||
| ↓histamine | ||||
| ↓leukotrienes | ||||
| Camellia sinensis | ↑dopamine | Takeda et al. (2011) | ||
| ↑serotonin | ||||
| Curcumin | Attenuates oxidative stress | (Fu et al., 2010) (Al-Askar et al., 2017) (Salehi et al., 2020) | ||
| ↓ TNF- α | ||||
| ↑ neuroprotective properties | ||||
3.5 Attention deficit hyperactivity disorder
Attention deficit hyperactivity disorder (ADHD) is a mental-behavioural disorder associated with the development of the nervous system that presents with symptoms such as inattention, excessive energy, hyper-fixation, and impulsivity (American Psychiatric Association, 1980; Cotterill, 2019). These people have difficulty controlling their emotions and have difficulty in executive activities (Mandah and Osuagwu, 2020). The exact cause of the disease is not yet fully understood, but in more than 75% of cases, genetic causes are involved (Mandah and Osuagwu, 2020). Also, dysfunction of neurotransmitters such as dopamine and norepinephrine (Chandler et al., 2014; Stansfield, 2019) and signs of signal change in the Central Nervous System (CNS) such as paradoxical reaction is observed in this regard (Langguth et al., 2011). It affects 6%–7% of people in the age group of 18 years (Willcutt, 2012) and the incidence of the disease in men is three times higher than in women (Singh, 2008).
3.5.1 Treatment of attention deficit hyperactivity disorder using approved drugs
Treatments for this disease include behavioural therapies such as psychoeducational input, behaviour therapy, cognitive behavioural therapy, interpersonal psychotherapy, family therapy, school-based interventions, social skills training, behavioural peer intervention, organization training, and parent management training (Health, 2009; Evans et al., 2018; Lopez et al., 2018); Medical counselling; Medications such as stimulants, atomoxetine, alpha-2 adrenergic receptor agonists, and sometimes antidepressants (Wilens and Spencer, 2010; Bidwell et al., 2011); or as a combination therapy. Some studies have recommended the use of methylphenidate (Storebø et al., 2015).
3.5.2 Treatment of attention deficit hyperactivity disorder and bioactive compounds
Natural products, which may be potentially used in the treatment of ADHD were presented in Table 6. American ginseng (Panax quinquefolium) in children with ADHD improved significantly on a social problems measure (Lyon et al., 2001; Trebatická et al., 2006). Another plant, Ginkgo biloba enhanced cerebrovascular blood flow and reduced hyperactivity due to the lack of focus (Nourbala and Akhoundzadeh, 2006). It has been documented that Passiflora might be a novel therapeutic agent for treating ADHD (Salehi et al., 2010; Uebel-von Sandersleben et al., 2014). One study in adults with ADHD revealed that lobeline as an alkaloid improves working memory in patients with no significant impact on the attention noted (Martin et al., 2018). Whereas, a comprehensive study is needed to make more definitive statements regarding the effect of lobeline and the usage of methylphenidate. Lobeline could have different effects based on individual differences. Some pediatric patients with ADHD use natural products such as flavonoids. Although herbal remedies are generally considered safe when used appropriately with other treatment strategies (Martin et al., 2018).
TABLE 6.
Bioactive compounds and their mechanism of action used as potential drugs in the treatment of ADHD.
| Disease | Main group of compounds | Neuro-biological functions | Refs |
|---|---|---|---|
| ADHD | Ginkgo | ↑cerebrovascular blood flow | Nourbala and Akhoundzadeh, (2006) |
| ↓hyperactivity due to boredom and lack of focus | |||
| Panax quinquefolium | Improvement of social problems measure | (Lyon et al., 2001) (Trebatická et al., 2006) | |
| Lobeline | ↑ memory capacities | Martin et al. (2018) | |
| Bacopa monnieri | ↓inattention | Kean et al. (2022) | |
| ↓ error-making | |||
| ↓ hyperactivity | |||
| Pine bark extract | ↓inattention | Hsu et al. (2021) | |
| ↓ hypersensitivity | |||
| ↓ hyperactivity |
A double-blind and placebo-controlled randomized trial (112 males aged 6–14 years) in a population of males supplemented with Bacopa monnieri extract showed the reduction of hyperactivity, inattention and decreased error-making (Kean et al., 2022). Another clinical trial performed in a group of twenty males and females aged 10 ± 2.1 years described by Hsu and co-investigators (2021) denotes that the administration of 25 or 50 mg pine bark extract for 14 days resulted in a significant reduction of in inattention, hyperactivity, and impulsivity.
3.6 Psychiatric disorders associated with epilepsy
Epilepsy is a neurological diseases manifested by recurrent seizures is called epilepsy, which is classified as short and short periods to long and severe periods (Sharifi-Rad et al., 2021b; Kwon et al., 2022). The main mechanisms of epilepsy include abnormal activity in the cerebral cortex, brain damage, stroke, brain tumours, various brain infections, and genetic defects at birth (Begley et al., 2022; Kanner and Bicchi, 2022). The prevalence of this disease varies in different countries and is generally 7.6 people per 1,000 people (Kelvin et al., 2007; Fiest et al., 2017). The incidence of epilepsy is higher in men than in women and affects very young and very old people (Fiest et al., 2017).
3.6.1 Treatment of epilepsy using approved drugs
There are many treatments for epilepsy, including surgery (such as cutting the hippocampus, removing tumors, and removing part of the neocortex) (Ryvlin et al., 2014), specific diet (for instance ketogenic diet) (Martin-McGill et al., 2020), avoidance therapy (reducing or eliminating certain triggers factors such as excessive light) (Verrotti et al., 2005), exercise (Arida et al., 2009), and medication such as midazolam, diazepam (Uk, 2012), lorazepam, phenytoin, lamotrigine, levetiracetam (Uk, 2012), carbamazepine, and valproate, etc. (Nevitt et al., 2018; Nevitt et al., 2019). In Table 2 are summarized data regarding used current pharmacological therapies.
3.6.2 Treatment of epilepsy and bioactive compounds
Lycopene, a carotenoid antioxidant, has neuroprotective properties against oxidative stress and mitochondrial dysfunction in PTZ-induced seizures of epilepsy (Sakurada et al., 2009; Bhardwaj and Kumar, 2016) (Table 7. Some authors reported that the extract of Nardostachys jatamansi (Valerianaceae) and the synergistic use with phenytoin reduced mental weakness as well as enhanced the seizure threshold in the animal model of generalized tonic-clonic seizures (Luszczki et al., 2009; Jiang et al., 2015). Aconitum alkaloids induce their anticonvulsant activities via interaction with voltage-dependent Na+ channels in various experimental models, including PTZ (Charveron et al., 1984; Chen et al., 1996; Lin et al., 2002; Da Silva et al., 2006; Felipe et al., 2007; Da cruz et al., 2013) (Table 7).
TABLE 7.
Phytochemicals and their potential effects in treatment and prevention of neuropsychiatric disorders in epilepsy.
| Compounds | Main group of compounds | Verified effective concentrations/model | Potential effects | References |
|---|---|---|---|---|
| Alkaloids | Aconitum | IC50 = 0,1–1 µM rats hippocampal slices | ↓GABA | Ameri et al. (1996) |
| in vitro | ↓epileptiform activity | |||
| Isoquinoline alkaloids | Montanine | Dose = 64.7–67.6 mg/kg rats | modulation of benzodiazepine GABAA receptors | Da Silva et al. (2006) |
| in vivo | ||||
| Berberine | Dose = 10–20 mg/kg/i.p. mice | modulation of neurotransmitter systems | Bhutada et al. (2010) | |
| in vivo | ||||
| Tetrahydropalmatine | Dose = 10–30 mg/kg/i.p. mice | ↓dopamine output | Lin et al. (2002) | |
| in vivo | ↑ cholinergic receptor function | |||
| Palmatine | Dose = 450 μM/7 days | ↓ locomotor activity | Gawel et al. (2020) | |
| Zebrafish | ↓ BDNF and c-fos levels | |||
| in vivo | ↓ number and mean duration of events | |||
| Amide alkaloid | Piplartine | Dose = 50–100 mg/kg/i.p. mice | ↓epileptiform activity | Felipe et al. (2007) |
| in vivo | ||||
| Ergot alkaloids | no data | different doses | effects at dopaminergic and serotoninergic synapses | Anlezark and Meldrum, (1978) |
| in vivo and in vitro | ||||
| Piperidine alkaloids | piperine | Dose = 1–2.5 mg/kg/i.p. mice | modulation of the GABAergic system | Da cruz et al. (2013) |
| in vivo | ||||
| Flavonoids | Hesperidin | Dose = 500 mg/kg mice | ↓convulsant effects of PTZ | (Dimpfel, 2006; Kumar et al., 2014) |
| in vivo | ↓effects of enhanced calcium | |||
| Apigenin | Dose = 25–50 mg/kg rats | ↓GABA-activated chloride ion channel | Avallone et al. (2000) | |
| in vivo | GABA antagonist | |||
| ↑effect of diazepam of GABA receptors | ||||
| Fisetin | Dose = 10–25 mg/kg mice | antioxidant | Raygude et al. (2012) | |
| in vivo | ↓oxidative damage modulating GABAergic transmission | Liu et al. (2012) | ||
| Wogonin | Dose = 5–10 mg/kg rats | ↑ Cl− influx | Park et al. (2007) | |
| in vivo | ↓ GABA | |||
| Baicalein | Dose = 100 mg/kg rats and mice | ↑Cl− influx antioxidant | (Yoon et al., 2011; Liu et al., 2012) | |
| in vivo | ||||
| Chrysin | Dose = 3 mg/kg rats and mice | Acting on central BZD receptors | Medina et al. (1990) | |
| in vivo | ||||
| Oroxylin A | Dose = 3.67–60 mg/kg rats | antagonistic effects by adverse action on α-2,3,5 subunits of the GABA receptor | Huen et al. (2003) | |
| in vivo | ||||
| Luteolin | Dose = 10 mg/kg rats | ↓frequency of seizures | Birman et al. (2012) | |
| in vivo | ||||
| Hispidulin | Dose = 10 mg/kg rats | positive modulator of GABA receptors | (Kavvadias et al., 2004; Lin et al., 2012) | |
| in vivo | ↓voltage-dependent Ca2+ entry directly interfering with the exocytotic | |||
| Naringenin | Dose = 20–40 mg/kg rats | modulation of the benzodiazepine site of the GABA receptors | (Golechha et al., 2014; Shakeel et al., 2017) | |
| in vivo | ↓lipid peroxidation | |||
| ↓seizures | ||||
| Rutin | Dose = 90 mg/kg, i.p. rats | Interacting with GABAAbenzodiazepine receptor | Nassiri-asl et al. (2008) | |
| in vivo | ||||
| Vitexin | Dose = 90 mg ⁄kg, i.p. rats | ↑GABA | Abbasi et al. (2012) | |
| in vivo | ↓oxidative injury | |||
| Terpenoids | ||||
| α-Terpineol | Dose = 100, 200,400 mg/kg rats | Protective effects against PTZ- and MES-induced convulsive seizures in mice | (De Sousa et al., 2007; Silva et al., 2009) | |
| in vivo | ||||
| Carvacrol borneol | Dose = 50, 100, 200 mg/kg mice | ↓GABA | Quintans-Júnior et al. (2010) | |
| in vivo | ||||
| Isopulegol | Dose = 200 mg/kg rats | Positive modulation of benzodiazepine sensitive | Silva et al. (2009) | |
| in vivo | GABA receptors antioxidant | |||
| Eugenol | Dose = 100 mg/kg rats | ↓neuronal excitability | Huang et al. (2012) | |
| in vivo | ↑Ina inactivation | |||
| ↓INa (NI) | ||||
| Ursolic acid | Dose = 2.3 mg/kg rats and mice | ↓GABA | (Taviano et al., 2007; Kazmi et al., 2012) | |
| in vivo | ||||
| Saponins | Saikosaponin | IC50=1 µM in vitro | Voltage-gated sodium channel blocking | (Yu et al., 2012; Zhu et al., 2014) |
| saponins fractions | Dose = 1, 2, 4 mg/kg mice | ↓GABA | Singh and Goel, (2016) | |
| in vivo | ↓calcium and sodium channel functions | |||
| Phenolic compounds | 6-gingerol | Dose=37.5 μM/6 days | ↓GLU level | (Gawel et al., 2021) |
| Zebrafish | ↓GLU/GABA ratio | |||
| in vivo | ↓ frequency of seizures | |||
| ↓ length of seizures | ||||
| Coumarins | Esculetin | Dose = 1, 2, 5 mg/kg mice | ↓seizures | Woo et al. (2011) |
| in vivo | ↓GABA | |||
| Osthole | Dose = 259–631 mg/kg mice | GABA modulation | (Luszczki et al., 2009; Łuszczki et al., 2010; Zhu et al., 2014) | |
| in vivo | ||||
| Imperatorin | Dose = 300 mg/kg mice | |||
| in vivo | ||||
| Oxypeucedanin | Dose = 300 mg/kg mice | |||
| in vivo |
Many flavonoids like hesperidin that prevent tonic-clonic seizures increased the protective effect of N-nitro-L-arginine methyl ester (L-NAME) on kindling induced by pentylenetetrazole (PTZ) as well as enhanced diazepam’s effect. Phytochemicals and their biological function in the treatment of mentioned neuropsychiatric diseases except psychiatric disorders associated with epilepsy are summarized in Table 7 (Fernández et al., 2005; Kumar et al., 2013; Kumar et al., 2014). Apigenin acts as a GABA antagonist at flumazenil-insensitive α1β2 GABA receptors (Avallone et al., 2000). In addition, naringin has an anticonvulsant effect in kainic acid and PTZ models (Golechha et al., 2011; Golechha et al., 2014; Jeong et al., 2015). An alkaloid, piperine, has been recognized as an adjunct therapy with antiepileptic drugs, carbamazepine, and phenytoin. Administration of piperine could increase the bioavailability of synthetic anti-epilepsy drugs and decrease the adverse effects of synthetic drugs by diminishing the dose. On the other hand, apigenin, a flavonoid, can decrease the myeloperoxidase-mediated oxidative stress and inhibit cell death dependent on iron. It is characterized by the accumulation of lipid peroxides (ferroptosis) for rapidly discovering additional antiepileptic agents to prevent and treat epilepsy. Moreover, apigenin and other flavonoids have potentially antiepileptic and neuroprotective activity by inhibiting the glutamate receptors in mice (Aseervatham et al., 2016; Shao et al., 2020).
Zebrafish model was found to be an efficient screening method for the development of new drug candidates with antiseizure properties. In the studies of Gawel and co-investigators, palmatine from Beberis sibirica and 6-gingerol isolated from Zingiber officinale were effectively reducing the length of seizures and their number. The effect of 6-gingerol administration might have been achieved by the reduced glutamate and glutamate-to-GABA ratio levels in the fish brains analyzed by HPLC-MS instrumentation (Gawel et al., 2021). The administration of palmatine (450 μM, 7 days) decreased c-fos and BDNF levels, whereas, in the behavioral assay, palmatine decreased locomotor activity of animals. The described activity was higher in the combination with berberine (Gawel et al., 2020).
4 Limitations, challenges and clinical gaps
Psychiatric disorders are mental health problems characterized by different symptoms. The classification of mood disorders is still ambiguous. Some categories are defined as subgroups due to the symptoms (Enatescu et al., 2020; Trofor et al., 2020). The cause of these disorders is social, environmental, genetic issues, or psychotropic drugs. Neurological and psychiatric disorders account for 13% of the world’s total complications (Mondiale de la Santé, 2013). Many natural remedies are alternative procedures to increase the effectiveness of prescription drugs (Akhondzadeh, 2007; Salehi et al., 2019b; Sharifi-rad et al., 2021a). Herbal medicines contain a wide range of medicinal compounds with therapeutic effects (Butnariu et al., 2022; Taheri et al., 2022). Nowadays, many synthetic drugs originated from herbal medicines (Sharifi-rad et al., 2021d; Alshehri et al., 2022). Herbal medicines are still used in many diseases, primarily mental and neurological disorders (Sharifi-Rad et al., 2021c; Tsoukalas et al., 2021). According to the group of authors, plants used in traditional medicine contain main groups of components (Hossain et al., 2022; Painuli et al., 2022; Sharifi-Rad et al., 2022). Tropane alkaloids (antagonists of acetylcholine) known as atropine, scopolamine, and hyoscyamine isolated from Datura sp. have some anticholinergic activities (Taïwe and Kuete, 2014). For instance, scopolamine is an anti-muscarinic used as a sedative and analgesic (Steenkamp et al., 2004). The anti-muscarinic and anticholinergic effects of these compounds may explain the use of Datura in treating mental illness (Maiga et al., 2005). Anxiety effects and neuroprotective activity have been reported in flavonoids. They can bind to GABA receptors with significant affinity (Zhang, 2004). Quercetin significantly reduces ischemic brain damage (Lake, 2000; Dajas et al., 2003; Guenne et al., 2016).
The therapeutic limitations of these compounds are represented by cytotoxic and cardiotoxic effects and must be used with caution (Al-snafi, 2015). For example, securinin acts like strychnine in the range of 5–30 g/kg and causes spasms and death due to respiratory arrest (Maiga et al., 2005). Therefore, controlled use of these herbs should be promoted.
Integrative medicine concerning mental health is a concept that has developed a lot lately, in the conditions in which psychiatry no longer communicates notable advances in psychopharmacology in recent years. In this conjuncture of relative pharmacological stagnation, the complementary natural therapies capture the psychiatric patient, to the detriment of the indications from the treatment guidelines accepted by the psychiatric specialists. But extensive research to explore the combination of bioactive natural componds with synthetic psychotropic drugs in the treatment of mental disorders is needed in the future.
The limitations of the current review are the inclusion in the study of evidence from preclinical pharmacological models, and meta-analyzes focused on the therapeutic impact of bioactive compounds in psychiatric diseases and not from individual clinical trials. On the other hand, the inclusion and analysis of these meta-analyzes is a strong point of this review, as they focused on potential pharmacological mechanisms of action, thus opening new therapeutic windows beneficial to natural bioactive compounds in the therapy of neuropsychiatric diseases.
Although comparative studies have been scrutinized in the pre-clinical area, no clinical trial has been found where herbal medicines are compared to drugs approved by the FDA for the treatment of psychiatric disorders. This is very important to highlight because it must be clear that evidence for the clinical efficacy of these products is not confirmed by head-to-head comparative studies and the conclusions concerning their efficacy derive only from preclinical experimental studies.
5 Overall conclusion
There are many factors behind the growing popularity of herbal remedies for a variety of chronic diseases. Many people who use herbal remedies know that health care alternatives are more in line with their values, beliefs, and philosophical orientations towards health and life. Although many chemical drugs are available to treat mental disorders, clinicians have found that many patients are unable to tolerate the side effects of chemical drugs or do not respond well enough. Many herbal remedies have far fewer side effects. Therefore, they can be used as an alternative treatment and could increase the effectiveness of prescription drugs. While the demand for herbal medicines is increasing, herbal extracts and active ingredients isolated from them need to be scientifically approved before being widely accepted and used. Therefore, “phytochemicals” may guarantee a new source of beneficial neuroleptics.
Author contributions
All authors contributed and made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis, and interpretation, or in all these areas. That is, revising or critically reviewing the article; giving final approval of the version to be published; agreeing on the journal to which the article has been submitted; and, confirming to be accountable for all aspects of the work.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Abbreviations
ABA, applied behavioural analysis; b.w., body weight; BDNF, brain-derived neurotrophic factor; COMT, catechol-O-methyltransferase; CNS, central nervous system; CBT, cognitive-behavioural therapy; cAMP, cyclic adenosine monophosphate; FA, ferulic acid; GABA, gamma-aminobutyric acid; HPA, hypothalamic-pituitary-adrenal; IL, interleukin; IL-1β, interleukin 1 beta; i.p., intraperitoneal administration; MDD, major depressive disorder; MAOIs, monoamine oxidase inhibitors; p.o., oral administration; PDE-4, phosphodiesterase-4; SNRIs, serotonin-norepinephrine reuptake inhibitors; SOD, superoxide dismutase; TNF-α, tumor necrosis factor-alpha.
References
- Abbasi E., Nassiriasl M., Shafeei M., Sheikhi M. (2012). Neuroprotective effects of vitexin, a flavonoid, on pentylenetetrazole‐induced seizure in rats. Chem. Biol. Drug Des. 80, 274–278. 10.1111/j.1747-0285.2012.01400.x [DOI] [PubMed] [Google Scholar]
- Abdul Rahim N., Nordin N., Ahmad Rasedi N. I. S., Mohd Kauli F. S., Wan Ibrahim W. N., Zakaria F. (2022). Behavioral and cortisol analysis of the anti-stress effect of Polygonum minus (Huds) extracts in chronic unpredictable stress (CUS) zebrafish model. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 256, 109303. 10.1016/j.cbpc.2022.109303 [DOI] [PubMed] [Google Scholar]
- Ajao A. A.-N., Alimi A. A., Olatunji O. A., Balogun F. O., Saheed S. A. (2018). A synopsis of anti-psychotic medicinal plants in Nigeria. Trans. R. Soc. S. Afr. 73, 33–41. 10.1080/0035919x.2017.1386138 [DOI] [Google Scholar]
- Akhondzadeh S. (2007). “Herbal medicines in the treatment of psychiatric and neurological disorders,” in Low-cost approaches to promote physical and mental health (Springer; ). [Google Scholar]
- Al-askar M., Bhat R. S., Selim M., AL-Ayadhi L., EL-Ansary A. (2017). Postnatal treatment using curcumin supplements to amend the damage in VPA-induced rodent models of autism. BMC Complement. Altern. Med. 17, 259–311. 10.1186/s12906-017-1763-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Al-snafi A. E. (2015). The chemical constituents and pharmacological importance of Chrozophora tinctoria. Int J Pharm Rev Res 5, 391–396. [Google Scholar]
- Allen M. H., Hirschfeld R. M., Wozniak P. J., Baker P. D., Jeffrey D., Bowden C. L. (2006). Linear relationship of valproate serum concentration to response and optimal serum levels for acute mania. Am. J. Psychiatry 163, 272–275. 10.1176/appi.ajp.163.2.272 [DOI] [PubMed] [Google Scholar]
- Alshehri M. M., Quispe C., Herrera-Bravo J., Sharifi-Rad J., Tutuncu S., Aydar E. F., et al. (2022). A review of recent studies on the antioxidant and anti-infectious properties of Senna plants. Oxid. Med. Cell. Longev. 2022, 6025900. 10.1155/2022/6025900 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ameri A., Gleitz J., Peters T. (1996). Aconitine inhibits epileptiform activity in rat hippocampal slices. Naunyn. Schmiedeb. Arch. Pharmacol. 354, 80–85. 10.1007/BF00168710 [DOI] [PubMed] [Google Scholar]
- American Psychiatric Association A. (1980). Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Association. [Google Scholar]
- Anjaneyulu M., Chopra K., Kaur I. (2003). Antidepressant activity of quercetin, a bioflavonoid, in streptozotocin-induced diabetic mice. J. Med. Food 6, 391–395. 10.1089/109662003772519976 [DOI] [PubMed] [Google Scholar]
- Anlezark G., Meldrum B. (1978). Blockade of photically induced epilepsy by ‘dopamine agonist’ergot alkaloids. Psychopharmacology 57, 57–62. 10.1007/BF00426958 [DOI] [PubMed] [Google Scholar]
- Arida R. M., Scorza F. A., Scorza C. A., Cavalheiro E. A. (2009). Is physical activity beneficial for recovery in temporal lobe epilepsy? Evidences from animal studies. Neurosci. Biobehav. Rev. 33, 422–431. 10.1016/j.neubiorev.2008.11.002 [DOI] [PubMed] [Google Scholar]
- Aseervatham G. S. B., Suryakala U., Sundaram S., Bose P. C., Sivasudha T. (2016). Expression pattern of NMDA receptors reveals antiepileptic potential of apigenin 8-C-glucoside and chlorogenic acid in pilocarpine induced epileptic mice. Biomed. Pharmacother. 82, 54–64. 10.1016/j.biopha.2016.04.066 [DOI] [PubMed] [Google Scholar]
- Association A. P. (2006). American psychiatric association practice guidelines for the treatment of psychiatric disorders: Compendium 2006. American Psychiatric Pub. [Google Scholar]
- Atkinson J. H., Slater M. A., Williams R. A., Zisook S., Patterson T. L., Grant I., et al. (1998). A placebo-controlled randomized clinical trial of nortriptyline for chronic low back pain. pain 76, 287–296. 10.1016/S0304-3959(98)00064-5 [DOI] [PubMed] [Google Scholar]
- Avallone R., Zanoli P., Puia G., Kleinschnitz M., Schreier P., Baraldi M. (2000). Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla . Biochem. Pharmacol. 59, 1387–1394. 10.1016/s0006-2952(00)00264-1 [DOI] [PubMed] [Google Scholar]
- Baek J. H., Nierenberg A. A., Kinrys G. (2014). Clinical applications of herbal medicines for anxiety and insomnia; targeting patients with bipolar disorder. Aust. N. Z. J. Psychiatry 48, 705–715. 10.1177/0004867414539198 [DOI] [PubMed] [Google Scholar]
- Banaschewski T., Roessner V., Dittmann R. W., Santosh P. J., Rothenberger A. (2004). Non–stimulant medications in the treatment of ADHD. Eur. Child. Adolesc. Psychiatry 13, i102–i116. 10.1007/s00787-004-1010-x [DOI] [PubMed] [Google Scholar]
- Banji D., Banji O. J., Abbagoni S., Hayath M. S., Kambam S., Chiluka V. L. (2011). Amelioration of behavioral aberrations and oxidative markers by green tea extract in valproate induced autism in animals. Brain Res. 1410, 141–151. 10.1016/j.brainres.2011.06.063 [DOI] [PubMed] [Google Scholar]
- Baureithel K. H., Büter K. B., Engesser A., Burkard W., Schaffner W. (1997). Inhibition of benzodiazepine binding in vitro by amentoflavone, a constituent of various species of Hypericum. Pharm. Acta Helv. 72, 153–157. 10.1016/s0031-6865(97)00002-2 [DOI] [PubMed] [Google Scholar]
- Begley C., Wagner R. G., Abraham A., Beghi E., Newton C., Kwon C. S., et al. (2022). The global cost of epilepsy: A systematic review and extrapolation. Epilepsia 63, 892–903. 10.1111/epi.17165 [DOI] [PubMed] [Google Scholar]
- Berkov S., Osorio E., Viladomat F., Bastida J. (2020). Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids. Alkaloids. Chem. Biol. 83, 113–185. 10.1016/bs.alkal.2019.10.002 [DOI] [PubMed] [Google Scholar]
- Berrettini W. (2003). “Evidence for shared susceptibility in bipolar disorder and schizophrenia,” in American journal of medical genetics Part C: Seminars in medical genetics (Wiley Online Library; ), 59–64. [DOI] [PubMed] [Google Scholar]
- Bertolino B., Crupi R., Impellizzeri D., Bruschetta G., Cordaro M., Siracusa R., et al. (2017). Beneficial effects of co‐ultramicronized palmitoylethanolamide/luteolin in a mouse model of autism and in a case report of autism. CNS Neurosci. Ther. 23, 87–98. 10.1111/cns.12648 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhana N., Foster R. H., Olney R., Plosker G. L. (2001). Olanzapine: An updated review of its use in the management of schizophrenia. Olanzapine. Drugs 61, 111–161. 10.2165/00003495-200161010-00011 [DOI] [PubMed] [Google Scholar]
- Bhardwaj M., Kumar A. (2016). Neuroprotective effect of lycopene against PTZ‐induced kindling seizures in mice: Possible behavioural, biochemical and mitochondrial dysfunction. Phytother. Res. 30, 306–313. 10.1002/ptr.5533 [DOI] [PubMed] [Google Scholar]
- Bhutada P., Mundhada Y., Bansod K., Dixit P., Umathe S., Mundhada D. (2010). Anticonvulsant activity of berberine, an isoquinoline alkaloid in mice. Epilepsy Behav. 18, 207–210. 10.1016/j.yebeh.2010.03.007 [DOI] [PubMed] [Google Scholar]
- Bidwell L. C., Mcclernon F. J., Kollins S. H. (2011). Cognitive enhancers for the treatment of ADHD. Pharmacol. Biochem. Behav. 99, 262–274. 10.1016/j.pbb.2011.05.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birman H., Üzüm G., Dar K. A., Kapucu A., Acar S. (2012). Effects of luteolin on liver, kidney and brain in pentylentetrazol-induced seizures: Involvement of metalloproteinases and NOS activities. Balk. Med. J. 29, 188–196. 10.5152/balkanmedj.2011.030 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blair H. A. (2020). Lumateperone: First approval. Drugs 80, 417–423. 10.1007/s40265-020-01271-6 [DOI] [PubMed] [Google Scholar]
- Brenner G. M., Stevens C. (2017). Brenner and stevens’ pharmacology E-book. Elsevier Health Sciences. [Google Scholar]
- Burris K. D., Molski T. F., Xu C., Ryan E., Tottori K., Kikuchi T., et al. (2002). Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J. Pharmacol. Exp. Ther. 302, 381–389. 10.1124/jpet.102.033175 [DOI] [PubMed] [Google Scholar]
- Butnariu M., Quispe C., Herrera-Bravo J., Sharifi-Rad J., Singh L., Aborehab N. M., et al. (2022). The pharmacological activities of Crocus sativus L.: A review based on the mechanisms and therapeutic opportunities of its phytoconstituents. Oxid. Med. Cell. Longev. 2022, 8214821. 10.1155/2022/8214821 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butterweck V., Jürgenliemk G., Nahrstedt A., Winterhoff H. (2000). Flavonoids from Hypericum perforatum show antidepressant activity in the forced swimming test. Planta Med. 66, 3–6. 10.1055/s-2000-11119 [DOI] [PubMed] [Google Scholar]
- Cai L., Li R., Tang W.-J., Meng G., Hu X.-Y., Wu T.-N. (2015). Antidepressant-like effect of geniposide on chronic unpredictable mild stress-induced depressive rats by regulating the hypothalamus–pituitary–adrenal axis. Eur. Neuropsychopharmacol. 25, 1332–1341. 10.1016/j.euroneuro.2015.04.009 [DOI] [PubMed] [Google Scholar]
- Cannon J. R., Greenamyre J. T. (2011). The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol. Sci. 124, 225–250. 10.1093/toxsci/kfr239 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capra J. C., Cunha M. P., Machado D. G., Zomkowski A. D., Mendes B. G., Santos A. R., et al. (2010). Antidepressant-like effect of scopoletin, a coumarin isolated from Polygala sabulosa (polygalaceae) in mice: Evidence for the involvement of monoaminergic systems. Eur. J. Pharmacol. 643, 232–238. 10.1016/j.ejphar.2010.06.043 [DOI] [PubMed] [Google Scholar]
- Carlos filho B., Del Fabbro L., DE Gomes M. G., Goes A. T., Souza L. C., Boeira S. P., et al. (2013). Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mouse forced swimming test. Eur. J. Pharmacol. 698, 286–291. 10.1016/j.ejphar.2012.11.003 [DOI] [PubMed] [Google Scholar]
- Chandler D. J., Waterhouse B. D., Gao W.-J. (2014). New perspectives on catecholaminergic regulation of executive circuits: Evidence for independent modulation of prefrontal functions by midbrain dopaminergic and noradrenergic neurons. Front. Neural Circuits 8, 53. 10.3389/fncir.2014.00053 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charney D. S., Manji H. K. (2004). Life stress, genes, and depression: Multiple pathways lead to increased risk and new opportunities for intervention. Sci. STKE, re5. 10.1126/stke.2252004re5 [DOI] [PubMed] [Google Scholar]
- Charveron M., Assié M.-B., Stenger A., Briley M. (1984). Benzodiazepine agonist-type activity of raubasine, a rauwolfia serpentina alkaloid. Eur. J. Pharmacol. 106, 313–317. 10.1016/0014-2999(84)90718-0 [DOI] [PubMed] [Google Scholar]
- Chen H.-Q., Jin Z.-Y., Wang X.-J., Xu X.-M., Deng L., Zhao J.-W. (2008). Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation. Neurosci. Lett. 448, 175–179. 10.1016/j.neulet.2008.10.046 [DOI] [PubMed] [Google Scholar]
- Chen K., Kokate T. G., Donevan S. D., Carroll F. I., Rogawski M. A. (1996). Ibogaine block of the NMDA receptor: In vitro and in vivo studies. Neuropharmacology 35, 423–431. 10.1016/0028-3908(96)84107-4 [DOI] [PubMed] [Google Scholar]
- Chen X. D., Tang J. J., Feng S., Huang H., Lu F. N., Lu X. M., Wang Y. T. (2021). Chlorogenic acid improves PTSD-like symptoms and associated mechanisms. Curr. Neuropharmacol. 19 (12), 2180–2187. 10.2174/1570159X19666210111155110 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chengappa K. R., Bowie C. R., Schlicht P. J., Fleet D., Brar J. S., Jindal R. (2013). Randomized placebo-controlled adjunctive study of an extract of Withania somnifera for cognitive dysfunction in bipolar disorder. J. Clin. Psychiatry 74, 1076–1083. 10.4088/JCP.13m08413 [DOI] [PubMed] [Google Scholar]
- Chiu S., Gericke N., Farina-Woodbury M., Badmaev V., Raheb H., Terpstra K., et al. (2014). Proof-of-concept randomized controlled study of cognition effects of the proprietary extract Sceletium tortuosum (zembrin) targeting phosphodiesterase-4 in cognitively healthy subjects: Implications for Alzheimer’s dementia. Evidence-Based Complementary Altern. Med., 1–9. 10.1155/2014/682014 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiu S., Raheb H., Terpstra K., Vaughan J., Carrie A. (2017). Exploring standardized Zembrin® extracts from the South African plant Sceletium tortuosum in dual targeting phosphodiesterase-4 (PDE-4) and serotonin reuptake inhibition as potential treatment in schizophrenia. Int. J. Complement. Altern. Med. 6, 00203. 10.15406/ijcam.2017.06.00203 [DOI] [Google Scholar]
- Chung I.-W., Moore N. A., Oh W.-K., O'Neill M. F., Ahn J.-S., Park J.-B., et al. (2002). Behavioural pharmacology of polygalasaponins indicates potential antipsychotic efficacy. Pharmacol. Biochem. Behav. 71, 191–195. 10.1016/s0091-3057(01)00648-7 [DOI] [PubMed] [Google Scholar]
- Clarke S. E. D., Ramsay R. R. (2011). Dietary inhibitors of monoamine oxidase A. J. Neural Transm. (Vienna). 118, 1031–1041. 10.1007/s00702-010-0537-x [DOI] [PubMed] [Google Scholar]
- Colovic M., Fracasso C., Caccia S. (2008). Brain-to-plasma distribution ratio of the biflavone amentoflavone in the mouse. Drug Metab. Lett. 2, 90–94. 10.2174/187231208784040988 [DOI] [PubMed] [Google Scholar]
- Cooper J. O., Heron T. E., Heward W. L. (2007). Applied behavior analysis. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper R. (2018). Diagnostic and statistical manual of mental disorders (DSM), 44. United Kingdom of Great Britain and Northern Ireland: KO KNOWLEDGE ORGANIZATION, 668–676. [Google Scholar]
- Cotterill T. (2019). Principles and practices of working with pupils with special educational needs and disability: A student guide. London: Routledge. [Google Scholar]
- Cropley V., Croft R., Silber B., Neale C., Scholey A., Stough C., et al. (2012). Does coffee enriched with chlorogenic acids improve mood and cognition after acute administration in healthy elderly? A pilot study. Psychopharmacology 219, 737–749. 10.1007/s00213-011-2395-0 [DOI] [PubMed] [Google Scholar]
- Currier G. W., Trenton A. (2002). Pharmacological treatment of psychotic agitation. CNS drugs 16, 219–228. 10.2165/00023210-200216040-00002 [DOI] [PubMed] [Google Scholar]
- Da cruz G. M. P., Felipe C. F. B., Scorza F. A., Da Costa M. A. C., Tavares A. F., Menezes M. L. F., et al. (2013). Piperine decreases pilocarpine-induced convulsions by GABAergic mechanisms. Pharmacol. Biochem. Behav. 104, 144–153. 10.1016/j.pbb.2013.01.002 [DOI] [PubMed] [Google Scholar]
- Da silva A. F. S., DE Andrade J. P., Bevilaqua L. R., DE Souza M. M., Izquierdo I., Henriques A. T., et al. (2006). Anxiolytic-antidepressant-and anticonvulsant-like effects of the alkaloid montanine isolated from Hippeastrum vittatum . Pharmacol. Biochem. Behav. 85, 148–154. 10.1016/j.pbb.2006.07.027 [DOI] [PubMed] [Google Scholar]
- Dajas F., Rivera F., Blasina F., Arredondo F., Echeverry C., Lafon L., et al. (2003). Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotox. Res. 5, 425–432. 10.1007/BF03033172 [DOI] [PubMed] [Google Scholar]
- Darvesh A. S., Carroll R. T., Bishayee A., Novotny N. A., Geldenhuys W. J., VAN DER Schyf C. J. (2012). Curcumin and neurodegenerative diseases: A perspective. Expert Opin. Investig. Drugs 21, 1123–1140. 10.1517/13543784.2012.693479 [DOI] [PubMed] [Google Scholar]
- De deurwaerdère P. (2016). Cariprazine: New dopamine biased agonist for neuropsychiatric disorders. Drugs Today 52, 97–110. 10.1358/dot.2016.52.2.2461868 [DOI] [PubMed] [Google Scholar]
- De sousa D. P., Quintans L., JR, DE Almeida R. N. (2007). Evolution of the anticonvulsant activity of α-terpineol. Pharm. Biol. 45, 69–70. 10.1080/13880200601028388 [DOI] [Google Scholar]
- Deb S., Phukan B. C., Dutta A., Paul R., Bhattacharya P., Manivasagam T., et al. (2020). Natural products and their therapeutic effect on autism spectrum disorder. Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management, 601–614. [DOI] [PubMed] [Google Scholar]
- Derubeis R. J., Hollon S. D., Amsterdam J. D., Shelton R. C., Young P. R., Salomon R. M., et al. (2005). Cognitive therapy vs medications in the treatment of moderate to severe depression. Arch. Gen. Psychiatry 62, 409–416. 10.1001/archpsyc.62.4.409 [DOI] [PubMed] [Google Scholar]
- Di liberto V., Mäkelä J., Korhonen L., Olivieri M., Tselykh T., Mälkiä A., et al. (2012). Involvement of estrogen receptors in the resveratrol-mediated increase in dopamine transporter in human dopaminergic neurons and in striatum of female mice. Neuropharmacology 62, 1011–1018. 10.1016/j.neuropharm.2011.10.010 [DOI] [PubMed] [Google Scholar]
- Dickerson F. B., Lehman A. F. (2011). Evidence-based psychotherapy for schizophrenia: 2011 update. J. Nerv. Ment. Dis. 199, 520–526. 10.1097/NMD.0b013e318225ee78 [DOI] [PubMed] [Google Scholar]
- Dimpfel W. (2006). Different anticonvulsive effects of hesperidin and its aglycone hesperetin on electrical activity in the rat hippocampus in-vitro . J. Pharm. Pharmacol. 58, 375–379. 10.1211/jpp.58.3.0012 [DOI] [PubMed] [Google Scholar]
- Dipiro J. T., Talbert R. L., Yee G. C., Matzke G. R., Wells B. G., Posey L. M. (2014). Pharmacotherapy: A pathophysiologic approach. New York: McGraw-Hill Medical. [Google Scholar]
- Dubowitz H., Prescott L., Feigelman S., Lane W., Kim J. (2008). Screening for intimate partner violence in a pediatric primary care clinic. Pediatrics 121, e85–e91. 10.1542/peds.2007-0904 [DOI] [PubMed] [Google Scholar]
- Edition F. (2013). Diagnostic and statistical manual of mental disorders, 21. American Psychiatric Association Publishing. [Google Scholar]
- Enatescu V. R., Kalinovic R., Vlad G., Nussbaum L. A., Hogea L., Enatescu I., et al. (2020). The presence of peripheral inflammatory markers in patients with major depressive disorder, the associated symptoms profiles and the antidepressant efficacy of celecoxib. Farmacia 68, 483–491. 10.31925/farmacia.2020.3.14 [DOI] [Google Scholar]
- Evans S. W., Owens J. S., Wymbs B. T., Ray A. R. (2018). Evidence-based psychosocial treatments for children and adolescents with attention deficit/hyperactivity disorder. J. Clin. Child. Adolesc. Psychol. 47, 157–198. 10.1080/15374416.2017.1390757 [DOI] [PubMed] [Google Scholar]
- Fang K., Li H. R., Chen X. X., Gao X. R., Huang L. L., Du A. Q., Jiang C., Li H., Ge J. F. (2020). Quercetin alleviates LPS-induced depression-like behavior in rats via regulating BDNF-related imbalance of Copine 6 and TREM1/2 in the hippocampus and PFC. Front. Pharmacol. 10, 1544. 10.3389/fphar.2019.01544 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fava M., Alpert J. E., Carmin C. N., Wisniewski S. R., Trivedi M. H., Biggs M. M., et al. (2004). Clinical correlates and symptom patterns of anxious depression among patients with major depressive disorder in STAR* D. Psychol. Med. 34, 1299–1308. 10.1017/s0033291704002612 [DOI] [PubMed] [Google Scholar]
- Felipe F. C. B., Sousa Filho J. T., DE Oliveira Souza L. E., Silveira J. A., DE Andrade Uchoa D. E., Silveira E. R., et al. (2007). Piplartine, an amide alkaloid from Piper tuberculatum, presents anxiolytic and antidepressant effects in mice. Phytomedicine. 14, 605–612. 10.1016/j.phymed.2006.12.015 [DOI] [PubMed] [Google Scholar]
- Fernández S. P., Wasowski C., Paladini A. C., Marder M. (2005). Synergistic interaction between hesperidin, a natural flavonoid, and diazepam. Eur. J. Pharmacol. 512, 189–198. 10.1016/j.ejphar.2005.02.039 [DOI] [PubMed] [Google Scholar]
- Ferrari A. J., Baxter A. J., Whiteford H. A. (2011). A systematic review of the global distribution and availability of prevalence data for bipolar disorder. J. Affect. Disord. 134, 1–13. 10.1016/j.jad.2010.11.007 [DOI] [PubMed] [Google Scholar]
- Fiest K. M., Sauro K. M., Wiebe S., Patten S. B., Kwon C.-S., Dykeman J., et al. (2017). Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 88, 296–303. 10.1212/WNL.0000000000003509 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fombonne E. (2009). Epidemiology of pervasive developmental disorders. Pediatr. Res. 65, 591–598. 10.1203/PDR.0b013e31819e7203 [DOI] [PubMed] [Google Scholar]
- Fombonne E. (2006). Past and future perspectives on autism epidemiology. [DOI] [PubMed] [Google Scholar]
- Freedman R. (2010). The American psychiatric publishing textbook of psychopharmacology. American Psychiatric Association Publishing. [Google Scholar]
- Fu M., Sun Z.-H., Zuo H.-C. (2010). Neuroprotective effect of piperine on primarily cultured hippocampal neurons. Biol. Pharm. Bull. 33, 598–603. 10.1248/bpb.33.598 [DOI] [PubMed] [Google Scholar]
- Fujimaki K., Morinobu S., Duman R. S. (2000). Administration of a cAMP phosphodiesterase 4 inhibitor enhances antidepressant-induction of BDNF mRNA in rat hippocampus. Neuropsychopharmacology 22, 42–51. 10.1016/S0893-133X(99)00084-6 [DOI] [PubMed] [Google Scholar]
- Galeotti N. (2017). Hypericum perforatum (St John’s wort) beyond depression: A therapeutic perspective for pain conditions. J. Ethnopharmacol. 200, 136–146. 10.1016/j.jep.2017.02.016 [DOI] [PubMed] [Google Scholar]
- Gawel K., Kukula-Koch W., Nieoczym D., Stepnik K., Ent V. W., Banono N. S., et al. (2020). The influence of palmatine isolated from Berberis sibirica Radix on pentylenetetrazole-induced seizures in zebrafish. Cells 9 (5), 1233. 10.3390/cells9051233 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gawel K., Kukula-Koch W., Banono N. S., Nieoczym D., Targowska-Duda K. M., Czernicka L., Parada-Turska J., Esguerra C. V. (2021). 6-Gingerol, a major constituent of Zingiber officinale rhizoma, exerts anticonvulsant activity in the pentylenetetrazole-induced seizure model in larval zebrafish. Int. J. Mol. Sci. 22 (14), 7745. 10.3390/ijms22147745 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gericke N. P., Van wyk B.-E. (2001b). Pharmaceutical compositions containing mesembrine and related compounds. Google Patents. [Google Scholar]
- Gericke N., Van wyk B. (2001a). African Natural Health CC. Pharmaceutical compositions containing mesembrine and related compounds. [Google Scholar]
- Girish C., Raj V., Arya J., Balakrishnan S. (2012). Evidence for the involvement of the monoaminergic system, but not the opioid system in the antidepressant-like activity of ellagic acid in mice. Eur. J. Pharmacol. 682, 118–125. 10.1016/j.ejphar.2012.02.034 [DOI] [PubMed] [Google Scholar]
- Goldberg D., Pilling S., Kendall T., Ferrier N., Foster T., Gates J., et al. (2005). Management of depression in primary and secondary care. London, England: Gaskell. [Google Scholar]
- Golechha M., Chaudhry U., Bhatia J., Saluja D., Arya D. S. (2011). Naringin protects against kainic acid-induced status epilepticus in rats: Evidence for an antioxidant, anti-inflammatory and neuroprotective intervention. Biol. Pharm. Bull. 34, 360–365. 10.1248/bpb.34.360 [DOI] [PubMed] [Google Scholar]
- Golechha M., Sarangal V., Bhatia J., Chaudhry U., Saluja D., Arya D. S. (2014). Naringin ameliorates pentylenetetrazol-induced seizures and associated oxidative stress, inflammation, and cognitive impairment in rats: Possible mechanisms of neuroprotection. Epilepsy Behav. 41, 98–102. 10.1016/j.yebeh.2014.09.058 [DOI] [PubMed] [Google Scholar]
- Gopi S., Jacob J., Varma K., Jude S., Amalraj A., Arundhathy C., et al. (2017). Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: An open‐label parallel‐arm study. Phytother. Res. 31, 1883–1891. 10.1002/ptr.5931 [DOI] [PubMed] [Google Scholar]
- Guenne S., Balmus I., Hilou A., Ouattara N., Kiendrebéogo M., Ciobica A., et al. (2016). The relevance of Asteraceae family plants in most of the neuropsychiatric disorders treatment. Int. J. Phyt 8, 176–182. [Google Scholar]
- Gullotta F., Schindler F., Schmutzler R., Weeks-Seifert A. (1985). GFAP in brain tumor diagnosis: Possibilities and limitations. Pathol. Res. Pract. 180, 54–60. 10.1016/S0344-0338(85)80075-3 [DOI] [PubMed] [Google Scholar]
- Gupta S., Black D. W., Smith D. A. (1994). Risperidone: Review of its pharmacology and therapeutic use in schizophrenia. Ann. Clin. Psychiatry. 6, 173–180. 10.3109/10401239409149000 [DOI] [PubMed] [Google Scholar]
- Gutmann H., Bruggisser R., Schaffner W., Bogman K., Botomino A., Drewe J. (2002). Transport of amentoflavone across the blood-brain barrier in vitro . Planta Med. 68, 804–807. 10.1055/s-2002-34401 [DOI] [PubMed] [Google Scholar]
- Haleagrahara N., Radhakrishnan A., Lee N., Kumar P. (2009). Flavonoid quercetin protects against swimming stress-induced changes in oxidative biomarkers in the hypothalamus of rats. Eur. J. Pharmacol. 621, 46–52. 10.1016/j.ejphar.2009.08.030 [DOI] [PubMed] [Google Scholar]
- Han X. H., Hong S. S., Hwang J. S., Lee M. K., Hwang B. Y., Ro J. S. (2007). Monoamine oxidase inhibitory components from Cayratia japonica. Arch. Pharm. Res. 30, 13–17. 10.1007/BF02977772 [DOI] [PubMed] [Google Scholar]
- Hanks G. R. (2002). Narcissus and daffodil: The genus Narcissus. CRC Press. [Google Scholar]
- Hasanzadeh E., Mohammadi M.-R., Ghanizadeh A., Rezazadeh S.-A., Tabrizi M., Rezaei F., et al. (2012). A double-blind placebo controlled trial of Ginkgo biloba added to risperidone in patients with autistic disorders. Child. Psychiatry Hum. Dev. 43, 674–682. 10.1007/s10578-012-0292-3 [DOI] [PubMed] [Google Scholar]
- Health N. C. C. F. M. (2009). Attention deficit hyperactivity disorder: Diagnosis and management of ADHD in children, young people and adults. [PubMed] [Google Scholar]
- Heinrich M., Appendino G., Efferth T., Fürst R., Izzo A. A., Kayser O., et al. (2020). Best practice in research – overcoming common challenges in phytopharmacological research. J. Ethnopharmacol. 246, 112230. 10.1016/j.jep.2019.112230 [DOI] [PubMed] [Google Scholar]
- Heinrich M., Williamson E. M., Gibbons S., Barnes J., Prieto-Garcia J. (2017). Fundamentals of pharmacognosy and phytotherapy E-BOOK. Elsevier Health Sciences. [Google Scholar]
- Hope J., Castle D., Keks N. A. (2018). Brexpiprazole: A new leaf on the partial dopamine agonist branch. Australas. Psychiatry. 26, 92–94. 10.1177/1039856217732473 [DOI] [PubMed] [Google Scholar]
- Hossain R., Quispe C., Herrera-Bravo J., Beltrán J. F., Islam M. T., Shaheen S., et al. (2022). Neurobiological promises of the bitter diterpene lactone andrographolide. Oxid. Med. Cell. Longev. 2022, 3079577. 10.1155/2022/3079577 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hossain R., Sarkar C., Hassan S. M. H., Khan R. A., Arman M., Ray P., et al. (2021). In silico screening of natural products as potential inhibitors of SARS-CoV-2 using molecular docking simulation. Chin. J. Integr. Med. 28, 249–256. 10.1007/s11655-021-3504-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hosseinzadeh H., Noraei N. B. (2009). Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother. Res. 23, 768–774. 10.1002/ptr.2597 [DOI] [PubMed] [Google Scholar]
- Houslay M. D., Schafer P., Zhang K. Y. (2005). Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov. Today 10, 1503–1519. 10.1016/S1359-6446(05)03622-6 [DOI] [PubMed] [Google Scholar]
- Hsu C. D., Hsieh L. H., Chen Y. L., Lin I. C., Chen Y. R., Chen C. C., Shirakawa H., Yang S. C. (2021). Complementary effects of pine bark extract supplementation on inattention, impulsivity, and antioxidative status in children with attention-deficit hyperactivity disorder: A double-blinded randomized placebo-controlled cross-over study. Phytother. Res. 35 (6), 3226–3235. 10.1002/ptr.7036 [DOI] [PubMed] [Google Scholar]
- Huang C.-W., Chow J. C., Tsai J.-J., Wu S.-N. (2012). Characterizing the effects of Eugenol on neuronal ionic currents and hyperexcitability. Psychopharmacology 221, 575–587. 10.1007/s00213-011-2603-y [DOI] [PubMed] [Google Scholar]
- Huen M. S., Leung J. W., Ng W., Lui W., Chan M. N., Wong J. T.-F., et al. (2003). 5, 7-Dihydroxy-6-methoxyflavone, a benzodiazepine site ligand isolated from Scutellaria baicalensis Georgi, with selective antagonistic properties. Biochem. Pharmacol. 66, 125–132. 10.1016/s0006-2952(03)00233-8 [DOI] [PubMed] [Google Scholar]
- Ishola I. O., Chatterjee M., Tota S., Tadigopulla N., Adeyemi O. O., Palit G., et al. (2012). Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice. Pharmacol. Biochem. Behav. 103, 322–331. 10.1016/j.pbb.2012.08.017 [DOI] [PubMed] [Google Scholar]
- Israelyan N., Margolis K. G. (2019). Reprint of: Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacol. Res. 140, 115–120. 10.1016/j.phrs.2018.12.023 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jain A. (2020). Review article- bipolar disorder: Diagnosis, pathophysiology and therapy. [Google Scholar]
- Jann M. W. (2014). Diagnosis and treatment of bipolar disorders in adults: A review of the evidence on pharmacologic treatments. Am. Health Drug Benefits 7, 489–499. [PMC free article] [PubMed] [Google Scholar]
- Jeong K. H., Jung U. J., Kim S. R. (2015). Naringin attenuates autophagic stress and neuroinflammation in kainic acid-treated hippocampus in vivo . Evidence-Based Complementary Altern. Med., 1–9. 10.1155/2015/354326 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ji N. Y., Findling R. L. (2015). An update on pharmacotherapy for autism spectrum disorder in children and adolescents. Curr. Opin. Psychiatry 28, 91–101. 10.1097/YCO.0000000000000132 [DOI] [PubMed] [Google Scholar]
- Jiang Z., Guo M., Shi C., Wang H., Yao L., Liu L., et al. (2015). Protection against cognitive impairment and modification of epileptogenesis with curcumin in a post-status epilepticus model of temporal lobe epilepsy. Neuroscience 310, 362–371. 10.1016/j.neuroscience.2015.09.058 [DOI] [PubMed] [Google Scholar]
- Johnson C. P., Myers S. M. American Academy of Pediatrics Council on Children With Disabilities (2007). Identification and evaluation of children with autism spectrum disorders. Pediatrics 120, 1183–1215. 10.1542/peds.2007-2361 [DOI] [PubMed] [Google Scholar]
- Kanner A. M., Bicchi M. M. (2022). Antiseizure medications for adults with epilepsy: A review. Jama 327, 1269–1281. 10.1001/jama.2022.3880 [DOI] [PubMed] [Google Scholar]
- Kaur R., Chopra K., Singh D. (2007). Role of alpha2 receptors in quercetin-induced behavioral despair in mice. J. Med. Food 10, 165–168. 10.1089/jmf.2005.063 [DOI] [PubMed] [Google Scholar]
- Kavvadias D., Sand P., Youdim K. A., Qaiser M. Z., Rice‐Evans C., Baur R., et al. (2004). The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood–brain barrier and exhibits anticonvulsive effects. Br. J. Pharmacol. 142, 811–820. 10.1038/sj.bjp.0705828 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawabata K., Kawai Y., Terao J. (2010). Suppressive effect of quercetin on acute stress-induced hypothalamic-pituitary-adrenal axis response in Wistar rats. J. Nutr. Biochem. 21, 374–380. 10.1016/j.jnutbio.2009.01.008 [DOI] [PubMed] [Google Scholar]
- Kazmi I., Gupta G., Afzal M., Anwar F. (2012). Anticonvulsant and depressant-like activity of ursolic acid stearoyl glucoside isolated from Lantana camara L.(verbanaceae). Asian Pac. J. Trop. Dis. 2, S453–S456. 10.1016/s2222-1808(12)60202-3 [DOI] [Google Scholar]
- Kelvin E. A., Hesdorffer D. C., Bagiella E., Andrews H., Pedley T. A., Shih T. T., et al. (2007). Prevalence of self-reported epilepsy in a multiracial and multiethnic community in New York City. Epilepsy Res. 77, 141–150. 10.1016/j.eplepsyres.2007.09.012 [DOI] [PubMed] [Google Scholar]
- Kessler R. C., Chiu W. T., Demler O., Walters E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Arch. Gen. Psychiatry 62, 617–627. 10.1001/archpsyc.62.6.617 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilpatrick J., Swafford J., Findell B., Council N. R. (2001). Adding it up: Helping children learn mathematics. Citeseer. [Google Scholar]
- Komossa K., Depping A. M., Gaudchau A., Kissling W., Leucht S. (2010). Second‐generation antipsychotics for major depressive disorder and dysthymia. Cochrane Database Syst. Rev. 10.1002/14651858.cd008121.pub2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kritas S., Saggini A., Varvara G., Murmura G., Caraffa A., Antinolfi P., et al. (2013). Luteolin inhibits mast cell-mediated allergic inflammation. J. Biol. Regul. Homeost. Agents 27, 955–959. [PubMed] [Google Scholar]
- Kuhn B. N., Kalivas P. W., Bobadilla A.-C. (2019). Understanding addiction using animal models. Front. Behav. Neurosci. 13, 262. 10.3389/fnbeh.2019.00262 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulkarni S. K., Bhutani M. K., Bishnoi M. (2008). Antidepressant activity of curcumin: Involvement of serotonin and dopamine system. Psychopharmacology 201, 435–442. 10.1007/s00213-008-1300-y [DOI] [PubMed] [Google Scholar]
- Kumar A., Lalitha S., Mishra J. (2014). Hesperidin potentiates the neuroprotective effects of diazepam and gabapentin against pentylenetetrazole-induced convulsions in mice: Possible behavioral, biochemical and mitochondrial alterations. Indian J. Pharmacol. 46, 309–315. 10.4103/0253-7613.132180 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar A., Lalitha S., Mishra J. (2013). Possible nitric oxide mechanism in the protective effect of hesperidin against pentylenetetrazole (PTZ)-induced kindling and associated cognitive dysfunction in mice. Epilepsy Behav. 29, 103–111. 10.1016/j.yebeh.2013.06.007 [DOI] [PubMed] [Google Scholar]
- Kumaravel P., Melchias G., Vasanth N., Manivasagam T. (2017). Epigallocatechin gallate attenuates behavioral defects in sodium valproate induced autism rat model. Res. J. Pharm. Technol. 10, 1477–1480. 10.5958/0974-360x.2017.00260.8 [DOI] [Google Scholar]
- Kunnumakkara A. B., Bordoloi D., Padmavathi G., Monisha J., Roy N. K., Prasad S., et al. (2017). Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 174, 1325–1348. 10.1111/bph.13621 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwon C. S., Wagner R. G., Carpio A., Jetté N., Newton C. R., Thurman D. J. (2022). The worldwide epilepsy treatment gap: A systematic review and recommendations for revised definitions - a report from the ilae epidemiology commission. Epilepsia 63, 551–564. 10.1111/epi.17112 [DOI] [PubMed] [Google Scholar]
- Kwon S.-H., Lee H.-K., Kim J.-A., Hong S.-I., Kim H.-C., Jo T.-H., et al. (2010). Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol. 649, 210–217. 10.1016/j.ejphar.2010.09.001 [DOI] [PubMed] [Google Scholar]
- Lake J. (2000). Natural product-derived treatments of neuropsychiatric disorders: Review of progress and recommendations. Stud. Nat. Prod. Chem. 24, 1093–1137. [Google Scholar]
- Lam T. K., Shao S., Zhao Y., Marincola F., Pesatori A., Bertazzi P. A., et al. (2012). Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues. Cancer Epidemiol. Biomarkers Prev. 21, 2176–2184. 10.1158/1055-9965.EPI-12-0745 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landa R. J. (2008). Diagnosis of autism spectrum disorders in the first 3 years of life. Nat. Clin. Pract. Neurol. 4, 138–147. 10.1038/ncpneuro0731 [DOI] [PubMed] [Google Scholar]
- Lane R., Baldwin D. (1997). Selective serotonin reuptake inhibitor-induced serotonin syndrome: Review. J. Clin. Psychopharmacol. 17, 208–221. 10.1097/00004714-199706000-00012 [DOI] [PubMed] [Google Scholar]
- Langguth B., Bär R., Wodarz N., Wittmann M., Laufkötter R. (2011). Correspondence (letter to the editor): Paradoxical reaction in ADHD. Dtsch. Arztebl. Int. 108, 541. 10.3238/arztebl.2011.0541a [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lavoie F. W., Gansert G. G., Weiss R. E. (1990). Value of initial ECG findings and plasma drug levels in cyclic antidepressant overdose. Ann. Emerg. Med. 19, 696–700. 10.1016/s0196-0644(05)82482-5 [DOI] [PubMed] [Google Scholar]
- Lavretsky H. (2008). History of schizophrenia as a psychiatric disorder. Clin. Handb. schizophrenia 1. [Google Scholar]
- Leskovec T. J., Rowles B. M., Findling R. L. (2008). Pharmacological treatment options for autism spectrum disorders in children and adolescents. Harv. Rev. Psychiatry 16, 97–112. 10.1080/10673220802075852 [DOI] [PubMed] [Google Scholar]
- Levy S. E., Ds M. (2009). Autism. Lancet 374, 1627–1638. 10.1016/S0140-6736(09)61376-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Y.-C., Wang F.-M., Pan Y., Qiang L.-Q., Cheng G., Zhang W.-Y., et al. (2009). Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 435–449. 10.1016/j.pnpbp.2009.01.006 [DOI] [PubMed] [Google Scholar]
- Li R., Wang X., Qin T., Qu R., Ma S. (2016). Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1β production and NLRP3 inflammasome activation in the rat brain. Behav. Brain Res. 296, 318–325. 10.1016/j.bbr.2015.09.031 [DOI] [PubMed] [Google Scholar]
- Lim D. W., Han T., Jung J., Song Y., Um M. Y., Yoon M., et al. (2018). Chlorogenic Acid from Hawthorn berry (Crataegus pinnatifida fruit) prevents stress hormone‐induced depressive behavior, through monoamine oxidase b‐reactive oxygen species signaling in hippocampal astrocytes of mice. Mol. Nutr. Food Res. 62, 1800029. 10.1002/mnfr.201800029 [DOI] [PubMed] [Google Scholar]
- Lin M.-T., Wang J.-J., Young M.-S. (2002). The protective effect of dl-tetrahydropalmatine against the development of amygdala kindling seizures in rats. Neurosci. Lett. 320, 113–116. 10.1016/s0304-3940(01)02508-3 [DOI] [PubMed] [Google Scholar]
- Lin T.-Y., Lu C.-W., Wang C.-C., Lu J.-F., Wang S.-J. (2012). Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals. Toxicol. Appl. Pharmacol. 263, 233–243. 10.1016/j.taap.2012.06.015 [DOI] [PubMed] [Google Scholar]
- Lin T. Y., Lu C. W., Wang C.-C., Wang Y.-C., Wang S.-J. (2011). Curcumin inhibits glutamate release in nerve terminals from rat prefrontal cortex: Possible relevance to its antidepressant mechanism. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 1785–1793. 10.1016/j.pnpbp.2011.06.012 [DOI] [PubMed] [Google Scholar]
- Liu Y.-F., Gao F., Li X.-W., Jia R.-H., Meng X.-D., Zhao R., et al. (2012). The anticonvulsant and neuroprotective effects of baicalin on pilocarpine-induced epileptic model in rats. Neurochem. Res. 37, 1670–1680. 10.1007/s11064-012-0771-8 [DOI] [PubMed] [Google Scholar]
- London E. (2007). The role of the neurobiologist in redefining the diagnosis of autism. Brain Pathol. 17, 408–411. 10.1111/j.1750-3639.2007.00103.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lopez P. L., Torrente F. M., Ciapponi A., Lischinsky A. G., Cetkovich‐Bakmas M., Rojas J. I., et al. (2018). Cognitive‐behavioural interventions for attention deficit hyperactivity disorder (ADHD) in adults. Cochrane Database Syst. Rev. 10.1002/14651858.cd010840.pub2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luduvico K. P., Spohr L., Soares M. S. P., Teixeira F. C., DE Farias A. S., Bona N. P., et al. (2020). Antidepressant effect and modulation of the redox system mediated by tannic acid on lipopolysaccharide-induced depressive and inflammatory changes in mice. Neurochem. Res. 45, 2032–2043. 10.1007/s11064-020-03064-5 [DOI] [PubMed] [Google Scholar]
- Kanazawa L. K. S., Débora D. V., Etiéli W. M., Hocayen P. de A. S., dos Reis Lívero F. A., Stipp M. C., et al. (2016). Quercetin reduces manic-like behavior and brain oxidative stress induced by paradoxical sleep deprivation in mice. Free Rad. Biol. Med. 99, 79–86. 10.1016/j.freeradbiomed.2016.07.027 [DOI] [PubMed] [Google Scholar]
- Kanazawa L. K., Vecchia D. D., Wendler E. M., Hocayen P. A., Beirão P. S., de Mélo M. L., et al. (2017). Effects of acute and chronic quercetin administration on methylphenidate-induced hyperlocomotion and oxidative stress. Life Sci. 171, 1–8. 10.1016/j.lfs.2017.01.007 [DOI] [PubMed] [Google Scholar]
- Kean J. D., Downey L. A., Sarris J., Kaufman J., Zangara A., Stough C. (2022). Effects of Bacopa monnieri (CDRI 08®) in a population of males exhibiting inattention and hyperactivity aged 6 to 14 years: A randomized, double-blind, placebo-controlled trial. Phytother. Res. 36 (2), 996–1012. 10.1002/ptr.7372 [DOI] [PubMed] [Google Scholar]
- Lüllmann H., Mohr K. (2006). Pharmakologie und Toxikologie: Arzneimittelwirkungen verstehen-Medikamente gezielt einsetzen; ein Lehrbuch für Studierende der Medizin, der Pharmazie und der Biowissenschaften, eine Informationsquelle für Ärzte, Apotheker und Gesundheitspolitiker; 129 Tabellen. Georg Thieme Verlag. [Google Scholar]
- Luszczki J. J., Andres-Mach M., Cisowski W., Mazol I., Glowniak K., Czuczwar S. J. (2009). Osthole suppresses seizures in the mouse maximal electroshock seizure model. Eur. J. Pharmacol. 607, 107–109. 10.1016/j.ejphar.2009.02.022 [DOI] [PubMed] [Google Scholar]
- Łuszczki J. J., Andres-Mach M., Gleńsk M., Skalicka-Woźniak K. (2010). Anticonvulsant effects of four linear furanocoumarins, bergapten, imperatorin, oxypeucedanin, and xanthotoxin, in the mouse maximal electroshock-induced seizure model: A comparative study. Pharmacol. Rep. 62, 1231–1236. 10.1016/s1734-1140(10)70387-x [DOI] [PubMed] [Google Scholar]
- Lyon M. R., Cline J. C., DE Zepetnek J. T., Shan J. J., Pang P., Benishin C. (2001). Effect of the herbal extract combination panax quinquefolium and Ginkgo biloba on attention-deficit hyperactivity disorder: A pilot study. J. Psychiatry Neurosci. 26, 221–228. [PMC free article] [PubMed] [Google Scholar]
- Machado D. G., Bettio L. E., Cunha M. P., Santos A. R., Pizzolatti M. G., Brighente I. M., et al. (2008). Antidepressant-like effect of rutin isolated from the ethanolic extract from Schinus molle L. In mice: Evidence for the involvement of the serotonergic and noradrenergic systems. Eur. J. Pharmacol. 587, 163–168. 10.1016/j.ejphar.2008.03.021 [DOI] [PubMed] [Google Scholar]
- Maiga A., Diallo D., Fane S., Sanogo R., Paulsen B. S., Cisse B. (2005). A survey of toxic plants on the market in the district of bamako, Mali: Traditional knowledge compared with a literature search of modern pharmacology and toxicology. J. Ethnopharmacol. 96, 183–193. 10.1016/j.jep.2004.09.005 [DOI] [PubMed] [Google Scholar]
- Mitra S., Anjum J., Muni M., Das R., Rauf A., Islam F., et al. (2022). Exploring the journey of emodin as a potential neuroprotective agent: Novel therapeutic insights with molecular mechanism of action. Biomed. Pharmacother. 149, 112877. 10.1016/j.biopha.2022.112877 [DOI] [PubMed] [Google Scholar]
- Malhi G., Adams D., Lampe L., Paton M., O’Connor N., Newton L., et al. (2009). Clinical practice recommendations for bipolar disorder. Acta Psychiatr. Scand. 119, 27–46. 10.1111/j.1600-0447.2009.01383.x [DOI] [PubMed] [Google Scholar]
- Mandah S. N., Osuagwu C. E. (2020). Characteristics behaviours and factors responsible for attention deficit hyperactivity disorder (ADHD) among senior secondary school students in rivers state, Nigeria. Eur. J. Special Educ. Res. 6. [Google Scholar]
- Manji H. K., Drevets W. C., Charney D. S. (2001). The cellular neurobiology of depression. Nat. Med. 7, 541–547. 10.1038/87865 [DOI] [PubMed] [Google Scholar]
- Mann J. J., Currier D. (2006). Effects of genes and stress on the neurobiology of depression. Int. Rev. Neurobiol. 73, 153–189. 10.1016/S0074-7742(06)73005-7 [DOI] [PubMed] [Google Scholar]
- Marder S. R., Meibach R. C. (1994). Risperidone in the treatment of schizophrenia. Am. J. Psychiatry 151, 825–835. 10.1176/ajp.151.6.825 [DOI] [PubMed] [Google Scholar]
- Martens G., Van loo K. (2007). Genetic and environmental factors in complex neurodevelopmental disorders. Curr. Genomics 8, 429–444. 10.2174/138920207783591717 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin C. A., Nuzzo P. A., Ranseen J. D., Kleven M. S., Guenthner G., Williams Y., et al. (2018). Lobeline effects on cognitive performance in adult ADHD. J. Atten. Disord. 22, 1361–1366. 10.1177/1087054713497791 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin-mcgill K. J., Bresnahan R., Levy R. G., Cooper P. N. (2020). Ketogenic diets for drug‐resistant epilepsy. Cochrane Database Syst. Rev. 10.1002/14651858.cd001903.pub5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mcguffin P., Rijsdijk F., Andrew M., Sham P., Katz R., Cardno A. (2003). The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch. Gen. Psychiatry 60, 497–502. 10.1001/archpsyc.60.5.497 [DOI] [PubMed] [Google Scholar]
- Medina J. H., Paladini A. C., Wolfman C., DE Stein M. L., Calvo D., Diaz L. E., et al. (1990). Chrysin (5, 7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem. Pharmacol. 40, 2227–2231. 10.1016/0006-2952(90)90716-x [DOI] [PubMed] [Google Scholar]
- Menza M., Dobkin R. D., Marin H., Mark M., Gara M., Buyske S., et al. (2009). A controlled trial of antidepressants in patients with Parkinson disease and depression. Neurology 72, 886–892. 10.1212/01.wnl.0000336340.89821.b3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miodownik C., Lerner V., Kudkaeva N., Lerner P. P., Pashinian A., Bersudsky Y., et al. (2019). Curcumin as add-on to antipsychotic treatment in patients with chronic schizophrenia: A randomized, double-blind, placebo-controlled study. Clin. Neuropharmacol. 42 (4), 117–122. 10.1097/WNF.0000000000000344 [DOI] [PubMed] [Google Scholar]
- Miura T., Noma H., Furukawa T. A., Mitsuyasu H., Tanaka S., Stockton S., et al. (2014). Comparative efficacy and tolerability of pharmacological treatments in the maintenance treatment of bipolar disorder: A systematic review and network meta-analysis. Lancet. Psychiatry 1, 351–359. 10.1016/S2215-0366(14)70314-1 [DOI] [PubMed] [Google Scholar]
- Mo J., Guo Y., Yang Y.-S., Shen J.-S., Jin G.-Z., Zhen X. (2007). Recent developments in studies of l-stepholidine and its analogs: Chemistry, pharmacology and clinical implications. Curr. Med. Chem. 14, 2996–3002. 10.2174/092986707782794050 [DOI] [PubMed] [Google Scholar]
- Mohr P., Pecenak J., Svestka J., Swingler D., Treuer T. (2005). Treatment of acute agitation in psychotic disorders. Neuro Endocrinol. Lett. 26, 327–335. [PubMed] [Google Scholar]
- Möller H.-J. (2005). Risperidone: A review. Expert Opin. Pharmacother. 6, 803–818. 10.1517/14656566.6.5.803 [DOI] [PubMed] [Google Scholar]
- Mondiale de la santé A. (2013). Projet de plan d’action pour la lutte contre les maladies non transmissibles 2013-2020: Rapport du Secrétariat. [Google Scholar]
- Moore A. R., O’keeffe S. T. (1999). Drug-induced cognitive impairment in the elderly. Drugs Aging 15, 15–28. 10.2165/00002512-199915010-00002 [DOI] [PubMed] [Google Scholar]
- Moreira A. L. R., VAN Meter A., Genzlinger J., Youngstrom E. A. (2017). Review and meta-analysis of epidemiologic studies of adult bipolar disorder. J. Clin. Psychiatry 78, e1259–e1269. 10.4088/JCP.16r11165 [DOI] [PubMed] [Google Scholar]
- Murray R. M., Sham P., VAN Os J., Zanelli J., Cannon M., Mcdonald C. (2004). A developmental model for similarities and dissimilarities between schizophrenia and bipolar disorder. Schizophr. Res. 71, 405–416. 10.1016/j.schres.2004.03.002 [DOI] [PubMed] [Google Scholar]
- Nakazawa T., Yasuda T., Ueda J., Ohsawa K. (2003). Antidepressant-like effects of apigenin and 2, 4, 5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test. Biol. Pharm. Bull. 26, 474–480. 10.1248/bpb.26.474 [DOI] [PubMed] [Google Scholar]
- Napoletano M., Norcini G., Pellacini F., Marchini F., Morazzoni G., Ferlenga P., et al. (2001). Phthalazine PDE4 inhibitors. Part 2: The synthesis and biological evaluation of 6-methoxy-1, 4-disubstituted derivatives. Bioorg. Med. Chem. Lett. 11, 33–37. 10.1016/s0960-894x(00)00587-4 [DOI] [PubMed] [Google Scholar]
- Nassiri-asl M., Shariati-Rad S., Zamansoltani F. (2008). Anticonvulsive effects of intracerebroventricular administration of rutin in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 989–993. 10.1016/j.pnpbp.2008.01.011 [DOI] [PubMed] [Google Scholar]
- Nestler E. J., Barrot M., Dileone R. J., Eisch A. J., Gold S. J., Monteggia L. M. (2002). Neurobiology of depression. Neuron 34, 13–25. 10.1016/s0896-6273(02)00653-0 [DOI] [PubMed] [Google Scholar]
- Nevitt S. J., Marson A. G., Smith C. T., Tudur Smith C. (2019). Carbamazepine versus phenytoin monotherapy for epilepsy: An individual participant data review. Cochrane Database Syst. Rev. 10.1002/14651858.cd001911.pub3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nevitt S. J., Marson A. G., Weston J., Smith C. T. (2018). Sodium valproate versus phenytoin monotherapy for epilepsy: An individual participant data review. Cochrane Database Syst. Rev. 10.1002/14651858.cd001769.pub4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newschaffer C. J., Croen L. A., Daniels J., Giarelli E., Grether J. K., Levy S. E., et al. (2007). The epidemiology of autism spectrum disorders. Annu. Rev. Public Health 28, 235–258. 10.1146/annurev.publhealth.28.021406.144007 [DOI] [PubMed] [Google Scholar]
- Newton C. R., Garcia H. H. (2012). Epilepsy in poor regions of the world. Lancet 380, 1193–1201. 10.1016/S0140-6736(12)61381-6 [DOI] [PubMed] [Google Scholar]
- Nogoceke F. P., Barcaro I. M. R., de Sousa D. P., Andreatini R. (2016). Antimanic-like effects of (R)-(−)-carvone and (S)-(+)-carvone in mice. Neurosci. Lett. 619, 43–48. 10.1016/j.neulet.2016.03.013 [DOI] [PubMed] [Google Scholar]
- Nourbala A., Akhoundzadeh S. 2006. Attention-deficit/hyperactivity disorder: etiology and pharmacotherapy.
- Nussbaum L., Hogea L. M., Calina D., Andreescu N., Gradinaru R., Stefanescu R., et al. (2017). Modern treatment approaches in psychoses. PHARMACOGENETIC, neuroimagistic and clinical implications. Farmacia 65, 75–81. [Google Scholar]
- Olsen H. T., Stafford G. I., VAN Staden J., Christensen S. B., Jäger A. K. (2008). Isolation of the MAO-inhibitor naringenin from Mentha aquatica L. J. Ethnopharmacol. 117, 500–502. 10.1016/j.jep.2008.02.015 [DOI] [PubMed] [Google Scholar]
- World Health Organization (1992). The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines. Available at: https://apps.who.int/iris/handle/10665/37958 .
- Otte C., Gold S. M., Penninx B. W., Pariante C. M., Etkin A., Fava M., et al. (2016). Major depressive disorder. Nat. Rev. Dis. Prim. 2, 16065. 10.1038/nrdp.2016.65 [DOI] [PubMed] [Google Scholar]
- Pandy V., Vijeepallam K. (2017). Antipsychotic-like activity of scopoletin and rutin against the positive symptoms of schizophrenia in mouse models. Exp. Anim. 66 (4), 417–423. 10.1538/expanim.17-0050 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Painuli S., Quispe C., Herrera-Bravo J., Semwal P., Martorell M., Almarhoon Z. M., et al. (2022). Nutraceutical profiling, bioactive composition, and biological applications of Lepidium sativum L. Oxid. Med. Cell. Longev. 2022, 2910411. 10.1155/2022/2910411 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papakostas G. I. (2010). The efficacy, tolerability, and safety of contemporary antidepressants. J. Clin. Psychiatry 71, e03–0. 10.4088/JCP.9058se1c.03gry [DOI] [PubMed] [Google Scholar]
- Park H. G., Yoon S. Y., Choi J. Y., Lee G. S., Choi J. H., Shin C. Y., et al. (2007). Anticonvulsant effect of wogonin isolated from Scutellaria baicalensis. Eur. J. Pharmacol. 574, 112–119. 10.1016/j.ejphar.2007.07.011 [DOI] [PubMed] [Google Scholar]
- Park H. R., Kong K. H., Yu B. P., Mattson M. P., Lee J. (2012). Resveratrol inhibits the proliferation of neural progenitor cells and hippocampal neurogenesis. J. Biol. Chem. 287, 42588–42600. 10.1074/jbc.M112.406413 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park S.-H., Sim Y.-B., Han P.-L., Lee J.-K., Suh H.-W. (2010). Antidepressant-like effect of chlorogenic acid isolated from Artemisia capillaris Thunb. Animal cells Syst. 14, 253–259. 10.1080/19768354.2010.528192 [DOI] [Google Scholar]
- Paul B. D., Snyder S. H. (2019). Therapeutic applications of cysteamine and cystamine in neurodegenerative and neuropsychiatric diseases. Front. Neurol. 10, 1315. 10.3389/fneur.2019.01315 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paul S. M., Extein I., Calil H. M., Potter W. Z., Chodoff P., Goodwin F. K. (1981). Use of ECT with treatment-resistant depressed patients at the national institute of mental health. Am. J. Psychiatry 138, 486–489. 10.1176/ajp.138.4.486 [DOI] [PubMed] [Google Scholar]
- Plantlist T. (2021). The plant List. Available: http://www.theplantlist.org/(Accessed, 2021).
- Pragnya B., Kameshwari J., Veeresh B. (2014). Ameliorating effect of piperine on behavioral abnormalities and oxidative markers in sodium valproate induced autism in BALB/C mice. Behav. Brain Res. 270, 86–94. 10.1016/j.bbr.2014.04.045 [DOI] [PubMed] [Google Scholar]
- Preskorn S. H., Simpson S. (1982). Tricyclic-antidepressant-induced delirium and plasma drug concentration. Am. J. Psychiatry 139, 822–823. 10.1176/ajp.139.6.822 [DOI] [PubMed] [Google Scholar]
- Prudic J., Haskett R. F., Mulsant B., Malone K. M., Pettinati H. M., Stephens S., et al. (1996). Resistance to antidepressant medications and short-term clinical response to ECT. Am. J. Psychiatry 153, 985–992. 10.1176/ajp.153.8.985 [DOI] [PubMed] [Google Scholar]
- Pyrzanowska J., Piechal A., Blecharz-Klin K., Joniec-Maciejak I., Zobel A., Widy-Tyszkiewicz E. (2012). Influence of long-term administration of rutin on spatial memory as well as the concentration of brain neurotransmitters in aged rats. Pharmacol. Rep. 64, 808–816. 10.1016/s1734-1140(12)70876-9 [DOI] [PubMed] [Google Scholar]
- Qin T., Fang F., Song M., Li R., Ma Z., Ma S. (2017). Umbelliferone reverses depression-like behavior in chronic unpredictable mild stress-induced rats by attenuating neuronal apoptosis via regulating ROCK/Akt pathway. Behav. Brain Res. 317, 147–156. 10.1016/j.bbr.2016.09.039 [DOI] [PubMed] [Google Scholar]
- Quetglas-llabrés M. M., Quispe C., Herrera-Bravo J., Catarino M. D., Pereira O. R., Cardoso S. M., et al. (2022). Pharmacological properties of bergapten: Mechanistic and therapeutic aspects. Oxid. Med. Cell. Longev. 2022, 8615242. 10.1155/2022/8615242 [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- Quintans-júnior L. J., Guimarães A. G., Araújo B. E., Oliveira G. F., Santana M. T., Moreira F. V., et al. (2010). Carvacrol, (-)-borneol and citral reduce convulsant activity in rodents. Afr. J. Biotechnol. 9, 6566–6572. [Google Scholar]
- Quispe C., Herrera-Bravo J., Javed Z., Khan K., Raza S., Gulsunoglu-Konuskan Z., et al. (2022). Therapeutic applications of curcumin in diabetes: A review and perspective. Biomed. Res. Int. 2022, 1375892. 10.1155/2022/1375892 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quitkin F. M., Liebowitz M. R., Stewart J. W., Mcgrath P. J., Harrison W., Rabkin J. G., et al. (1984). l-Deprenyl in atypical depressives. Arch. Gen. Psychiatry 41, 777–781. 10.1001/archpsyc.1984.01790190051006 [DOI] [PubMed] [Google Scholar]
- Quitkin F. M., Stewart J. W., Mcgrath P. J., Liebowitz M. R., Harrison W. M., Tricamo E., et al. (1988). Phenelzine versus imipramine in the treatment of probable atypical depression: Defining syndrome boundaries of selective MAOI responders. Am. J. Psychiatry 145, 306–311. 10.1176/ajp.145.3.306 [DOI] [PubMed] [Google Scholar]
- Rajib H., Muhammad Torequl I., Pranta R., Divya J., Abu Saim Mohammad S., Lutfun N., et al. (2021). Amentoflavone, new hope against SARS-CoV-2: An outlook through its scientific records and an in silico study. Pharmacogn. Res. 13, 149–157. 10.5530/pres.13.3.7 [DOI] [Google Scholar]
- Ramos-Hryb A. B., Cunha M. P., Kaster M. P., Rodrigues A. L. S. (2018). Natural polyphenols and terpenoids for depression treatment: Current status. Stud. Nat. Prod. Chem. 55, 181–221. 10.1016/b978-0-444-64068-0.00006-1 [DOI] [Google Scholar]
- Rapin I., Tuchman R. F. (2008). Autism: Definition, neurobiology, screening, diagnosis. Pediatr. Clin. North Am. 55, 1129–1146. 10.1016/j.pcl.2008.07.005 [DOI] [PubMed] [Google Scholar]
- Ravindran L. N., Stein M. B. (2010). The pharmacologic treatment of anxiety disorders: A review of progress. J. Clin. Psychiatry 71, 839–854. 10.4088/jcp.10r06218blu [DOI] [PubMed] [Google Scholar]
- Raygude K. S., Kandhare A. D., Ghosh P., Bodhankar S. L. (2012). Anticonvulsant effect of fisetin by modulation of endogenous biomarkers. Biomed. Prev. Nutr. 2, 215–222. 10.1016/j.bionut.2012.04.005 [DOI] [Google Scholar]
- Raza S. S., Khan M. M., Ahmad A., Ashafaq M., Khuwaja G., Tabassum R., et al. (2011). Hesperidin ameliorates functional and histological outcome and reduces neuroinflammation in experimental stroke. Brain Res. 1420, 93–105. 10.1016/j.brainres.2011.08.047 [DOI] [PubMed] [Google Scholar]
- Reaven J., Blakeley‐Smith A., Culhane‐Shelburne K., Hepburn S. (2012). Group cognitive behavior therapy for children with high‐functioning autism spectrum disorders and anxiety: A randomized trial. J. Child. Psychol. Psychiatry 53, 410–419. 10.1111/j.1469-7610.2011.02486.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy H. M., Poole J. S., Maguire G. A., Stahl S. M. (2020). New medications for neuropsychiatric disorders. Psychiatr. Clin. North Am. 43, 399–413. 10.1016/j.psc.2020.02.008 [DOI] [PubMed] [Google Scholar]
- Recart V. M., Spohr L., Soares M. S. P., Mattos B. d. S., Bona N. P., Pedra N. S., et al. (2021). Gallic acid protects cerebral cortex, hippocampus, and striatum against oxidative damage and cholinergic dysfunction in an experimental model of manic-like behavior: Comparison with lithium effects. Int. J. Dev. Neurosci. 81, 167–178. 10.1002/jdn.10086 [DOI] [PubMed] [Google Scholar]
- Rossignol D. A., Frye R. E. (2014). Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front. Physiol. 5, 150. 10.3389/fphys.2014.00150 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryvlin P., Cross J. H., Rheims S. (2014). Epilepsy surgery in children and adults. Lancet. Neurol. 13, 1114–1126. 10.1016/S1474-4422(14)70156-5 [DOI] [PubMed] [Google Scholar]
- Sakurada T., Kuwahata H., Katsuyama S., Komatsu T., Morrone L. A., Corasaniti M. T., et al. (2009). Intraplantar injection of bergamot essential oil into the mouse hindpaw: Effects on capsaicin‐induced nociceptive behaviors. Int. Rev. Neurobiol. 85, 237–248. 10.1016/S0074-7742(09)85018-6 [DOI] [PubMed] [Google Scholar]
- Salehi B., Calina D., Docea A. O., Koirala N., Aryal S., Lombardo D., et al. (2020). Curcumin's nanomedicine formulations for therapeutic application in neurological diseases. J. Clin. Med. 9, E430. 10.3390/jcm9020430 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salehi B., Imani R., Mohammadi M. R., Fallah J., Mohammadi M., Ghanizadeh A., et al. (2010). Ginkgo biloba for attention-deficit/hyperactivity disorder in children and adolescents: A double blind, randomized controlled trial. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 76–80. 10.1016/j.pnpbp.2009.09.026 [DOI] [PubMed] [Google Scholar]
- Salehi B., Jornet P. L., Lopez E. P. F., Calina D., Sharifi-Rad M., Ramirez-Alarcon K., et al. (2019a). Plant-Derived bioactives in oral mucosal lesions: A key emphasis to curcumin, lycopene, chamomile, aloe vera, green tea and coffee properties. Biomolecules 9, E106. 10.3390/biom9030106 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salehi B., Sestito S., Rapposelli S., Peron G., Calina D., Sharifi-Rad M., et al. (2019b). Epibatidine: A promising natural alkaloid in health. Biomolecules 9, 6. 10.3390/biom9010006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarris J., Marx W., Ashton M. M., Ng C. H., Galvao-Coelho N., Ayati Z., et al. (2021). Plant-based medicines (phytoceuticals) in the treatment of psychiatric disorders: A meta-review of meta-analyses of randomized controlled trials: Les médicaments à base de plantes (phytoceutiques) dans le traitement des troubles psychiatriques: Une méta-revue des méta-analyses d'essais randomisés contrôlés. Can. J. Psychiatry. 66, 849–862. 10.1177/0706743720979917 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki K., Iwata N., Ferdousi F., Isoda H. (2019). Antidepressant‐like effect of ferulic acid via promotion of energy metabolism activity. Mol. Nutr. Food Res. 63, 1900327. 10.1002/mnfr.201900327 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schimidt H. L., Garcia A., Martins A., Mello-Carpes P. B., Carpes F. P. (2017). Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model. Food Res. Int. 100, 442–448. 10.1016/j.foodres.2017.07.026 [DOI] [PubMed] [Google Scholar]
- Schmid C. L., Streicher J. M., Meltzer H. Y., Bohn L. M. (2014). Clozapine acts as an agonist at serotonin 2A receptors to counter MK-801-induced behaviors through a βarrestin2-independent activation of Akt. Neuropsychopharmacology 39, 1902–1913. 10.1038/npp.2014.38 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schopler E., Reichler R. J., Renner B. R. (2010). The childhood autism rating scale (CARS). Los Angeles, CA, USA: WPS. [Google Scholar]
- Seeger T. F., Seymour P., Schmidt A., Zorn S., Schulz D., Lebel L., et al. (1995). Ziprasidone (CP-88, 059): A new antipsychotic with combined dopamine and serotonin receptor antagonist activity. J. Pharmacol. Exp. Ther. 275, 101–113. [PubMed] [Google Scholar]
- Shakeel S., Rehman M. U., Tabassum N., Amin U., Mir M. U. R. (2017). Effect of naringenin (a naturally occurring flavanone) against pilocarpine-induced status epilepticus and oxidative stress in mice. Pharmacogn. Mag. 13, S154–S160. 10.4103/0973-1296.203977 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shao C., Yuan J., Liu Y., Qin Y., Wang X., Gu J., et al. (2020). Epileptic brain fluorescent imaging reveals apigenin can relieve the myeloperoxidase-mediated oxidative stress and inhibit ferroptosis. Proc. Natl. Acad. Sci. U. S. A. 117, 10155–10164. 10.1073/pnas.1917946117 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro D. A., Renock S., Arrington E., Chiodo L. A., Liu L.-X., Sibley D. R., et al. (2003). Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28, 1400–1411. 10.1038/sj.npp.1300203 [DOI] [PubMed] [Google Scholar]
- Sharifi-rad J., Quispe C., Herrera-Bravo J., Akram M., Abbaass W., Semwal P., et al. (2021a). Phytochemical constituents, biological activities, and health-promoting effects of the melissa officinalis. Oxidative Med. Cell. Longev. 2021, 1–20. 10.1155/2021/6584693 [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- Sharifi-rad J., Quispe C., Herrera-Bravo J., Martorell M., Sharopov F., Tumer T. B., et al. (2021b). A pharmacological perspective on plant-derived bioactive molecules for epilepsy. Neurochem. Res. 46, 2205–2225. 10.1007/s11064-021-03376-0 [DOI] [PubMed] [Google Scholar]
- Sharifi-rad J., Quispe C., Herrera-Bravo J., Martorell M., Sharopov F., Tumer T. B., et al. (2021c). Pharmacological perspective on plant-derived bioactive molecules for epilepsy. Neurochem. Res. 46 (9), 2205–2225. 10.1007/s11064-021-03376-0 [DOI] [PubMed] [Google Scholar]
- Sharifi-rad J., Quispe C., Kumar M., Akram M., Amin M., Iqbal M., et al. (2022). Hyssopus essential oil: An update of its phytochemistry, biological activities, and safety profile. Oxid. Med. Cell. Longev. 2022, 8442734. 10.1155/2022/8442734 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharifi-rad J., Quispe C., Patra J. K., Singh Y. D., Panda M. K., Das G., et al. (2021d). Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxid. Med. Cell. Longev. 2021, 3687700. 10.1155/2021/3687700 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shyn S. I., Hamilton S. P. (2010). The genetics of major depression: Moving beyond the monoamine hypothesis. Psychiatr. Clin. North Am. 33, 125–140. 10.1016/j.psc.2009.10.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silva M. I. G., Silva M. A. G., DE Aquino Neto M. R., Moura B. A., DE Sousa H. L., DE Lavor E. P. H., et al. (2009). Effects of isopulegol on pentylenetetrazol-induced convulsions in mice: Possible involvement of GABAergic system and antioxidant activity. Fitoterapia 80, 506–513. 10.1016/j.fitote.2009.06.011 [DOI] [PubMed] [Google Scholar]
- Silver J., Hales R., Yudolsky S. (1990). Psychiatric consultation to neurology. Rev. Psychiatry 9. [Google Scholar]
- Silver J. M., Yudofsky S. C., Hales R. E. (1991). Depression in traumatic brain injury. Neuropsychiatry, Neuropsychology, Behav. Neurology. [Google Scholar]
- Silver J. M., Yudofsky S. C., Hales R. E. (1994). Neuropsychiatry of traumatic brain injury. American Psychiatric Association. [Google Scholar]
- Singh D., Goel R. K. (2016). Anticonvulsant mechanism of saponins fraction from adventitious roots of Ficus religiosa: Possible modulation of GABAergic, calcium and sodium channel functions. Rev. Bras. Farmacogn. 26, 579–585. 10.1016/j.bjp.2015.10.007 [DOI] [Google Scholar]
- Singh I. (2008). Beyond polemics: Science and ethics of ADHD. Nat. Rev. Neurosci. 9, 957–964. 10.1038/nrn2514 [DOI] [PubMed] [Google Scholar]
- Smith M. T., Crouch N. R., Gericke N., Hirst M. (1996). Psychoactive constituents of the genus Sceletium NE Br. And other mesembryanthemaceae: A review. J. Ethnopharmacol. 50, 119–130. 10.1016/0378-8741(95)01342-3 [DOI] [PubMed] [Google Scholar]
- Snyder S. H., Yamamura H. I. (1977). Antidepressants and the muscarinic acetylcholine receptor. Arch. Gen. Psychiatry 34, 236–239. 10.1001/archpsyc.1977.01770140126014 [DOI] [PubMed] [Google Scholar]
- Soofiyani S. R., Hosseini K., Forouhandeh H., Ghasemnejad T., Tarhriz V., Asgharian P., et al. (2021). Quercetin as a novel therapeutic approach for lymphoma. Oxidative Med. Cell. Longev. 2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Souza L. C., DE Gomes M. G., Goes A. T., Del Fabbro L., Carlos Filho B., Boeira S. P., et al. (2013). Evidence for the involvement of the serotonergic 5-HT1A receptors in the antidepressant-like effect caused by hesperidin in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 40, 103–109. 10.1016/j.pnpbp.2012.09.003 [DOI] [PubMed] [Google Scholar]
- Spina E., De Domenico P., Ruello C., Longobardo N., Gitto C., Ancione M., Di Rosa A. E., Caputi A. P. (1994). Adjunctive fluoxetine in the treatment of negative symptoms in chronic schizophrenic patients. Int. Clin. Psychopharmacol. 9 (4), 281–286. 10.1097/00004850-199400940-00007 [DOI] [PubMed] [Google Scholar]
- Spinella M. (2001). The psychopharmacology of herbal medicine: Plant drugs that alter mind, brain, and behavior. MIT Press. [Google Scholar]
- Stahl S. M., Grady M. M., Moret C., Briley M. (2005). SNRIs: Their pharmacology, clinical efficacy, and tolerability in comparison with other classes of antidepressants. CNS Spectr. 10, 732–747. 10.1017/s1092852900019726 [DOI] [PubMed] [Google Scholar]
- Stahl S. M., Meyer J. M. (2020). The clozapine handbook. Cambridge University Press. [Google Scholar]
- Stansfield R. L. (2019). When attention deficit meets the “Attention Economy”. Dissertation thesis. Available at: https://unbscholar.lib.unb.ca/islandora/object/unbscholar%3A9820 [Google Scholar]
- Steenkamp P., Harding N., VAN Heerden F., VAN Wyk B.-E. (2004). Fatal Datura poisoning: Identification of atropine and scopolamine by high performance liquid chromatography/photodiode array/mass spectrometry. Forensic Sci. Int. 145, 31–39. 10.1016/j.forsciint.2004.03.011 [DOI] [PubMed] [Google Scholar]
- Storebø O. J., Ramstad E., Krogh H. B., Nilausen T. D., Skoog M., Holmskov M., et al. (2015). Methylphenidate for children and adolescents with attention deficit hyperactivity disorder (ADHD). Cochrane Database Syst. Rev. 2016. 10.1002/14651858.cd009885.pub2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sundberg M., Sahin M. (2015). Cerebellar development and autism spectrum disorder in tuberous sclerosis complex. J. Child. Neurol. 30, 1954–1962. 10.1177/0883073815600870 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taheri Y., Quispe C., Herrera-Bravo J., Sharifi-Rad J., Ezzat S. M., Merghany R. M., et al. (2022). Urtica dioica-derived phytochemicals for pharmacological and therapeutic applications. Evid. Based. Complement. Altern. Med. 2022, 4024331. 10.1155/2022/4024331 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taïwe G. S., Kuete V. (2014). Neurotoxicity and neuroprotective effects of African medicinal plants. Toxicol. Surv. Afr. Med. plants, 423–444. 10.1016/b978-0-12-800018-2.00014-5 [DOI] [Google Scholar]
- Takeda A., Sakamoto K., Tamano H., Fukura K., Inui N., Suh S. W., et al. (2011). Facilitated neurogenesis in the developing hippocampus after intake of theanine, an amino acid in tea leaves, and object recognition memory. Cell. Mol. Neurobiol. 31, 1079–1088. 10.1007/s10571-011-9707-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taviano M., Miceli N., Monforte M., Tzakou O., Galati E. (2007). Ursolic acid plays a role in Nepeta sibthorpii Bentham CNS depressing effects. Phytother. Res. 21, 382–385. 10.1002/ptr.2076 [DOI] [PubMed] [Google Scholar]
- Taylor G., Mcneill A., Girling A., Farley A., Lindson-Hawley N., Aveyard P. (2014). Change in mental health after smoking cessation: Systematic review and meta-analysis. Bmj 348, g1151. 10.1136/bmj.g1151 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theoharides T., Asadi S., Panagiotidou S. (2012). A case series of a luteolin formulation (NeuroProtek®) in children with autism spectrum disorders. London, England: SAGE Publications Sage UK. [DOI] [PubMed] [Google Scholar]
- Tiihonen J., Mittendorfer-Rutz E., Majak M., Mehtälä J., Hoti F., Jedenius E., et al. (2017). Real-world effectiveness of antipsychotic treatments in a nationwide cohort of 29 823 patients with schizophrenia. JAMA psychiatry 74, 686–693. 10.1001/jamapsychiatry.2017.1322 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trebatická J., Kopasová S., Hradečná Z., Činovský K., Škodáček I., Šuba J., et al. . 2006. Treatment of ADHD with French maritime pine bark extract, Pycnogenol®. Eur. Child. Adolesc. Psychiatry, 15, 329–335,. 10.1007/s00787-006-0538-3 [DOI] [PubMed] [Google Scholar]
- Trofor L., Crisan-Dabija R., Cioroiu M. E., Man M. A., Cioroiu I. B., Buculei I., et al. (2020). Evaluation of oxidative stress in smoking and NON-smoking patients diagnosed with anxious-depressive disorder. Farmacia 68, 82–89. 10.31925/farmacia.2020.1.12 [DOI] [Google Scholar]
- Tsilioni I., Taliou A., Francis K., Theoharides T. (2015). Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Transl. Psychiatry 5, e647. 10.1038/tp.2015.142 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsoukalas D., Buga A. M., Docea A. O., Sarandi E., Mitrut R., Renieri E., et al. (2021). Reversal of brain aging by targeting telomerase: A nutraceutical approach. Int. J. Mol. Med. 48, 199. 10.3892/ijmm.2021.5032 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuchman R., Cuccaro M., Alessandri M. (2010). Autism and epilepsy: Historical perspective. Brain Dev. 32, 709–718. 10.1016/j.braindev.2010.04.008 [DOI] [PubMed] [Google Scholar]
- Uebel-von sandersleben H., Rothenberger A., Albrecht B., Rothenberger L. G., Klement S., Bock N. (2014). “Ginkgo biloba extract EGb 761® in children with ADHD,” in Zeitschrift für Kinder-und Jugendpsychiatrie und Psychotherapie. [DOI] [PubMed] [Google Scholar]
- Uk N. C. G. C. (2012). The epilepsies: The diagnosis and management of the epilepsies in adults and children in primary and secondary care. [Google Scholar]
- Underwood B. R., Imarisio S., Fleming A., Rose C., Krishna G., Heard P., et al. (2010). Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease. Hum. Mol. Genet. 19, 3413–3429. 10.1093/hmg/ddq253 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urdaneta K. E., Castillo M. A., Montiel N., Semprún-Hernández N., Antonucci N., Siniscalco D. (2018). Autism spectrum disorders: Potential neuro-psychopharmacotherapeutic plant-based drugs. Assay. Drug Dev. Technol. 16, 433–444. 10.1089/adt.2018.848 [DOI] [PubMed] [Google Scholar]
- Van os J., Kapur S. (2009). Schizophrenia. Lancet 374, 635–645. 10.1016/S0140-6736(09)60995-8 [DOI] [PubMed] [Google Scholar]
- Verrotti A., Tocco A., Salladini C., Latini G., Chiarelli F. (2005). Human photosensitivity: From pathophysiology to treatment. Eur. J. Neurol. 12, 828–841. 10.1111/j.1468-1331.2005.01085.x [DOI] [PubMed] [Google Scholar]
- Vlad R., Golu F., Toma A., Draganescu D., Oprea B., Chiper B. I. (2020). Depression and anxiety in Romanian medical students: Prevalence and associations with personality. Farmacia 68, 944–949. 10.31925/farmacia.2020.5.24 [DOI] [Google Scholar]
- Walsh C. A., Morrow E. M., Rubenstein J. L. (2008). Autism and brain development. Cell 135, 396–400. 10.1016/j.cell.2008.10.015 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang J., Ferruzzi M. G., Ho L., Blount J., Janle E. M., Gong B., et al. (2012). Brain-targeted proanthocyanidin metabolites for Alzheimer's disease treatment. J. Neurosci. 32, 5144–5150. 10.1523/JNEUROSCI.6437-11.2012 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang R., Li Y.-B., Li Y.-H., Xu Y., Wu H.-L., Li X.-J. (2008). Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res. 1210, 84–91. 10.1016/j.brainres.2008.01.104 [DOI] [PubMed] [Google Scholar]
- Wang R., Li Y.-H., Xu Y., Li Y.-B., Wu H.-L., Guo H., et al. (2010). Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 147–153. 10.1016/j.pnpbp.2009.10.016 [DOI] [PubMed] [Google Scholar]
- Wang R., Yan H., Tang X. C. (2006). Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol. Sin. 27, 1–26. 10.1111/j.1745-7254.2006.00255.x [DOI] [PubMed] [Google Scholar]
- Wasilewska J., Klukowski M. (2015). Gastrointestinal symptoms and autism spectrum disorder: Links and risks–a possible new overlap syndrome. Pediatr. Health Med. Ther. 6, 153–166. 10.2147/PHMT.S85717 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wattanathorn J., Chonpathompikunlert P., Muchimapura S., Priprem A., Tankamnerdthai O. (2008). Piperine, the potential functional food for mood and cognitive disorders. Food Chem. Toxicol. 46, 3106–3110. 10.1016/j.fct.2008.06.014 [DOI] [PubMed] [Google Scholar]
- Weissman M. M., Olfson M. (1995). Depression in women: Implications for health care research. Science 269, 799–801. 10.1126/science.7638596 [DOI] [PubMed] [Google Scholar]
- Wilens T. E., Spencer T. J. (2010). Understanding attention-deficit/hyperactivity disorder from childhood to adulthood. Postgrad. Med. 122, 97–109. 10.3810/pgm.2010.09.2206 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willcutt E. G. (2012). The prevalence of DSM-IV attention-deficit/hyperactivity disorder: A meta-analytic review. Neurotherapeutics 9, 490–499. 10.1007/s13311-012-0135-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willner P., Scheel-Krüger J., Belzung C. (2013). The neurobiology of depression and antidepressant action. Neurosci. Biobehav. Rev. 37, 2331–2371. 10.1016/j.neubiorev.2012.12.007 [DOI] [PubMed] [Google Scholar]
- Woo T. S., Yoon S. Y., Cheong J. H., Choi J. Y., Lee H. L., Choi Y. J., et al. (2011). Anticonvulsant effect of Artemisia capillaris Herba in mice. Biomol. Ther. Seoul. 19, 342–347. 10.4062/biomolther.2011.19.3.342 [DOI] [Google Scholar]
- Wood J. J., Drahota A., Sze K., Har K., Chiu A., Langer D. A. (2009). Cognitive behavioral therapy for anxiety in children with autism spectrum disorders: A randomized, controlled trial. J. Child. Psychol. Psychiatry 50, 224–234. 10.1111/j.1469-7610.2008.01948.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodward K. (2015). Psychosocial studies: An introduction. Routledge. [Google Scholar]
- Wu E. Q., Shi L., Birnbaum H., Hudson T., Kessler R. (2006). Annual prevalence of diagnosed schizophrenia in the USA: A claims data analysis approach. Psychol. Med. 36, 1535–1540. 10.1017/S0033291706008191 [DOI] [PubMed] [Google Scholar]
- Wu J., Chen H., Li H., Tang Y., Yang L., Cao S., et al. (2016). Antidepressant potential of chlorogenic acid-enriched extract from Eucommia ulmoides Oliver bark with neuron protection and promotion of serotonin release through enhancing synapsin I expression. Molecules 21, 260. 10.3390/molecules21030260 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wulff K., Donato D., Lurie N. (2015). What is health resilience and how can we build it? Annu. Rev. Public Health 36, 361–374. 10.1146/annurev-publhealth-031914-122829 [DOI] [PubMed] [Google Scholar]
- Wynn J. K., Green M. F., Hellemann G., Karunaratne K., Davis M. C., Marder S. R. (2018). The effects of curcumin on brain-derived neurotrophic factor and cognition in schizophrenia: A randomized controlled study. Schizophr. Res. 195, 572–573. 10.1016/j.schres.2017.09.046 [DOI] [PubMed] [Google Scholar]
- Xu N., Li X., Zhong Y. (2015). Inflammatory cytokines: potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediators Inflamm. 2015, 531518. 10.1155/2015/531518 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu Y., Ku B.-S., Yao H.-Y., Lin Y.-H., Ma X., Zhang Y.-H., et al. (2005a). Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol. Biochem. Behav. 82, 200–206. 10.1016/j.pbb.2005.08.009 [DOI] [PubMed] [Google Scholar]
- Xu Y., Ku B.-S., Yao H.-Y., Lin Y.-H., Ma X., Zhang Y.-H., et al. (2005b). The effects of curcumin on depressive-like behaviors in mice. Eur. J. Pharmacol. 518, 40–46. 10.1016/j.ejphar.2005.06.002 [DOI] [PubMed] [Google Scholar]
- Xu Y., Ku B., Cui L., Li X., Barish P. A., Foster T. C., et al. (2007). Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res. 1162, 9–18. 10.1016/j.brainres.2007.05.071 [DOI] [PubMed] [Google Scholar]
- Xu Y., Li S., Chen R., Li G., Barish P. A., You W., et al. (2010a). Antidepressant-like effect of low molecular proanthocyanidin in mice: Involvement of monoaminergic system. Pharmacol. Biochem. Behav. 94, 447–453. 10.1016/j.pbb.2009.10.007 [DOI] [PubMed] [Google Scholar]
- Xu Y., Wang Z., You W., Zhang X., Li S., Barish P. A., et al. (2010b). Antidepressant-like effect of trans-resveratrol: Involvement of serotonin and noradrenaline system. Eur. Neuropsychopharmacol. 20, 405–413. 10.1016/j.euroneuro.2010.02.013 [DOI] [PubMed] [Google Scholar]
- Yáñez M., Fraiz N., Cano E., Orallo F. (2006). Inhibitory effects of cis-and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity. Biochem. Biophys. Res. Commun. 344, 688–695. 10.1016/j.bbrc.2006.03.190 [DOI] [PubMed] [Google Scholar]
- Yao X., Li L., Kandhare A. D., Mukherjee-Kandhare A. A., Bodhankar S. L. (2020). Attenuation of reserpine-induced fibromyalgia via ROS and serotonergic pathway modulation by fisetin, a plant flavonoid polyphenol. Exp. Ther. Med. 19, 1343–1355. 10.3892/etm.2019.8328 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeni Y., Cakir Z., Hacimuftuoglu A., Taghizadehghalehjoughi A., Okkay U., Genc S., et al. (2022). A selective histamine H4 receptor antagonist, JNJ7777120, role on glutamate transporter activity in chronic depression. J. Pers. Med. 12, 246. 10.3390/jpm12020246 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yi L.-T., Xu H.-L., Feng J., Zhan X., Zhou L.-P., Cui C.-C. (2011). Involvement of monoaminergic systems in the antidepressant-like effect of nobiletin. Physiol. Behav. 102, 1–6. 10.1016/j.physbeh.2010.10.008 [DOI] [PubMed] [Google Scholar]
- Yoon S. Y., DELA Peña I. C., Shin C. Y., Son K. H., Lee Y. S., Ryu J. H., et al. (2011). Convulsion-related activities of Scutellaria flavones are related to the 5, 7-dihydroxyl structures. Eur. J. Pharmacol. 659, 155–160. 10.1016/j.ejphar.2011.03.012 [DOI] [PubMed] [Google Scholar]
- Yoshino S., Hara A., Sakakibara H., Kawabata K., Tokumura A., Ishisaka A., et al. (2011). Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria. Nutrition 27, 847–852. 10.1016/j.nut.2010.09.002 [DOI] [PubMed] [Google Scholar]
- Yu Y.-H., Xie W., Bao Y., Li H.-M., Hu S.-J., Xing J.-L. (2012). Saikosaponin a mediates the anticonvulsant properties in the HNC models of AE and SE by inhibiting NMDA receptor current and persistent sodium current. PLoS One 7, e50694. 10.1371/journal.pone.0050694 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yudofsky S. C., Hales R. E. (2002). Neuropsychiatry and the future of psychiatry and neurology. Am. J. Psychiatry 159, 1261–1264. 10.1176/appi.ajp.159.8.1261 [DOI] [PubMed] [Google Scholar]
- Yusha'u Y., Muhammad U. A., Nze M., Egwuma J. M., Igomu O. J., Abdulkadir M. (2017). Modulatory Role of Rutin Supplement on Open Space Forced Swim Test Murine Model of Depression. Niger. J. Physiol. Sci. 32 (2), 201–205. [PubMed] [Google Scholar]
- Zangara A. (2003). The psychopharmacology of huperzine A: An alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of alzheimer's disease. Pharmacol. Biochem. Behav. 75, 675–686. 10.1016/s0091-3057(03)00111-4 [DOI] [PubMed] [Google Scholar]
- Zeni A. L. B., Zomkowski A. D. E., Maraschin M., Rodrigues A. L. S., Tasca C. I. (2012). Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice: Evidence for the involvement of the serotonergic system. Eur. J. Pharmacol. 679, 68–74. 10.1016/j.ejphar.2011.12.041 [DOI] [PubMed] [Google Scholar]
- Zhang F., Lu Y.-F., Wu Q., Liu J., Shi J.-S. (2012). Resveratrol promotes neurotrophic factor release from astroglia. Exp. Biol. Med. 237, 943–948. 10.1258/ebm.2012.012044 [DOI] [PubMed] [Google Scholar]
- Zhang L., Xu T., Wang S., Yu L., Liu D., Zhan R., et al. (2013). NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test. Prog. Neuropsychopharmacol. Biol. Psychiatry 40, 12–17. 10.1016/j.pnpbp.2012.08.017 [DOI] [PubMed] [Google Scholar]
- Zhang Z.-J. (2004). Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci. 75, 1659–1699. 10.1016/j.lfs.2004.04.014 [DOI] [PubMed] [Google Scholar]
- Zhen L., Zhu J., Zhao X., Huang W., An Y., Li S., et al. (2012). The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system. Behav. Brain Res. 228, 359–366. 10.1016/j.bbr.2011.12.017 [DOI] [PubMed] [Google Scholar]
- Zheng L. T., Ock J., Kwon B.-M., Suk K. (2008). Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int. Immunopharmacol. 8, 484–494. 10.1016/j.intimp.2007.12.012 [DOI] [PubMed] [Google Scholar]
- Zhu H. L., Wan J. B., Wang Y. T., Li B. C., Xiang C., He J., et al. (2014). Medicinal compounds with antiepileptic/anticonvulsant activities. Epilepsia 55, 3–16. 10.1111/epi.12463 [DOI] [PubMed] [Google Scholar]
- Zuiki M., Chiyonobu T., Yoshida M., Maeda H., Yamashita S., Kidowaki S., et al. (2017). Luteolin attenuates interleukin-6-mediated astrogliosis in human iPSC-derived neural aggregates: A candidate preventive substance for maternal immune activation-induced abnormalities. Neurosci. Lett. 653, 296–301. 10.1016/j.neulet.2017.06.004 [DOI] [PubMed] [Google Scholar]

