Abstract
Evidence of micro- and macro-thrombi in the arteries and veins of critically ill COVID-19 patients and in autopsies highlight the occurrence of COVID-19-associated coagulopathy (CAC). Clinical findings of critically ill COVID-19 patients point to various mechanisms for CAC; however, the definitive underlying cause is unclear. Multiple factors may contribute to the prothrombotic state in patients with COVID-19. Aberrant expression of tissue factor (TF), an initiator of the extrinsic coagulation pathway, leads to thrombotic complications during injury, inflammation, and infections. Clinical evidence suggests that TF-dependent coagulation activation likely plays a role in CAC. Multiple factors could trigger abnormal TF expression and coagulation activation in patients with severe COVID-19 infection. Proinflammatory cytokines that are highly elevated in COVID-19 (IL-1β, IL-6 and TNF-α) are known induce TF expression on leukocytes (e.g. monocytes, macrophages) and non-immune cells (e.g. endothelium, epithelium) in other conditions. Antiphospholipid antibodies, TF-positive extracellular vesicles, pattern recognition receptor (PRR) pathways and complement activation are all candidate factors that could trigger TF-dependent procoagulant activity. In addition, coagulation factors, such as thrombin, may further potentiate the induction of TF via protease-activated receptors on cells. In this systematic review, with other viral infections, we discuss potential mechanisms and cell-type-specific expressions of TF during SARS-CoV-2 infection and its role in the development of CAC.
Keywords: Tissue factor, Antiphospholipid antibodies, PAMPs, DAMPs, C5a, sepsis, COVID-19
1. Introduction
Coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, presents with a wide spectrum of phenotypes ranging from asymptomatic to mild or severe complications. Multiple organ failure seems to be a hallmark of COVID-19 severity and is associated with increased morbidity and mortality [1], [2], [3]. A hypercoagulable state leading to the development of micro-/macro-vascular thrombus formation has been incriminated with a critical role [4], [5]. Patients with severe COVID-19 are at higher risk of developing thrombotic events including pulmonary embolism, deep vein thrombosis and arterial thrombosis (incidence rates 4.4 %) [6]. The anatomical distribution of arterial thrombotic events was wide, occurring in limb arteries (39 %), cerebral arteries (24 %), great vessels (aorta, common iliac, common carotid, and brachiocephalic trunk; 19 %), coronary arteries (9 %), and superior mesenteric artery (8 %) [6], [7]. Moreover, critically ill COVID-19 patients display other coagulation abnormalities which resemble disseminated intravascular coagulation (DIC) as seen in bacterial sepsis. However, clinical and laboratory findings suggest that COVID-19-associated coagulopathy (CAC) represents a unique entity which does not necessarily meet all the diagnostic criteria for DIC of the International Society on Thrombosis and Haemostasis (ISTH) [8], [9]. In contrast to the typical picture of DIC from other causes, a prolonged prothrombin time (PT) and activated partial thromboplastin time (aPTT) are not frequently observed in severe COVID-19 patients [10]. CAC is characterized by elevated levels of fibrinogen [11], [12], [13]. Furthermore, thrombocytopenia is often relatively mild in COVID-19 patients [14], [15]. A hypofibrinolytic state in the alveolar spaces was observed in SARS-CoV-1 and SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) due to increased levels of fibrinolytic inhibitors such as plasminogen activator inhibitor-1 [16], [17]. Furthermore, low antithrombin (AT)-III levels are linked to procoagulant and inflammatory responses [18], and mortality in COVID-19, especially among patients with obesity [19]. A case series of seven autopsies revealed an ∼9-fold higher occurrence of alveolar capillary microthrombi in COVID-19 as compared to H1N1 patients [20]. The presence of thromboembolic and fibrin-rich thrombi in the pulmonary vasculature is suggestive of a distinct COVID-19 pathology [21], [22], [23], [24], [25]. Accordingly, the ISTH proposed to categorize CAC as a new form of intravascular coagulation syndrome with the need for defining its diagnostic criteria [14], [26]. There are multiple mechanisms and factors that could potentially contribute to the prothrombotic milieu in COVID-19. In addition to the thrombotic complications, prolonged bleeding times and a risk for major hemorrhage is a relevant cause of morbidity in patients with COVID-19 [27], [28], [29].
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is caused by antibodies that recognize platelet factor 4 (PF4, also called CXCL4) bound to platelets [30]. These antibodies are immunoglobulin G (IgG) molecules that activate platelets via low affinity platelet FcγIIa receptors (receptors on the platelet surface that bind the Fc region of IgG) [31]. Ultimately, platelet activation, and possibly activation of other cells such as neutrophils, results in marked stimulation of the coagulation system and clinically significant thromboembolic complications [32], [33]. CAC has distinct pathophysiological mechanisms from VITT for the activation of coagulation system. In this review, we have focused on the role of tissue factor (TF) in CAC.
2. Tissue factor pathway
Tissue factor (TF) is a transmembrane glycoprotein and a well-known hemostatic regulator that essentially protects vital organs prone to mechanical injury [34]. The TF cDNA was cloned in 1987 by four independent research groups [35], [36], [37], [38], [39]. Deletion of the TF gene in mice leads to embryonic development, indicating the importance of TF for survival [40], [41], [42]. Parry and Mackman reported that mouse embryogenesis requires the TF extracellular domain but not the cytoplasmic domain [43]. TF is highly expressed in subendothelial tissues of vascularized organs, such as the brain, lungs, placenta, heart, and kidneys [44], [45], [46]. Other reviews discuss TF structure and functions, its expression in different cell types, antigen measurement by various methods, and so forth, in further detail [46], [47].
TF serves as a high affinity cell surface receptor and cofactor for coagulation factors VII and VIIa [48], [49]. This TF:FVIIa complex activates factor IX (FIX) and factor X (FX), triggering a cascade that generates thrombin, fibrin and activates platelets, resulting in a hemostatic plug at the site of injury [34], [50], [51]. Besides the role of surface full length TF (flTF) expression (decryptic form) in procoagulant activity [52], [53], alternatively spliced TF (asTF; lacking exon 5) was identified as a soluble form of TF [54], which circulates in blood and also exhibits pro-coagulant activity [55], [56]. However, we do not have any experimental data to support the contribution of soluble TF to COVID-19 pathogenesis.
3. Tissue factor and viral infections
Activation of TF pathway is the key triggering route in sepsis-induced activation of the coagulation cascade [5], [57], [58]. Patients with acute respiratory distress syndrome (ARDS) and/or pneumonia as well as ventilator-associated pneumonia showed elevated TF and FVIIa activity in bronchoalveolar lavage (BAL) fluids, together with enhanced release of plasminogen activator inhibitor-1 [59], [60]. Interestingly, usage of mechanical ventilation in healthy human lungs showed activation of TF pathway and alveolar coagulation without causing lung injury [61].
TF-mediated extrinsic coagulation activation may be the underlying cause of arterial and venous thrombosis in severe COVID-19 patients [62], [63], [64]. Exposure to pathogens results in rapid and transient upregulation of TF expression in immune cells (monocytes, macrophages and dendritic cells) and non-immune cells (endothelial and epithelial cells) [45], [65], [66], [67], [68]. Expression of TF on endothelial cells and leukocytes combined with endothelial microinjuries (which expose subendothelial TF) results in increased fibrin generation and formation of microthrombi [69].
Influenza (IAV/H1N1) patients with ARDS have an activated coagulation system and increased risk of thrombosis. IAV hospitalized patients showed elevated levels of D-dimer, which was associated with a higher risk of disease progression [64]. A recent report showed that ARDS patients with H1N1 had high Venus thromboembolism incidence (49 %) compared to non-H1N1 patients (29 %) [70]. Mice infected with either IAV/1918 H1N1 [17] or infected with the mouse-adapted PR8/H1N1 variant displayed an increase in lung TF mRNA and TF activity [71]. Similarly, mice infected with SARS-CoV-1 (MA15) showed profoundly greater TF RNA expression at 2-days post infection (dpi) which remained elevated at 4 and 7-dpi [17] (Table 1 ).
Table 1.
TF expression during other viral infections.
| Virus | Species | Source | Experimental system | Findings | References |
|---|---|---|---|---|---|
| Dengue virus | Human | HUVECs | In vitro | ↑ TF ↑ TM ↑ tPA |
[259], [260] |
| Human | Monocytes | In vitro | ↑ TF ↑ PAI-1 |
[261], [262], [263] | |
| Human | Plasma | Clinical | ↑ TF ↑ PAI-1 ↑ tPA |
[264], [265] | |
| Human | Plasma | Clinical (children) | ↑ TF ↑ vWF ↑ PAI-1 |
[266] | |
| Human | Monocytes (from patients) | Clinical | ↑ TF | [267] | |
| Ebola virus | Human | Monocytes/macrophages | In vitro | ↑ TF ↓ Plasma protein C |
[109] |
| Macaques | 1. Lymphoid macrophages 2. Peripheral blood cell |
In vivo | 1. ↑ TF 2. ↑ TF membrane microparticles |
[75], [109] | |
| Puumala ortho-hanta virus | Human | Plasma | In vivo | 1. Circulating EV-TF 2. ↑ PAI-1 3. ↑ tPA |
[78] |
| Human | HUVECs | In vitro | ↑ TF, ↑ PAI-1 | [79] | |
| Zika virus | Human | HUVECs | In vitro | ↑ TF ↑ IL-6 ↑ IL-8 |
[80] |
| Cytomegalovirus | Human | HUVECs | In vitro | ↑ TF | [82] |
| Human | HUVECs | In vitro | ↑ PCA | [83] | |
| Human | Monocytes | In vitro | ↑ TF | [81] | |
| Measles virus | Human | HUVECs | In vitro | ↑ TF ↑ IL-1beta |
[84] |
| Herpes simplex virus | Human | HUVECs | In vitro | ↑ TF ↓ TM ↓ PAI-1 |
[76], [268] |
| Mares | Peripheral monocytes | In vitro | ↑ TF, ↑ FXa generation | [269] | |
| Virus | Virus envelope | In vitro | ↑ TF ↑ PCA |
[96], [270] | |
| Mouse | Virus envelope | In vivo | ↑ PCA | [97] | |
| Adenovirus | Human | HUVECs | In vitro | ↑ PCA | [83] |
| Influenza virus | Human | HUVECs | In vitro | ↑ PCA | [83] |
| Human | Monocytes | In vitro | ↑ TF | [81] | |
| Mouse | 1. Lung mRNA 2. BALF |
In vivo | ↑ TF ↑ BALF MV-TF |
[17], [71], [271] | |
| Human immuno-deficiency virus | Human | Peripheral monocytes | In vitro | ↑ TF and PCA | [272] |
| Human | Peripheral monocytes | Clinical | ↑ TF ↑ D-dimer |
[110] | |
| Human | Plasma | Clinical | ↑ MP-TF | [273] | |
| Human | Platelets and platelet microparticle | Clinical | ↑ platelet MP-TF | [274] | |
| Respiratory syncytial virus | Human | HUVECs | In vitro | ↑ PCA | [83] |
TF, tissue factor; PCA, procoagulant activity; MP-TF, tissue factor positive microparticles; TM, thrombomodulin; vWF, von Willebrand factor; PAI-1, plasminogen activator inhibitor-1; tPA, tissue plasminogen activator.
Blockade of TF or TF-FVIIa binary complex attenuates coagulopathy and sepsis-associated mortality in animal models [45], [72], [73], [74]. Similarly, in rhesus monkeys infected with the Ebola virus, treatment with a recombinant inhibitor of FVIIa/TF achieved a prolonged survival time and attenuation of the coagulation and proinflammatory responses [75]. Dengue virus, Respiratory Syncytial Virus, adenovirus, Measles, cytomegalovirus, Zika virus, Puumala Hantann virus, and Herpes simplex virus (HSV) infections induce TF expression in cultured endothelial cells [76], [77], [78], [79], [80], [81], [82], [83], [84]. Microvesicular TF activity correlated with plasma IL-8 and predicted mortality from severe influenza A (H1N1) infection in a multicenter study of 12 patients [85] (Table 1).
Autopsy lung tissues from COVID-19 patients showed higher expression of TF that correlated with areas of fibrin-enriched thrombi [86], [87]. Transcriptomic profiling of inflammatory cells from BAL fluid revealed that COVID-19 patients had increased expression of procoagulant genes (e.g. TF, vWF, thrombin, FXIII, FVII, F12) and decreased levels of anticoagulant genes (e.g. PROCR, PROS1, THBD) and fibrinolytic genes (e.g. PLAU) [88]. One major limitation of this study was that the transcripts from the BAL fluid were not analyzed with respect to specific-cell types. In severe COVID-19, TF expression on activated monocytes was associated with elevated fibrinogen and D-dimer levels [89]. Moreover, higher quantities of monocyte TF were present in patients who required mechanical ventilation or had a lethal course of disease [90]. It was recently reported that SARS-CoV-2 infection induces the activation of TF-mediated coagulation via activation of acid sphingomyelinase [91].
A recent prospective study showed a positive correlation between increased circulating levels of TF, IL-6, IL-8, VCAM-1, complement anaphylatoxin C5a, growth arrest specific (GAS) gene 6, pentraxin-3, TNF-α and mortality in COVID-19 patients in the ICU [92]. SARS-CoV-2 infection of human lung epithelial cells, and pulmonary endothelial cells overexpressing hACE2, induced expression of TF and led to procoagulant and proinflammatory responses [93], [94], [95] (Table 2 ).
Table 2.
Evidence for a role of TF in SARS-CoV infections.
| Virus | Species | Source | Experimental system | Findings | References |
|---|---|---|---|---|---|
| SARS-CoV-1 (SARS MA15- mouse-adapted) | Mouse | Lung mRNA | In vivo | ↑ TF | [17] |
| SARS-CoV-2 | Human | BALF cells (bulk-RNA seq) | Clinical | ↑ TF | [275] |
| Human | BALF cells (single-cell RNA seq) | Clinical | ↑ TF in lung epithelial cell population | [276], [277] | |
| Human | PBMCs (bulk-RNA seq) | Clinical | ↑ TF | [275], [277] | |
| Human | Whole blood (monocytes, granulocytes, and platelets) | Clinical | ↑ TF | [90], [278] | |
| Human | Serum | Clinical | ↑ EV-TF and activity | [253] | |
| Human | Plasma | Clinical | ↑ EV-TF ↑ D-dimer |
[255], [256], [279], [280], [281] | |
| Human | PMECs (hACE2 overexpressed) | In vitro | ↑ TF | [94] | |
| Human | Monocytes-derived macrophages | In vitro | ↑ TF and PCA via sphingomyelinase | [91] | |
| Human | Lung epithelial cells (bulk-RNA seq) | In vitro | ↑ TF | [282] | |
| Mouse (K18-hACE2) | Lung mRNA | In vivo | ↑ TF | [283] |
TF, tissue factor; PCA, procoagulant activity; MP-TF, tissue factor positive microparticles.
These findings support the concept that induced overexpression of TF on circulating monocytes, endothelial cells, and lung epithelium may act as a trigger for CAC.
Alternatively, virus surface–host cell communication via TF in the viral envelope and lipid bilayers (as demonstrated for HSV type-1) could also directly trigger the procoagulant response in COVID-19 [96], [97], [98] (Table 1). Further studies are needed to understand SARS-CoV-2 viral envelope and glycoproteins interactions with host cells and the subsequent thrombo-inflammatory responses.
4. Pattern recognition receptors and TF in COVID-19
Activation of inflammatory and coagulation pathways is an integral part of host defense responses against infections. These mechanisms have evolved to limit pathogen dissemination, and to orchestrate pathogen killing and tissue repair. On the other hand, dysregulation and excessive activation of these pathways can contribute to thrombosis and tissue damage [99], [100], [101], [102].
Pattern recognition receptors (PRRs) sense conserved molecular structures known as pathogen-/damage-associated molecular patterns which are released from pathogens (PAMPs) or damaged host cells (DAMPs). Toll-like receptors (TLRs) belong to the family of PRRs. Substantial evidence indicates that TLR activation during viral infections induce TF gene expression with a subsequent imbalance of the pro- and anti-coagulant states [66], [103], [104]. The TLR3 agonist polyinosinic:polycytidylic acid [poly(I:C)], which mimics viral double stranded RNA, triggers TF expression in human endothelial cells and in mice [105], [106], [107]. Viruses, such as Dengue, Hantaan, Marburg, Lassa, and Ebola, induce expression of TF on infected endothelial cells and monocytes [77], [79], [108], [109], [110]. In line with these findings, studies have suggested that SARS-CoV-2 virions can be present in/on endothelial cells and might induce vascular damage [111], [112]. However, the extent of direct and productive infection of endothelial cells by SARS-CoV-2 remains controversial [113]. An increased TF expression in endothelial cells and monocytes could contribute to the prothrombotic events in patients infected with COVID-19. Moreover, SARS-CoV-2 genomic RNA activates TLR7/TLR8 (ssRNA) and TLR3 (by dsRNA intermediates during viral replication) that mount an acute inflammatory response through the activation of nuclear factor kappa B (NF-κB) and the interferon regulatory factors (IRFs), leading to the synthesis and release of proinflammatory cytokines including IL-1, IL-6 and TNF-α [114]. In line with this notion, recent studies have suggested the involvement of TLR7/TLR8 and TLR3 in the inflammatory and interferon (IFN) responses induced by SARS-CoV-2 in plasmacytoid dendritic cells and epithelial cells [115], [116], [117], [118], [119], [120]. Similarly, SARS-CoV-2 replication induces a delayed IFN response that begins after sensing of viral RNA by the cytosolic MDA5 and RIG-I sensors in lung epithelial cells [121], [122]. Interestingly, SARS-CoV-2 spike protein, as well as mouse-adapted coronavirus MHV-A59, interact with TLR4 for subsequent initiation of IL-1β expression in THP-1 cells [123]. This response promotes inflammation, local influx of neutrophils and macrophages to the alveoli and activation of the adaptive immune response. IL-1β and other proinflammatory cytokines are likely to induce TF expression on endothelial and epithelial cells and alter vascular permeability [124], [125], [126], [127], [128].
Inflammasomes are key components of the innate immune system. Inflammasome activation is initiated by several cytosolic PPRs (e.g. NOD-like receptors) that respond to either microbe-derived PAMPs or DAMPs generated by injured host cells [129]. Canonical inflammasome activation of caspase-1 (CASP1) has been shown to induce the generation of highly procoagulant TF-bearing extracellular vesicles from macrophages [130]. Moreover, endogenous DAMPs, such as high mobility group box 1 (HMGB1), also activate the non-canonical caspase 11 (CASP11). CASP11 can increase the procoagulant activity of TF on innate immune cells through gasdermin D (GSDMD) and transmembrane protein 16F (TMEM16F)-mediated phosphatidylserine translocation [131]. Recent clinical findings demonstrated that NLRP3 inflammasome-derived products, such as Casp1p20, IL-1β, and IL-18, correlated with markers of disease severity in the sera of COVID-19 patients, including IL-6 and lactate dehydrogenase [132], [133]. Similarly, Ferreira et al. reported that infection severity in COVID-19 may be associated with inflammasome activation in monocytes and downstream production of large amounts of IL-1β, IL-6 and TNF-α [134]. Monocyte TF expression and platelet activation are correlated with markers, such as fibrinogen and D-dimers, in patients with invasive mechanical ventilation or a lethal outcome [89]. While it is unclear whether inflammasome-mediated pyroptosis pathways contribute to coagulation activation in severe COVID-19 infection [135], a pyroptosis and Gasdermin D inhibitor (Disulfiram) was associated with a lower risk of COVID-19 in a retrospective cohort study [136], and is currently tested in clinical trials. Higher expression of caspase-1 in the endothelium of COVID-19 patients as compared with H1N1 and control groups revealed the occurrence of pyroptosis in capillary-alveolar endothelial cells [137].
High levels of TF, D-dimers and thrombin in BAL fluids of patients with ARDS coincided with a strong activation of coagulation [138]. Fibrin deposition in alveolar spaces is a key feature of acute lung injury. The mechanisms that contribute to disturbed bronchoalveolar fibrin turnover are localized TF-mediated thrombin generation and downregulation of fibrinolysis pathway due to increased activity of fibrinolytic inhibitors, in particular PAI-1 [139].
Overall, activation of PRRs contributes to the propagation of inflammation and initial coagulation activation in viral infection. Further investigations of PRR activation in COVID-19 and TF signaling are needed to advance our understanding of the pathogenesis of COVID-19 and CAC.
5. Cytokine storm and TF in COVID-19
The immunopathology of the SARS-CoV-2-induced cytokine release is complex, and the underlying molecular mechanisms are not completely characterized. IL-1β, IL-6, IL-18, IFN-γ, and TNF-α are key proinflammatory cytokines that are thought to play central immunopathologic roles in the development of the cytokine storm [140]. A recent report proposed that IL-6 signaling causes harmful changes to liver sinusoidal endothelial cells and may promote blood clotting and contribute to liver injury [141]. In line with this, targeted inhibition of IL-1β and IL-6 has been shown to reduce inflammatory and thrombosis biomarkers and moderately improve survival rates in COVID-19 patients [142], [143], [144], [145], [146], [147], [148]. Inflammation-induced coagulation is the net result of the overexpression/activation of coagulant factors (e.g. TF), decreased production of anti-coagulant factors (e.g. TF pathway inhibitor, thrombomodulin, protein C) and suppression of fibrinolytic proteins [149]. Activation of TLRs on alveolar epithelial cells, macrophages, and circulating blood monocytes plays an important role in innate immunity and inflammatory response during viral infections. A recent study revealed that SARS-CoV-2 is internalized by human monocytes and macrophages [150], [151]. TLR activation by viral products (e.g. spike protein) [123] and single stranded RNA (ssRNA) [119] activates downstream signaling leading to the production of proinflammatory cytokines and chemokines. These cytokines and chemokines orchestrate in the recruitment of immune cells, such as neutrophils, monocytes and T cells, to the lungs resulting in widespread lung inflammation [152], [153], [154]. Accumulating clinical data also suggest that cytokine release is associated with COVID-19 severity and that cytokines are mediators of death from COVID-19 [155]. Pro-inflammatory cytokines, including IL-1α, IL-1β, IL-6, IL-8, MCP-1, IFN-γ, TNF-α, [156], [157] may induce CAC via expression of TF on endothelial cells, monocytes, macrophages and T cells [124], [158], [159], [160], [161], [162], [163], [164] and may promote blood clotting. In contrast, a recent study demonstrated that the baseline levels of IFN-γ were negatively associated with increased lung fibrosis in COVID-19 patients at discharge. However, this study was performed with a relatively small number of patients. The authors speculate that IFN-γ is anti-fibrotic because it mediates a more rapid clearance of SARS-CoV-2. Thus, low circulating IFN-γ and its risk associated with fibrosis in COVID-19 patients need further validation [165].
Activated coagulation factors, including FXa, thrombin and fibrin, promote the synthesis of pro-inflammatory cytokines (IL-6, IL-8, MCP-1) and cell adhesion molecules (E-selectin, ICAM-1, and VCAM-1) in endothelial and epithelial cells [166], [167], [168], [169]. Moreover, the TF-thrombin-PAR1/2 signaling axis further potentiates TLR3-mediated expression of TF, IL-8, E-selectin, ICAM-1, and VCAM-1 in endothelial cells [106], [107], [170]. Thus, elevated levels of thrombin during SARS-CoV-2 infection may play a crucial role in propagation of cytokine release and TF-dependent activation of coagulation. In addition, SARS-CoV-2 infection of endothelial cells also causes cell death, which leads to vascular leakage and induces a cytopathic effect on airway epithelial cells and multiorgan failure [140], [151], [171], [172], [173].
Overall, the current data support the concept that an early and excessive release of cytokines as well as dysregulated coagulation activity (FXa, thrombin, and fibrin) may contribute to the thrombo-inflammatory responses in COVID-19. Further studies on cytokine-mediated expression of TF in COVID-19 could advance our understanding of the molecular mechanisms of CAC.
6. Antiphospholipid (aPL) antibodies and TF in COVID-19
Anti-phospholipid syndrome (APS) is an autoimmune prothrombotic disease characterized by persistent presence of aPL antibodies, leading to recurrent arterial and venous thromboembolic events [174]. Patients with APS produce high-avidity autoantibodies to phospholipids and phospholipid-binding proteins (aPL antibodies), including prothrombin, plasminogen, cardiolipin, and β2 glycoprotein I (β2GPI) [174]. The prevalence of APS varies with the presence of aPL antibodies in ∼1–5 % of healthy young individuals to ∼50 % in elderly populations with chronic diseases [175], [176]. These aPL antibodies bind to cell surfaces and activate endothelial cells, platelets, monocytes, and neutrophils [177], [178]. aPL antibodies induce expression of cell adhesion molecules in endothelial cells, and of TF in endothelial cells and monocytes. Additionally, aPL antibodies may also induce shedding of TF-positive microparticles, which contribute to thrombotic events [179], [180], [181], [182]. Transient aPL antibodies occur in patients with viral infections, which include human immunodeficiency virus (HIV), varicella zoster virus, hepatitis C virus, cytomegalovirus (CMV), Epstein–Barr virus (EBV), adenovirus, and parvovirus B19 [183], [184]. Notably, a recent case study found high levels of aPL antibodies (β2GPI IgA, β2GPI IgG; anticardiolipin IgA) in three patients with severe COVID-19 with coagulopathy and preexisting comorbidities [185]. However, the relevance of elevated aPL antibodies in COVID-19 is hard to evaluate because such antibodies can also arise transiently in patients with other critical illnesses and life-threatening infections [186], [187], [188].
β2GPI is a plasma protein that is crucial in maintaining hemostasis and the most common target of pathogenic aPL antibodies [189], [190], [191]. aPL antibodies can also activate platelets that express high levels of glycoprotein(Gp) IIb/IIIa [192] and thromboxane A2 [193]. Furthermore, aPL antibodies can induce complement activation via the classical pathway to generate complement fragments which propagate inflammatory cells to initiate thrombosis and tissue injury via the membrane attack complex (C5b-9) and anaphylatoxins (C3a, C5a) receptors-mediated responses [194], [195], [196]. Muller-Calleja et al. showed that monoclonal cofactor-independent aPL antibodies rapidly activate TF on myelomonocytic cells in mice [197]. Moreover, aPL antibodies from serum of hospitalized COVID-19 patients are potently thrombogenic [198]. In our ongoing proteomics studies, β2GPI, GpIIb/IIIa, and thromboxane A2 receptor were increased in platelets of SARS-CoV-2-infected K18-hACE2 mice [199]. Higher antigen levels of these proteins could further instigate the production of aPL antibodies in COVID-19, since platelets can bind to professional antigen presenting cells in blood followed by phagocytosis for antigen processing and presentation [200].
In recent years, studies on Neutrophil Extracellular Traps (NETs) have shown evidence that autoantibodies against β2GPI induce NETs and enhance thrombosis. NETosis is a unique form of cell death and the formation of NETs is characterized by the release of decondensed chromatin and granular contents to the extracellular space [201]. COVID-19 patients often have high amounts of NETs in their blood [202], [203], [204], which many contribute to the procoagulant response. Folco et al. reported that NETs induce VCAM-1, ICAM-1, and TF expression towards an increased procoagulant state of endothelial cells, which is further augmented by IL-1α and Cathepsin G [205].
On one hand, aPL antibodies can directly activate monocytes, which in turn interact with the endothelium via MCP-1, resulting in TF-dependent pro-thrombotic events [206], [207], [208], [209]. On the other hand, aPL antibodies can directly activate β2GPI expressing monocytes, which subsequently upregulates NF-κB-mediated TF expression via activation of mitogen-activated protein kinases (MAPK) [210].
Additional studies confirmed an increased expression of TF and elevated procoagulant activity in circulating monocytes of patients with aPL antibodies [180], [209]. aPL antibodies can also mediate inflammatory response of endothelial cells through the activation of innate immune receptors TLR2 and TLR4. These TLRs serve as binding sites for dimeric β2GPI, which results in endothelial dysfunction by increased expression of TF and adhesion molecules [211], [212], [213], [214]. Treatment of endothelial cells with IgG-aPL antibodies from clinically active APS induced expression of TF, IL-6, and IL-8 via activation of p38 MAPK and NF-kB pathways [215]. Similar to this observation, human sera from n = 118 hospitalized COVID-19 patients contained anticardiolipin IgG/IgM and anti-phosphatidlyserine/prothrombin (anti-PS/PT) IgG/IgM. These aPL antibodies in the COVID-19 patients' sera upregulated the expression of surface adhesion markers (E-selectin, VCAM-1, and ICAM-1) in cultured endothelial cells [216]. In contrast, Borghi et al. reported a low prevalence of aPL antibodies in COVID-19 patients and no association with major thrombotic events [217].
In conclusion, the aPL antibodies may contribute to the development of arterial and venous thrombosis through various mechanisms in severe COVID-19 patients. However, more data is needed on the occurrence of aPL antibodies during SARS-CoV-2 infection. The mechanisms underlying aPL antibody-mediated coagulopathy are understudied. Further clinical and experimental studies will help to better assess the role of APS in the pathogenesis of COVID-19 and CAC.
7. Complement activation and TF in COVID-19
Complement activation products (e.g. C5b-9, C5a, C3a) can enhance neutrophil/monocyte activation and their recruitment to the infected lungs. Several complement effectors, acting in concert with platelets, can fuel thrombo-inflammation and endothelial dysfunction [218]. A complement-driven prothrombotic state is observed in diseases such as paroxysmal nocturnal hemoglobinuria, glomerulonephritis, and vasculitis [219], [220], [221]. Complement activation induces TF expression in various cell types, and skews mast cells and basophils towards a prothrombotic phenotype [222]. Activation of the complement and kallikrein/kinin system in critically ill COVID-19 patients is linked to thromboinflammation [223]. Spike protein of SARS-CoV-2 is recognized by Mannose-binding lectin, which results in both viral inhibition and complement activation [224]. The alternative pathway (down-regulation of cellular complement inhibitors [CD46, CD55, CD59] in infected cells) and the classical pathway (after anti-SARS-CoV-2 or auto-antibody production ensues) also contribute to complement activation [225], [226], [227], [228].
The anaphylatoxins, C3a and C5a, play critical roles in immune modulation and regulation of cellular adaptation via their cell surface receptors (C3aR, C5aR1, C5aR2) [229]. Anaphylatoxins promote TF-dependent activation of coagulation pathways [230], [231], [232], [233], [234]. The plasma/serum concentrations of sC5b-9 and C5a are elevated in hospitalized COVID-19 patients [235], [236], [237]. In line with this, two cases of COVID-19 patients treated with an anti-C5a antibody showed a clinical improvement, as measured by increased lung oxygenation and decreased systemic inflammation [238]. An association of endothelial dysfunction with COVID-19 and enhancement by complement fragments, C5a and C3a, has been verified in patients with severe COVID-19. C5a-mediated activation of endothelial C5aR1 induces TF production [239]. Three clinical trials have been registered for eculizumab, a complement C5 inhibitor, as a treatment for patients with COVID-19 (ClinicalTrials.gov Identifiers: NCT04288713, NCT04346797, and NCT04355494) [240], [241]. Recently, a combination of ruxolitinib (a JAK1/2 inhibitor) and eculizumab was administered to severely ill COVID-19 patients with a hypercoagulable state and ARDS. This resulted in significant improvements in respiratory symptoms, pulmonary lesions, and decreased D-dimer concentrations [236], [242].
A dysregulation of the complement system could promote thrombotic events in patients with severe COVID-19 [21]. A deposition of membrane attack complex pores in vascular cell membranes is a key feature of several microthrombotic syndromes and has also been demonstrated in COVID-19 [243]. Initial genetic evidence suggests that TF as well as regulators of the complement and coagulation pathways are associated with the development of severe COVID-19 pathologies [199], [244]. Complement activation has also been shown to directly regulate TF activity on monocytes by activating thiol-isomerase pathways required for TF functions in thrombosis [197], [245], [246].
In summary, complement activation and anaphylatoxins may regulate TF-mediated thrombosis, which would support the approach of testing complement inhibitors for beneficial therapeutic effects on CAC.
8. Extracellular vesicles and TF in COVID-19
Extracellular vesicles (EV) are a heterogeneous group of cell-derived membranous structures containing exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively [247]. EVs are released by various cells during lung inflammation and innate immune responses [248], [249].
Several studies have shown that TF is often incorporated into microparticles and EVs, where it exerts critical pathophysiological activities and propagates inflammation, including during COVID-19 [250], [251]. Zaid et al. showed increased levels of platelet-derived CD41+-EVs in the plasma of COVID-19 patients [252]. Balbi et al. demonstrated elevated levels of 37 EV antigens involved in inflammation, platelet activation, coagulation processes, and endothelial dysfunction, including CD62P, CD142 (TF), and CD41, in serum samples from COVID-19 patients [253]. Another study demonstrated association of elevated levels of circulating EV-TF activity with disease severity and mortality in COVID-19 patients [254]. Longitudinal evaluation of MVs in COVID-19 patients plasma samples revealed that a significant decreased plasma concentrations of endothelium-derived EVs (E-Selectin+), endothelium-derived bearing TF (E-Selectin+TF+), endothelium-derived bearing ACE2 (E-Selectin+ACE2+) and leukocyte-EVs bearing TF (CD45+TF+) at 30-days post-discharge. Interestingly, platelet- and leukocyte-EVs further increased 30-days after post discharge, indicating that cellular activation persists long after the acute phase [255]. A comparative study of septic shock patients revealed that increased presence of distinct EVs with a higher EV-TF correlated with the thrombotic risk in severe COVID-19 patients [256].
These findings support the concept that circulating EV-associated TF may contribute to CAC and microthrombi formation. More prospective and retrospective clinical studies could enhance our understanding of the EV-TF-mediated hypercoagulatory state in COVID-19.
9. Perspectives
Arterial and venous thrombosis are frequently encountered in patients with severe COVID-19 and contribute to increased morbidity and mortality. In the absence of a monocausal explanation, it seems likely that the coagulopathy of COVID-19 is a cumulative result of several dysregulated pathways. Emerging evidence provides support for the concept that increased expression of TF is quite likely to contribute to thrombosis in severe COVID-19 (Fig. 1 ). High expression of TF on endothelial cells and monocytes may command increased fibrin formation and platelet activation during COVID-19 infection. Based on the existing evidence, we speculate that endothelial procoagulant and inflammatory responses could be due to the combination of aPL-, complement-, and cytokine-mediated expression of TF, rather than direct infection of the endothelium or blood cells. TF-coated EVs may specifically contribute to the development of CAC. Of note, the induction of TF expression is not necessarily restricted to PRR pathways with a direct role in viral immune recognition (TLR7, TLR8, RIG-I/MDA5), but may be related to DAMPs released during infection-associated tissue injury. In fact, it is a fluid scientific discussion to what extent endothelial cells, platelets and leukocytes are active replication site for SARS-CoV-2; or if an infrequent uptake of virions into these cells is better termed ‘abortive infection’. The suggested correlation of aPL antibodies with an increased risk of CAC demands further preclinical investigations and controlled clinical studies. Systematic approaches will be most suitable to test the hypothesis if TF is essential or redundant for the pathogenesis of CAC.
Fig. 1.
Current concepts of TF in COVID-19-associated coagulopathy (CAC). Multiple mechanisms may contribute to TF expression, including direct infection of type I/II epithelial cells and monocytes, pattern-recognition receptors activation (TLR-3/-7/-8), complement-mediated MAC (C5b-C9) and anaphylatoxins (C5a, C3a), excessive cytokine release (IL-1, IL-6, IL-8, TNF-α) from immune and non-immune cells. These events subsequently lead to barrier dysfunction, increased vascular permeability, and activation of blood coagulation. Antiphospholipid antibodies may contribute to the activation of coagulation and endothelial cell-leukocyte interactions. TF-dependent activation of Xa/thrombin and excessive PAI-1 (which inhibits fibrinolysis) during SARS-CoV-2 infection results in the formation of fibrin-rich thrombi. IL, interleukin; NETs, neutrophil extracellular traps; vWF, von Willebrand factor; PAI-1, plasminogen activator inhibitor-1; TF, tissue factor; TNF-α, tumor necrosis factor-alpha; E-SELE, E-selectin; VCAM-1, vascular cell adhesion protein 1; ICAM-1, intercellular adhesion molecule-1; C3, complement 3; C5, complement 5; aPL antibody, antiphospholipid antibody.
Transgenic mice with tissue-specific TF deficiency in lung epithelial cells showed increased lung hemorrhage and mortality when infected with IAV/H1N1, highlighting the essential role of TF for hemostasis during lung infection [71]. On the other hand, excessive activation of TF may cause thrombotic complications [71], [257]. This doubled edged sword response of TF could be further studied using existing TF-low or cell-type specific TF-deficient mouse models.
Further translational studies would especially benefit from tailored animal models that recapitulate the coagulation abnormalities and micro-/macro-vascular thrombosis of human COVID-19. While numerous animal species can be exploited to better understand COVID-19 pathology [258], a further refinement is needed for studying CAC. For example, humanized hACE2 mice do not seem to develop macrovascular thrombosis and pulmonary embolism from SARS-CoV-2 infection alone. Additional vascular insults (e.g. FeCl3-induced vascular injury, subtotal V. cava ligation) may be needed to precipitate major thrombotic events and screen for the efficacy of TF blocking drug candidates in small animals. Targeting TF could be a therapeutic approach in selected COVID-19 patients, who show abnormal clinical markers associated with thrombotic coagulopathy (e.g. ↑D-dimers). In conclusion, a better understanding of TF-dependent prothrombotic mechanisms could greatly facilitate the development of novel therapies to reduce the occurrence and severe consequences of CAC.
Funding sources
This work was supported by the Aniara Diagnostica (Coagulation Research Grant 2020-2021, and the National Institutes of Health (1UL1TR001430) to S.S.), the National Institutes of Health (1UL1TR001430, 1R01HL141513, 1R01HL139641 to M.B.), and the Deutsche Forschungsgemeinschaft (BO3482/3-3, BO3482/4-1 to M.B.). We thank the Clinical & Translational Science Institute (CTSI) and Evans Center for Interdisciplinary Biomedical Research at Boston University School of Medicine for their support of the Affinity Research Collaborative on ‘Respiratory Viruses: A Focus on COVID-19’.
CRediT authorship contribution statement
Contribution: S.S. wrote and revised the manuscript. H.K., and M.B., provided critical feedback and contributed to writing the manuscript. All the authors are responsible for the content of this publication.
Declaration of competing interest
None of the authors declare any conflict of interest.
Acknowledgments
The authors thanks to Kara Farquharson for proof-reading the final draft of the manuscript.
References
- 1.Mokhtari T., Hassani F., Ghaffari N., Ebrahimi B., Yarahmadi A., Hassanzadeh G. COVID-19 and multiorgan failure: a narrative review on potential mechanisms. J. Mol. Histol. 2020;51(6):613–628. doi: 10.1007/s10735-020-09915-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Zaim S., Chong J.H., Sankaranarayanan V., Harky A. COVID-19 and multiorgan response. Curr. Probl. Cardiol. 2020;45(8) doi: 10.1016/j.cpcardiol.2020.100618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Lillicrap D., Morrissey J.H. 2020 - year of COVID-19. J. Thromb. Haemost. 2020;18(9):2081. doi: 10.1111/jth.15041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Moore E.E., Moore H.B., Kornblith L.Z., Neal M.D., Hoffman M., Mutch N.J., Schochl H., Hunt B.J., Sauaia A. Trauma-induced coagulopathy. Nat. Rev. Dis. Primers. 2021;7(1):30. doi: 10.1038/s41572-021-00264-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Simmons J., Pittet J.F. The coagulopathy of acute sepsis. Curr. Opin. Anaesthesiol. 2015;28(2):227–236. doi: 10.1097/ACO.0000000000000163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Bilaloglu S., Aphinyanaphongs Y., Jones S., Iturrate E., Hochman J., Berger J.S. Thrombosis in hospitalized patients with COVID-19 in a New York City health system. JAMA. 2020;324(8):799–801. doi: 10.1001/jama.2020.13372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Al-Ani F., Chehade S., Lazo-Langner A. Thrombosis risk associated with COVID-19 infection.A scoping review. Thromb. Res. 2020;192:152–160. doi: 10.1016/j.thromres.2020.05.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Levi M. COVID-19 coagulopathy vs disseminated intravascular coagulation. Blood Adv. 2020;4(12):2850. doi: 10.1182/bloodadvances.2020002197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Peyvandi F., Artoni A., Novembrino C., Aliberti S., Panigada M., Boscarino M., Gualtierotti R., Rossi F., Palla R., Martinelli I., Grasselli G., Blasi F., Tripodi A. Hemostatic alterations in COVID-19. Haematologica. 2021;106(5):1472–1475. doi: 10.3324/haematol.2020.262634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18(4):844–847. doi: 10.1111/jth.14768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Osawa I., Okamoto K., Ikeda M., Otani A., Wakimoto Y., Yamashita M., Shinohara T., Kanno Y., Jubishi D., Kurano M., Harada S., Okugawa S., Yatomi Y., Moriya K. Dynamic changes in fibrinogen and D-dimer levels in COVID-19 patients on nafamostat mesylate. J. Thromb. Thrombolysis. 2021 Apr;51(3):649–656. doi: 10.1007/s11239-020-02275-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Harenberg J., Favaloro E. COVID-19: progression of disease and intravascular coagulation - present status and future perspectives. Clin. Chem. Lab. Med. 2020;58(7):1029–1036. doi: 10.1515/cclm-2020-0502. [DOI] [PubMed] [Google Scholar]
- 13.Wool G.D., Miller J.L. The impact of COVID-19 disease on platelets and coagulation. Pathobiology. 2021;88(1):15–27. doi: 10.1159/000512007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Levi M., Iba T. COVID-19 coagulopathy: is it disseminated intravascular coagulation? Intern. Emerg. Med. 2021 Mar;16(2):309–312. doi: 10.1007/s11739-020-02601-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Lippi G., Plebani M., Henry B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin. Chim. Acta. 2020;506:145–148. doi: 10.1016/j.cca.2020.03.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Whyte C.S., Morrow G.B., Mitchell J.L., Chowdary P., Mutch N.J. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID-19. J. Thromb. Haemost. 2020;18(7):1548–1555. doi: 10.1111/jth.14872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Gralinski L.E., Bankhead A., III, Jeng S., Menachery V.D., Proll S., Belisle S.E., Matzke M., Webb-Robertson B.J., Luna M.L., Shukla A.K., Ferris M.T., Bolles M., Chang J., Aicher L., Waters K.M., Smith R.D., Metz T.O., Law G.L., Katze M.G., McWeeney S., Baric R.S. Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. mBio. 2013;4(4) doi: 10.1128/mBio.00271-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Mir N., D'Amico A., Dasher J., Tolwani A., Valentine V. Understanding the andromeda strain - the role of cytokine release, coagulopathy and antithrombin III in SARS-CoV2 critical illness. Blood Rev. 2021;45 doi: 10.1016/j.blre.2020.100731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Gazzaruso C., Paolozzi E., Valenti C., Brocchetta M., Naldani D., Grignani C., Salvucci F., Marino F., Coppola A., Gallotti P. Association between antithrombin and mortality in patients with COVID-19.A possible link with obesity. Nutr. Metab. Cardiovasc. Dis. 2020;30(11):1914–1919. doi: 10.1016/j.numecd.2020.07.040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Ackermann M., Verleden S.E., Kuehnel M., Haverich A., Welte T., Laenger F., Vanstapel A., Werlein C., Stark H., Tzankov A., Li W.W., Li V.W., Mentzer S.J., Jonigk D. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 2020;383(2):120–128. doi: 10.1056/NEJMoa2015432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Magro C., Mulvey J.J., Berlin D., Nuovo G., Salvatore S., Harp J., Baxter-Stoltzfus A., Laurence J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl. Res. 2020;220:1–13. doi: 10.1016/j.trsl.2020.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Kyriakoulis K.G., Kokkinidis D.G., Kyprianou I.A., Papanastasiou C.A., Archontakis-Barakakis P., Doundoulakis I., Bakoyiannis C., Giannakoulas G., Palaiodimos L. Venous thromboembolism in the era of COVID-19. Phlebology. 2020;268355520955083 doi: 10.1177/0268355520955083. [DOI] [PubMed] [Google Scholar]
- 23.Gasecka A., Borovac J.A., Guerreiro R.A., Giustozzi M., Parker W., Caldeira D., Chiva-Blanch G. Thrombotic complications in patients with COVID-19: pathophysiological mechanisms, diagnosis, and treatment. Cardiovasc. Drugs Ther. 2021 Apr;35(2):215–229. doi: 10.1007/s10557-020-07084-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Torres-Machorro A., Anguiano-Alvarez V.M., Grimaldo-Gomez F.A., Rodriguez-Zanella H., Cortina de la Rosa E., Mora-Canela S., Lerma C., Garcia-Cruz E., Ramos-Enriquez A., Ramirez-Marroquin S., Izaguirre-Avila R., Rojas-Velasco G. Asymptomatic deep vein thrombosis in critically ill COVID-19 patients despite therapeutic levels of anti-xa activity. Thromb. Res. 2020;196:268–271. doi: 10.1016/j.thromres.2020.08.043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Wichmann D., Sperhake J.P., Lutgehetmann M., Steurer S., Edler C., Heinemann A., Heinrich F., Mushumba H., Kniep I., Schroder A.S., Burdelski C., de Heer G., Nierhaus A., Frings D., Pfefferle S., Becker H., Bredereke-Wiedling H., de Weerth A., Paschen H.R., Sheikhzadeh-Eggers S., Stang A., Schmiedel S., Bokemeyer C., Addo M.M., Aepfelbacher M., Puschel K., Kluge S. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann. Intern. Med. 2020;173(4):268–277. doi: 10.7326/M20-2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Thachil J., Juffermans N.P., Ranucci M., Connors J.M., Warkentin T.E., Ortel T.L., Levi M., Iba T., Levy J.H. ISTH DIC subcommittee communication on anticoagulation in COVID-19. J. Thromb. Haemost. 2020;18(9):2138–2144. doi: 10.1111/jth.15004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Al-Samkari H., Karp Leaf R.S., Dzik W.H., Carlson J.C.T., Fogerty A.E., Waheed A., Goodarzi K., Bendapudi P.K., Bornikova L., Gupta S., Leaf D.E., Kuter D.J., Rosovsky R.P. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136(4):489–500. doi: 10.1182/blood.2020006520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Chan N.C., Weitz J.I. COVID-19 coagulopathy, thrombosis, and bleeding. Blood. 2020;136(4):381–383. doi: 10.1182/blood.2020007335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Zuo Y., Warnock M., Harbaugh A., Yalavarthi S., Gockman K., Zuo M., Madison J.A., Knight J.S., Kanthi Y., Lawrence D.A. Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 patients. Sci. Rep. 2021;11(1):1580. doi: 10.1038/s41598-020-80010-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Scully M., Singh D., Lown R., Poles A., Solomon T., Levi M., Goldblatt D., Kotoucek P., Thomas W., Lester W. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N. Engl. J. Med. 2021;384(23):2202–2211. doi: 10.1056/NEJMoa2105385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Liu Y., Shao Z., Wang H. SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia. Thromb. Res. 2022;209:75–79. doi: 10.1016/j.thromres.2021.12.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Chen P.W., Tsai Z.Y., Chao T.H., Li Y.H., Hou C.J., Liu P.Y. Addressing vaccine-induced immune thrombotic thrombocytopenia (VITT) following COVID-19 vaccination: a mini-review of practical strategies. Acta Cardiol. Sin. 2021;37(4):355–364. doi: 10.6515/ACS.202107_37(4).20210628A. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Aleem A., Nadeem A.J. StatPearls; Treasure Island (FL): 2022. Coronavirus (COVID-19) Vaccine-induced Immune Thrombotic Thrombocytopenia (VITT) [PubMed] [Google Scholar]
- 34.Grover S.P., Mackman N. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler. Thromb. Vasc. Biol. 2018;38(4):709–725. doi: 10.1161/ATVBAHA.117.309846. [DOI] [PubMed] [Google Scholar]
- 35.Fisher K.L., Gorman C.M., Vehar G.A., O'Brien D.P., Lawn R.M. Cloning and expression of human tissue factor cDNA. Thromb. Res. 1987;48(1):89–99. doi: 10.1016/0049-3848(87)90349-5. [DOI] [PubMed] [Google Scholar]
- 36.Morrissey J.H., Fakhrai H., Edgington T.S. Molecular cloning of the cDNA for tissue factor, the cellular receptor for the initiation of the coagulation protease cascade. Cell. 1987;50(1):129–135. doi: 10.1016/0092-8674(87)90669-6. [DOI] [PubMed] [Google Scholar]
- 37.Scarpati E.M., Wen D., Broze G.J., Jr., Miletich J.P., Flandermeyer R.R., Siegel N.R., Sadler J.E. Human tissue factor: cDNA sequence and chromosome localization of the gene. Biochemistry. 1987;26(17):5234–5238. doi: 10.1021/bi00391a004. [DOI] [PubMed] [Google Scholar]
- 38.Spicer E.K., Horton R., Bloem L., Bach R., Williams K.R., Guha A., Kraus J., Lin T.C., Nemerson Y., Konigsberg W.H. Isolation of cDNA clones coding for human tissue factor: primary structure of the protein and cDNA. Proc. Natl. Acad. Sci. U. S. A. 1987;84(15):5148–5152. doi: 10.1073/pnas.84.15.5148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Mackman N., Morrissey J.H., Fowler B., Edgington T.S. Complete sequence of the human tissue factor gene, a highly regulated cellular receptor that initiates the coagulation protease cascade. Biochemistry. 1989;28(4):1755–1762. doi: 10.1021/bi00430a050. [DOI] [PubMed] [Google Scholar]
- 40.Toomey J.R., Kratzer K.E., Lasky N.M., Stanton J.J., Broze G.J., Jr. Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood. 1996;88(5):1583–1587. [PubMed] [Google Scholar]
- 41.Bugge T.H., Xiao Q., Kombrinck K.W., Flick M.J., Holmback K., Danton M.J., Colbert M.C., Witte D.P., Fujikawa K., Davie E.W., Degen J.L. Fatal embryonic bleeding events in mice lacking tissue factor, the cell-associated initiator of blood coagulation. Proc. Natl. Acad. Sci. U. S. A. 1996;93(13):6258–6263. doi: 10.1073/pnas.93.13.6258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Carmeliet P., Mackman N., Moons L., Luther T., Gressens P., Van Vlaenderen I., Demunck H., Kasper M., Breier G., Evrard P., Muller M., Risau W., Edgington T., Collen D. Role of tissue factor in embryonic blood vessel development. Nature. 1996;383(6595):73–75. doi: 10.1038/383073a0. [DOI] [PubMed] [Google Scholar]
- 43.Parry G.C., Mackman N. Mouse embryogenesis requires the tissue factor extracellular domain but not the cytoplasmic domain. J. Clin. Invest. 2000;105(11):1547–1554. doi: 10.1172/JCI9458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Kothari H., Pendurthi U.R., Rao L.V. Tissue factor purified from different cellular sources and non-glycosylated tissue factor show similar procoagulant activity. J. Thromb. Haemost. 2013;11(11):2066–2068. doi: 10.1111/jth.12407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Pawlinski R., Mackman N. Cellular sources of tissue factor in endotoxemia and sepsis. Thromb. Res. 2010;125(Suppl 1):S70–S73. doi: 10.1016/j.thromres.2010.01.042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Osterud B., Bjorklid E. Sources of tissue factor. Semin. Thromb. Hemost. 2006;32(1):11–23. doi: 10.1055/s-2006-933336. [DOI] [PubMed] [Google Scholar]
- 47.Key N.S., Mackman N. Tissue factor and its measurement in whole blood, plasma, and microparticles. Semin. Thromb. Hemost. 2010;36(8):865–875. doi: 10.1055/s-0030-1267040. [DOI] [PubMed] [Google Scholar]
- 48.Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler. Thromb. Vasc. Biol. 2004;24(6):1015–1022. doi: 10.1161/01.ATV.0000130465.23430.74. [DOI] [PubMed] [Google Scholar]
- 49.Lawson J.H., Butenas S., Mann K.G. The evaluation of complex-dependent alterations in human factor VIIa. J. Biol. Chem. 1992;267(7):4834–4843. [PubMed] [Google Scholar]
- 50.Smith S.A., Travers R.J., Morrissey J.H. How it all starts: initiation of the clotting cascade. Crit. Rev. Biochem. Mol. Biol. 2015;50(4):326–336. doi: 10.3109/10409238.2015.1050550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Mackman N. The role of tissue factor and factor VIIa in hemostasis. Anesth. Analg. 2009;108(5):1447–1452. doi: 10.1213/ane.0b013e31819bceb1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Monroe D.M., Key N.S. The tissue factor-factor VIIa complex: procoagulant activity, regulation, and multitasking. J. Thromb. Haemost. 2007;5(6):1097–1105. doi: 10.1111/j.1538-7836.2007.02435.x. [DOI] [PubMed] [Google Scholar]
- 53.Rao L.V., Kothari H., Pendurthi U.R. Tissue factor encryption and decryption: facts and controversies. Thromb. Res. 2012;129(Suppl 2):S13–S17. doi: 10.1016/j.thromres.2012.02.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Bogdanov V.Y., Balasubramanian V., Hathcock J., Vele O., Lieb M., Nemerson Y. Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein. Nat. Med. 2003;9(4):458–462. doi: 10.1038/nm841. [DOI] [PubMed] [Google Scholar]
- 55.Unlu B., Bogdanov V.Y., Versteeg H.H. Interplay between alternatively spliced tissue factor and full length tissue factor in modulating coagulant activity of endothelial cells. Thromb. Res. 2017;156:1–7. doi: 10.1016/j.thromres.2017.05.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Szotowski B., Antoniak S., Rauch U. Alternatively spliced tissue factor: a previously unknown piece in the puzzle of hemostasis. Trends Cardiovasc. Med. 2006;16(5):177–182. doi: 10.1016/j.tcm.2006.03.005. [DOI] [PubMed] [Google Scholar]
- 57.Levi M., Keller T.T., van Gorp E., ten Cate H. Infection and inflammation and the coagulation system. Cardiovasc. Res. 2003;60(1):26–39. doi: 10.1016/s0008-6363(02)00857-x. [DOI] [PubMed] [Google Scholar]
- 58.Goeijenbier M., van Wissen M., van de Weg C., Jong E., Gerdes V.E., Meijers J.C., Brandjes D.P., van Gorp E.C. Review: viral infections and mechanisms of thrombosis and bleeding. J. Med. Virol. 2012;84(10):1680–1696. doi: 10.1002/jmv.23354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Gunther A., Mosavi P., Heinemann S., Ruppert C., Muth H., Markart P., Grimminger F., Walmrath D., Temmesfeld-Wollbruck B., Seeger W. Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia.Comparison with the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2000;161(2 Pt 1):454–462. doi: 10.1164/ajrccm.161.2.9712038. [DOI] [PubMed] [Google Scholar]
- 60.Schultz M.J., Millo J., Levi M., Hack C.E., Weverling G.J., Garrard C.S., van der Poll T. Local activation of coagulation and inhibition of fibrinolysis in the lung during ventilator associated pneumonia. Thorax. 2004;59(2):130–135. doi: 10.1136/thorax.2003.013888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Choi G., Wolthuis E.K., Bresser P., Levi M., van der Poll T., Dzoljic M., Vroom M.B., Schultz M.J. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology. 2006;105(4):689–695. doi: 10.1097/00000542-200610000-00013. [DOI] [PubMed] [Google Scholar]
- 62.Bautista-Vargas M., Bonilla-Abadia F., Canas C.A. Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19. J. Thromb. Thrombolysis. 2020;50(3):479–483. doi: 10.1007/s11239-020-02172-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.DiNicolantonio J.J., McCarty M. Thrombotic complications of COVID-19 may reflect an upregulation of endothelial tissue factor expression that is contingent on activation of endosomal NADPH oxidase. Open Heart. 2020;7(1) doi: 10.1136/openhrt-2020-001337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Mackman N., Antoniak S., Wolberg A.S., Kasthuri R., Key N.S. Coagulation abnormalities and thrombosis in patients infected with SARS-CoV-2 and other pandemic viruses. Arterioscler. Thromb. Vasc. Biol. 2020;40(9):2033–2044. doi: 10.1161/ATVBAHA.120.314514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Kothari H., Pendurthi U.R., Rao L.V. Analysis of tissue factor expression in various cell model systems: cryptic vs. active. J. Thromb. Haemost. 2013;11(7):1353–1363. doi: 10.1111/jth.12272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Subramaniam S., Scharrer I. Procoagulant activity during viral infections. Front. Biosci. (Landmark Ed.) 2018;23:1060–1081. doi: 10.2741/4633. [DOI] [PubMed] [Google Scholar]
- 67.Veltrop M.H., Thompson J., Beekhuizen H. Monocytes augment bacterial species- and strain-dependent induction of tissue factor activity in bacterium-infected human vascular endothelial cells. Infect. Immun. 2001;69(5):2797–2807. doi: 10.1128/IAI.69.5.2797-2807.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Mattsson E., Herwald H., Bjorck L., Egesten A. Peptidoglycan from Staphylococcus aureus induces tissue factor expression and procoagulant activity in human monocytes. Infect. Immun. 2002;70(6):3033–3039. doi: 10.1128/IAI.70.6.3033-3039.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Levi M., van der Poll T. Coagulation and sepsis. Thromb. Res. 2017;149:38–44. doi: 10.1016/j.thromres.2016.11.007. [DOI] [PubMed] [Google Scholar]
- 70.Obi A.T., Tignanelli C.J., Jacobs B.N., Arya S., Park P.K., Wakefield T.W., Henke P.K., Napolitano L.M. Empirical systemic anticoagulation is associated with decreased venous thromboembolism in critically ill influenza A H1N1 acute respiratory distress syndrome patients. J. Vasc. Surg. Venous Lymphat. Disord. 2019;7(3):317–324. doi: 10.1016/j.jvsv.2018.08.010. [DOI] [PubMed] [Google Scholar]
- 71.Antoniak S., Tatsumi K., Hisada Y., Milner J.J., Neidich S.D., Shaver C.M., Pawlinski R., Beck M.A., Bastarache J.A., Mackman N. Tissue factor deficiency increases alveolar hemorrhage and death in influenza A virus-infected mice. J. Thromb. Haemost. 2016;14(6):1238–1248. doi: 10.1111/jth.13307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Creasey A.A., Chang A.C., Feigen L., Wun T.C., Taylor F.B., Jr., Hinshaw L.B. Tissue factor pathway inhibitor reduces mortality from Escherichia coli septic shock. J. Clin. Invest. 1993;91(6):2850–2860. doi: 10.1172/JCI116529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Taylor F.B., Jr., Chang A., Ruf W., Morrissey J.H., Hinshaw L., Catlett R., Blick K., Edgington T.S. Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ. Shock. 1991;33(3):127–134. [PubMed] [Google Scholar]
- 74.Taylor F.B., Chang A.C., Peer G., Li A., Ezban M., Hedner U. Active site inhibited factor VIIa (DEGR VIIa) attenuates the coagulant and interleukin-6 and -8, but not tumor necrosis factor, responses of the baboon to LD100 Escherichia coli. Blood. 1998;91(5):1609–1615. [PubMed] [Google Scholar]
- 75.Geisbert T.W., Hensley L.E., Jahrling P.B., Larsen T., Geisbert J.B., Paragas J., Young H.A., Fredeking T.M., Rote W.E., Vlasuk G.P. Treatment of ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet. 2003;362(9400):1953–1958. doi: 10.1016/S0140-6736(03)15012-X. [DOI] [PubMed] [Google Scholar]
- 76.Key N.S., Vercellotti G.M., Winkelmann J.C., Moldow C.F., Goodman J.L., Esmon N.L., Esmon C.T., Jacob H.S. Infection of vascular endothelial cells with herpes simplex virus enhances tissue factor activity and reduces thrombomodulin expression. Proc. Natl. Acad. Sci. U. S. A. 1990;87(18):7095–7099. doi: 10.1073/pnas.87.18.7095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Huerta-Zepeda A., Cabello-Gutierrez C., Cime-Castillo J., Monroy-Martinez V., Manjarrez-Zavala M.E., Gutierrez-Rodriguez M., Izaguirre R., Ruiz-Ordaz B.H. Crosstalk between coagulation and inflammation during dengue virus infection. Thromb. Haemost. 2008;99(5):936–943. doi: 10.1160/TH07-08-0438. [DOI] [PubMed] [Google Scholar]
- 78.Schmedes C.M., Grover S.P., Hisada Y.M., Goeijenbier M., Hultdin J., Nilsson S., Thunberg T., Ahlm C., Mackman N., Fors Connolly A.M. Circulating extracellular vesicle tissue factor activity during orthohantavirus infection is associated with intravascular coagulation. J. Infect. Dis. 2020;222(8):1392–1399. doi: 10.1093/infdis/jiz597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Goeijenbier M., Meijers J.C., Anfasa F., Roose J.M., van de Weg C.A., Bakhtiari K., Henttonen H., Vaheri A., Osterhaus A.D., van Gorp E.C., Martina B.E. Effect of Puumala hantavirus infection on human umbilical vein endothelial cell hemostatic function: platelet interactions, increased tissue factor expression and fibrinolysis regulator release. Front. Microbiol. 2015;6:220. doi: 10.3389/fmicb.2015.00220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Anfasa F., Goeijenbier M., Widagdo W., Siegers J.Y., Mumtaz N., Okba N., van Riel D., Rockx B., Koopmans M.P.G., Meijers J.C.M., Martina B.E.E. Zika virus infection induces elevation of tissue factor production and apoptosis on human umbilical vein endothelial cells. Front. Microbiol. 2019;10:817. doi: 10.3389/fmicb.2019.00817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Bouwman J.J., Visseren F.L., Bosch M.C., Bouter K.P., Diepersloot R.J. Procoagulant and inflammatory response of virus-infected monocytes. Eur. J. Clin. Investig. 2002;32(10):759–766. doi: 10.1046/j.1365-2362.2002.01041.x. [DOI] [PubMed] [Google Scholar]
- 82.Neppelenbroek S.I.M., Rootjes P.A., Boxhoorn L., Wagenaar J.F.P., Simsek S., Stam F. Cytomegalovirus-associated thrombosis. Neth. J. Med. 2018;76(5):251–254. [PubMed] [Google Scholar]
- 83.Visseren F.L., Bouwman J.J., Bouter K.P., Diepersloot R.J., de Groot P.H., Erkelens D.W. Procoagulant activity of endothelial cells after infection with respiratory viruses. Thromb. Haemost. 2000;84(2):319–324. [PubMed] [Google Scholar]
- 84.Mazure G., Grundy J.E., Nygard G., Hudson M., Khan K., Srai K., Dhillon A.P., Pounder R.E., Wakefield A.J. Measles virus induction of human endothelial cell tissue factor procoagulant activity in vitro. J. Gen. Virol. 1994;75(Pt 11):2863–2871. doi: 10.1099/0022-1317-75-11-2863. [DOI] [PubMed] [Google Scholar]
- 85.Rondina M.T., Tatsumi K., Bastarache J.A., Mackman N. Microvesicle tissue factor activity and Interleukin-8 levels are associated with mortality in patients with influenza A/H1N1 infection. Crit. Care Med. 2016;44(7):e574–e578. doi: 10.1097/CCM.0000000000001584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Subrahmanian S., Borczuk A., Salvatore S.P., Laurence J., Ahamed J. Higher Tissue Factor (TF) Expression in the Lungs of COVID-19 Pneumonia Patients Than Patients With Acute Respiratory Distress Syndrome: Association With Thrombi Formation, American Society of Hematology. American Society of Hematology; 2020. p. 4. [Google Scholar]
- 87.Subrahmanian S., Borczuk A., Salvatore S., Fung K.M., Merrill J.T., Laurence J., Ahamed J. Tissue factor upregulation is associated with SARS-CoV-2 in the lungs of COVID-19 patients. J. Thromb. Haemost. 2021;19(9):2268–2274. doi: 10.1111/jth.15451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Mast A.E., Wolberg A.S., Gailani D., Garvin M.R., Alvarez C., Miller J.I., Aronow B., Jacobson D. SARS-CoV-2 suppresses anticoagulant and fibrinolytic gene expression in the lung. elife. 2021;10 doi: 10.7554/eLife.64330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Hottz E.D., Azevedo-Quintanilha I.G., Palhinha L., Teixeira L., Barreto E.A., Pao C.R.R., Righy C., Franco S., Souza T.M.L., Kurtz P., Bozza F.A., Bozza P.T. Platelet activation and platelet-monocyte aggregates formation trigger tissue factor expression in severe COVID-19 patients. Blood. 2020;136(11):1330–1341. doi: 10.1182/blood.2020007252. Sep 10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Hottz E.D., Azevedo-Quintanilha I.G., Palhinha L., Teixeira L., Barreto E.A., Pao C.R.R., Righy C., Franco S., Souza T.M.L., Kurtz P., Bozza F.A., Bozza P.T. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. 2020;136(11):1330–1341. doi: 10.1182/blood.2020007252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Wang J., Pendurthi U.R., Yi G., Rao L.V.M. SARS-CoV-2 infection induces the activation of tissue factor-mediated coagulation via activation of acid sphingomyelinase. Blood. 2021;138(4):344–349. doi: 10.1182/blood.2021010685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.de Bruin S., Bos L.D., van Roon M.A., Tuip-de Boer A.M., Schuurman A.R., Koel-Simmelinck M.J.A., Bogaard H.J., Tuinman P.R., van Agtmael M.A., Hamann J., Teunissen C.E., Wiersinga W.J., Koos Zwinderman A.H., Brouwer M.C., van de Beek D., Vlaar A.P.J., Amsterdam U.M.C.C.-B.I. Clinical features and prognostic factors in Covid-19: a prospective cohort study. EBioMedicine. 2021;67 doi: 10.1016/j.ebiom.2021.103378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.FitzGerald E.S., Chen Y., Fitzgerald K.A., Jamieson A.M. Lung epithelial cell transcriptional regulation as a factor in COVID-19 associated coagulopathies. Am. J. Respir. Cell Mol. Biol. 2021 Jun;64(6):687–697. doi: 10.1165/rcmb.2020-0453OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Nascimento Conde J., Schutt W.R., Gorbunova E.E., Mackow E.R. Recombinant ACE2 expression is required for SARS-CoV-2 to infect primary human endothelial cells and induce inflammatory and procoagulative responses. mBio. 2020;11(6) doi: 10.1128/mBio.03185-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Amraei R., Xia C., Olejnik J., White M.R., Napoleon M.A., Lotfollahzadeh S., Hauser B.M., Schmidt A.G., Chitalia V., Muhlberger E., Costello C.E., Rahimi N. Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 2022;119(6) doi: 10.1073/pnas.2113874119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Pryzdial E.L., Sutherland M.R., Ruf W. The procoagulant envelope virus surface: contribution to enhanced infection. Thromb. Res. 2014;133(Suppl 1):S15–S17. doi: 10.1016/j.thromres.2014.03.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Sutherland M.R., Simon A.Y., Shanina I., Horwitz M.S., Ruf W., Pryzdial E.L.G. Virus envelope tissue factor promotes infection in mice. J. Thromb. Haemost. 2019;17(3):482–491. doi: 10.1111/jth.14389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Schoeman D., Fielding B.C. Coronavirus envelope protein: current knowledge. Virol. J. 2019;16(1):69. doi: 10.1186/s12985-019-1182-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Antoniak S., Mackman N. Multiple roles of the coagulation protease cascade during virus infection. Blood. 2014;123(17):2605–2613. doi: 10.1182/blood-2013-09-526277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Antoniak S. The coagulation system in host defense. Res. Pract. Thromb. Haemost. 2018;2(3):549–557. doi: 10.1002/rth2.12109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Beristain-Covarrubias N., Perez-Toledo M., Thomas M.R., Henderson I.R., Watson S.P., Cunningham A.F. Understanding infection-induced thrombosis: lessons learned from animal models. Front. Immunol. 2019;10:2569. doi: 10.3389/fimmu.2019.02569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Sumbria D., Berber E., Rouse B.T. Factors affecting the tissue damaging consequences of viral infections. Front. Microbiol. 2019;10:2314. doi: 10.3389/fmicb.2019.02314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Khanmohammadi S., Rezaei N. Role of toll-like receptors in the pathogenesis of COVID-19. J. Med. Virol. 2021;93(5):2735–2739. doi: 10.1002/jmv.26826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Alessandri L.M., Read A.W., Burton P.R., Stanley F.J. An analysis of sudden infant death syndrome in aboriginal infants. Early Hum. Dev. 1996;45(3):235–244. doi: 10.1016/0378-3782(96)01734-3. [DOI] [PubMed] [Google Scholar]
- 105.Shibamiya A., Hersemeyer K., Schmidt Woll T., Sedding D., Daniel J.M., Bauer S., Koyama T., Preissner K.T., Kanse S.M. A key role for toll-like receptor-3 in disrupting the hemostasis balance on endothelial cells. Blood. 2009;113(3):714–722. doi: 10.1182/blood-2008-02-137901. [DOI] [PubMed] [Google Scholar]
- 106.Subramaniam S., Ogoti Y., Hernandez I., Zogg M., Botros F., Burns R., Mackman N., Antoniak S., Fletcher C., W. H. Thrombin-PAR1/2 signaling axis modulates TLR3-mediated procoagulant, proinflammatory, and proadhesive responses in vascular endothelial cells. Res. Pract. Thromb. Haemost. 2020;4(suppl 1):1–44. [Google Scholar]
- 107.Subramaniam S., Ogoti Y., Hernandez I., Zogg M., Botros F., Burns R., DeRousse J.T., Dockendorff C., Mackman N., Antoniak S., Fletcher C., Weiler H. A thrombin-PAR1/2 feedback loop amplifies thromboinflammatory endothelial responses to the viral RNA analogue poly(I:C) Blood Adv. 2021;5(13):2760–2774. doi: 10.1182/bloodadvances.2021004360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Geisbert T.W., Young H.A., Jahrling P.B., Davis K.J., Larsen T., Kagan E., Hensley L.E. Pathogenesis of ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. Am. J. Pathol. 2003;163(6):2371–2382. doi: 10.1016/S0002-9440(10)63592-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Geisbert T.W., Young H.A., Jahrling P.B., Davis K.J., Kagan E., Hensley L.E. Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J. Infect. Dis. 2003;188(11):1618–1629. doi: 10.1086/379724. [DOI] [PubMed] [Google Scholar]
- 110.Funderburg N.T., Mayne E., Sieg S.F., Asaad R., Jiang W., Kalinowska M., Luciano A.A., Stevens W., Rodriguez B., Brenchley J.M., Douek D.C., Lederman M.M. Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation. Blood. 2010;115(2):161–167. doi: 10.1182/blood-2009-03-210179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S., Mehra M.R., Schuepbach R.A., Ruschitzka F., Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi: 10.1016/S0140-6736(20)30937-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Qanadli S.D., Beigelman-Aubry C., Rotzinger D.C. Vascular changes detected with thoracic CT in coronavirus disease (COVID-19) might be significant determinants for accurate diagnosis and optimal patient management. AJR Am. J. Roentgenol. 2020;215(1):W15. doi: 10.2214/AJR.20.23185. [DOI] [PubMed] [Google Scholar]
- 113.Theopold U., Pinter M., Daffre S., Tryselius Y., Friedrich P., Nassel D.R., Hultmark D. CalpA, a drosophila calpain homolog specifically expressed in a small set of nerve, midgut, and blood cells. Mol. Cell. Biol. 1995;15(2):824–834. doi: 10.1128/mcb.15.2.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Wong C.K., Lam C.W., Wu A.K., Ip W.K., Lee N.L., Chan I.H., Lit L.C., Hui D.S., Chan M.H., Chung S.S., Sung J.J. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 2004;136(1):95–103. doi: 10.1111/j.1365-2249.2004.02415.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Moreno-Eutimio M.A., Lopez-Macias C., Pastelin-Palacios R. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2,SARS-CoV, and MERS-CoV genomes. Microbes Infect. 2020;22(4–5):226–229. doi: 10.1016/j.micinf.2020.04.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Choudhury A., Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J. Med. Virol. 2020;92(10):2105–2113. doi: 10.1002/jmv.25987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Sohn K.M., Lee S.G., Kim H.J., Cheon S., Jeong H., Lee J., Kim I.S., Silwal P., Kim Y.J., Paik S., Chung C., Park C., Kim Y.S., Jo E.K. COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. J. Korean Med. Sci. 2020;35(38) doi: 10.3346/jkms.2020.35.e343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Cuevas A.M., Clark J.M., Potter J.J. Increased TLR/MyD88 signaling in patients with obesity: is there a link to COVID-19 disease severity? Int. J. Obes. 2021;45(5):1152–1154. doi: 10.1038/s41366-021-00768-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Salvi V., Nguyen H.O., Sozio F., Schioppa T., Laffranchi M., Scapini P., Passari M., Barbazza I., Tiberio L., Tamassia N., Garlanda C., Prete A.Del, Cassatella M.A., Mantovani A., Sozzani S., Bosisio D. bioRxiv; 2021. SARS-CoV-2-associated ssRNAs Activate Inflammation and Immunity via TLR7/8. 2021.04.15.439839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Li Y., Renner D.M., Comar C.E., Whelan J.N., Reyes H.M., Cardenas-Diaz F.L., Truitt R., Tan L.H., Dong B., Alysandratos K.D., Huang J., Palmer J.N., Adappa N.D., Kohanski M.A., Kotton D.N., Silverman R.H., Yang W., Morrisey E.E., Cohen N.A., Weiss S.R. SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes. Proc. Natl. Acad. Sci. U. S. A. 2021;118(16) doi: 10.1073/pnas.2022643118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Yin X., Riva L., Pu Y., Martin-Sancho L., Kanamune J., Yamamoto Y., Sakai K., Gotoh S., Miorin L., De Jesus P.D., Yang C.C., Herbert K.M., Yoh S., Hultquist J.F., Garcia-Sastre A., Chanda S.K. MDA5 governs the innate immune response to SARS-CoV-2 in lung epithelial cells. Cell Rep. 2021;34(2) doi: 10.1016/j.celrep.2020.108628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Sharma A., Kontodimas K., Bosmann M. The MAVS immune recognition pathway in viral infection and sepsis. Antioxid. Redox Signal. 2021 Dec;35(16):1376–1392. doi: 10.1089/ars.2021.0167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Zhao Y., Kuang M., Li J., Zhu L., Jia Z., Guo X., Hu Y., Kong J., Yin H., Wang X., You F. Publisher correction: SARS-CoV-2 spike protein interacts with and activates TLR4. Cell Res. 2021 Jul;31(7):825. doi: 10.1038/s41422-021-00501-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Szotowski B., Antoniak S., Poller W., Schultheiss H.P., Rauch U. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ. Res. 2005;96(12):1233–1239. doi: 10.1161/01.RES.0000171805.24799.fa. [DOI] [PubMed] [Google Scholar]
- 125.Hou T., Tieu B.C., Ray S., Recinos Iii A., Cui R., Tilton R.G., Brasier A.R. Roles of IL-6-gp130 signaling in vascular inflammation. Curr. Cardiol. Rev. 2008;4(3):179–192. doi: 10.2174/157340308785160570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Ishibashi T., Kimura H., Shikama Y., Uchida T., Kariyone S., Hirano T., Kishimoto T., Takatsuki F., Akiyama Y. Interleukin-6 is a potent thrombopoietic factor in vivo in mice. Blood. 1989;74(4):1241–1244. [PubMed] [Google Scholar]
- 127.Puhlmann M., Weinreich D.M., Farma J.M., Carroll N.M., Turner E.M., Alexander H.R., Jr. Interleukin-1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity. J. Transl. Med. 2005;3:37. doi: 10.1186/1479-5876-3-37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Kirchhofer D., Tschopp T.B., Hadvary P., Baumgartner H.R. Endothelial cells stimulated with tumor necrosis factor-alpha express varying amounts of tissue factor resulting in inhomogenous fibrin deposition in a native blood flow system.Effects of thrombin inhibitors. J. Clin. Invest. 1994;93(5):2073–2083. doi: 10.1172/JCI117202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Schroder K., Tschopp J. The inflammasomes. Cell. 2010;140(6):821–832. doi: 10.1016/j.cell.2010.01.040. [DOI] [PubMed] [Google Scholar]
- 130.Rothmeier A.S., Marchese P., Petrich B.G., Furlan-Freguia C., Ginsberg M.H., Ruggeri Z.M., Ruf W. Caspase-1-mediated pathway promotes generation of thromboinflammatory microparticles. J. Clin. Invest. 2015;125(4):1471–1484. doi: 10.1172/JCI79329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Yang X., Cheng X., Tang Y., Qiu X., Wang Z., Fu G., Wu J., Kang H., Wang J., Wang H., Chen F., Xiao X., Billiar T.R., Lu B. The role of type 1 interferons in coagulation induced by gram-negative bacteria. Blood. 2020;135(14):1087–1100. doi: 10.1182/blood.2019002282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Rodrigues T.S., de Sa K.S.G., Ishimoto A.Y., Becerra A., Oliveira S., Almeida L., Goncalves A.V., Perucello D.B., Andrade W.A., Castro R., Veras F.P., Toller-Kawahisa J.E., Nascimento D.C., de Lima M.H.F., Silva C.M.S., Caetite D.B., Martins R.B., Castro I.A., Pontelli M.C., de Barros F.C., do Amaral N.B., Giannini M.C., Bonjorno L.P., Lopes M.I.F., Santana R.C., Vilar F.C., Auxiliadora-Martins M., Luppino-Assad R., de Almeida S.C.L., de Oliveira F.R., Batah S.S., Siyuan L., Benatti M.N., Cunha T.M., Alves-Filho J.C., Cunha F.Q., Cunha L.D., Frantz F.G., Kohlsdorf T., Fabro A.T., Arruda E., de Oliveira R.D.R., Louzada-Junior P., Zamboni D.S. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 2021;218(3) doi: 10.1084/jem.20201707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.Freeman T.L., Swartz T.H. Targeting the NLRP3 inflammasome in severe COVID-19. Front. Immunol. 2020;11:1518. doi: 10.3389/fimmu.2020.01518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Ferreira A.C., Soares V.C., de Azevedo-Quintanilha I.G., Dias S., Fintelman-Rodrigues N., Sacramento C.Q., Mattos M., de Freitas C.S., Temerozo J.R., Teixeira L., Damaceno Hottz E., Barreto E.A., Pao C.R.R., Palhinha L., Miranda M., Bou-Habib D.C., Bozza F.A., Bozza P.T., Souza T.M.L. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discov. 2021;7(1):43. doi: 10.1038/s41420-021-00428-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Wu C., Lu W., Zhang Y., Zhang G., Shi X., Hisada Y., Grover S.P., Zhang X., Li L., Xiang B., Shi J., Li X.A., Daugherty A., Smyth S.S., Kirchhofer D., Shiroishi T., Shao F., Mackman N., Wei Y., Li Z. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity. 2019;50(6):1401–1411 e4. doi: 10.1016/j.immuni.2019.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Fillmore N., Bell S., Shen C., Nguyen V., La J., Dubreuil M., Strymish J., Brophy M., Mehta G., Wu H., Lieberman J., Do N., Sander C. Disulfiram use is associated with lower risk of COVID-19: a retrospective cohort study. PLoS One. 2021;16(10) doi: 10.1371/journal.pone.0259061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Nagashima S., Mendes M.C., Camargo Martins A.P., Borges N.H., Godoy T.M., Miggiolaro A., da Silva Deziderio F., Machado-Souza C., de Noronha L. Endothelial dysfunction and thrombosis in patients with COVID-19-brief report. Arterioscler. Thromb. Vasc. Biol. 2020;40(10):2404–2407. doi: 10.1161/ATVBAHA.120.314860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Bautista-Vargas M., Bonilla-Abadia F., Canas C.A. Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19. J. Thromb. Thrombolysis. 2020 Oct;50(3):479–483. doi: 10.1007/s11239-020-02172-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Schultz M.J., Haitsma J.J., Zhang H., Slutsky A.S. Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia–a review. Crit. Care Med. 2006;34(3):871–877. [PubMed] [Google Scholar]
- 140.Fajgenbaum D.C., June C.H. Cytokine storm. N. Engl. J. Med. 2020;383(23):2255–2273. doi: 10.1056/NEJMra2026131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.McConnell M.J., Kawaguchi N., Kondo R., Sonzogni A., Licini L., Valle C., Bonaffini P.A., Sironi S., Alessio M.G., Previtali G., Seghezzi M., Zhang X., Lee A., Pine A.B., Chun H.J., Zhang X., Fernandez-Hernando C., Qing H., Wang A., Price C., Sun Z., Utsumi T., Hwa J., Strazzabosco M., Iwakiri Y. Liver injury in COVID-19 and IL-6 trans-signaling-induced endotheliopathy. J. Hepatol. 2021 Sep;75(3):647–658. doi: 10.1016/j.jhep.2021.04.050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Perrone F., Piccirillo M.C., Ascierto P.A., Salvarani C., Parrella R., Marata A.M., Popoli P., Ferraris L., Marrocco-Trischitta M.M., Ripamonti D., Binda F., Bonfanti P., Squillace N., Castelli F., Muiesan M.L., Lichtner M., Calzetti C., Salerno N.D., Atripaldi L., Cascella M., Costantini M., Dolci G., Facciolongo N.C., Fraganza F., Massari M., Montesarchio V., Mussini C., Negri E.A., Botti G., Cardone C., Gargiulo P., Gravina A., Schettino C., Arenare L., Chiodini P., Gallo C., I. Tocivid-19 investigators Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial. J. Transl. Med. 2020;18(1):405. doi: 10.1186/s12967-020-02573-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Price C.C., Altice F.L., Shyr Y., Koff A., Pischel L., Goshua G., Azar M.M., McManus D., Chen S.C., Gleeson S.E., Britto C.J., Azmy V., Kaman K., Gaston D.C., Davis M., Burrello T., Harris Z., Villanueva M.S., Aoun-Barakat L., Kang I., Seropian S., Chupp G., Bucala R., Kaminski N., Lee A.I., LoRusso P.M., Topal J.E., Dela Cruz C., Malinis M. Tocilizumab treatment for cytokine release syndrome in hospitalized patients with coronavirus disease 2019: survival and clinical outcomes. Chest. 2020;158(4):1397–1408. doi: 10.1016/j.chest.2020.06.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Toniati P., Piva S., Cattalini M., Garrafa E., Regola F., Castelli F., Franceschini F., Airo P., Bazzani C., Beindorf E.A., Berlendis M., Bezzi M., Bossini N., Castellano M., Cattaneo S., Cavazzana I., Contessi G.B., Crippa M., Delbarba A., De Peri E., Faletti A., Filippini M., Filippini M., Frassi M., Gaggiotti M., Gorla R., Lanspa M., Lorenzotti S., Marino R., Maroldi R., Metra M., Matteelli A., Modina D., Moioli G., Montani G., Muiesan M.L., Odolini S., Peli E., Pesenti S., Pezzoli M.C., Pirola I., Pozzi A., Proto A., Rasulo F.A., Renisi G., Ricci C., Rizzoni D., Romanelli G., Rossi M., Salvetti M., Scolari F., Signorini L., Taglietti M., Tomasoni G., Tomasoni L.R., Turla F., Valsecchi A., Zani D., Zuccala F., Zunica F., Foca E., Andreoli L., Latronico N. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: a single center study of 100 patients in Brescia, Italy. Autoimmun. Rev. 2020;19(7) doi: 10.1016/j.autrev.2020.102568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Eimer J., Vesterbacka J., Svensson A.K., Stojanovic B., Wagrell C., Sonnerborg A., Nowak P. Tocilizumab shortens time on mechanical ventilation and length of hospital stay in patients with severe COVID-19: a retrospective cohort study. J. Intern. Med. 2021;289(3):434–436. doi: 10.1111/joim.13162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Potere N., Di Nisio M., Cibelli D., Scurti R., Frattari A., Porreca E., Abbate A., Parruti G. Interleukin-6 receptor blockade with subcutaneous tocilizumab in severe COVID-19 pneumonia and hyperinflammation: a case-control study. Ann. Rheum. Dis. 2021;80(2):1–2. doi: 10.1136/annrheumdis-2020-218243. [DOI] [PubMed] [Google Scholar]
- 147.Gupta S., Wang W., Hayek S.S., Chan L., Mathews K.S., Melamed M.L., Brenner S.K., Leonberg-Yoo A., Schenck E.J., Radbel J., Reiser J., Bansal A., Srivastava A., Zhou Y., Finkel D., Green A., Mallappallil M., Faugno A.J., Zhang J., Velez J.C.Q., Shaefi S., Parikh C.R., Charytan D.M., Athavale A.M., Friedman A.N., Redfern R.E., Short S.A.P., Correa S., Pokharel K.K., Admon A.J., Donnelly J.P., Gershengorn H.B., Douin D.J., Semler M.W., Hernan M.A., Leaf D.E., Investigators S.-C. Association between early treatment with tocilizumab and mortality among critically ill patients with COVID-19. JAMA Intern. Med. 2021;181(1):41–51. doi: 10.1001/jamainternmed.2020.6252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Cavalli G., Larcher A., Tomelleri A., Campochiaro C., Della-Torre E., De Luca G., Farina N., Boffini N., Ruggeri A., Poli A., Scarpellini P., Rovere-Querini P., Tresoldi M., Salonia A., Montorsi F., Landoni G., Castagna A., Ciceri F., Zangrillo A., Dagna L. Interleukin-1 and interleukin-6 inhibition compared with standard management in patients with COVID-19 and hyperinflammation: a cohort study. Lancet Rheumatol. 2021;3(4):e253–e261. doi: 10.1016/S2665-9913(21)00012-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Lipinski S., Bremer L., Lammers T., Thieme F., Schreiber S., Rosenstiel P. Coagulation and inflammation. Molecular insights and diagnostic implications. Hamostaseologie. 2011;31(2):94–102. doi: 10.5482/ha-1134. 104. [DOI] [PubMed] [Google Scholar]
- 150.Boumaza A., Gay L., Mezouar S., Bestion E., Diallo A.B., Michel M., Desnues B., Raoult D., La Scola B., Halfon P., Vitte J., Olive D., Mege J.L. Monocytes and macrophages, targets of SARS-CoV-2: the clue for Covid-19 immunoparalysis. J. Infect. Dis. 2021;224(3):395–406. doi: 10.1093/infdis/jiab044. Aug 2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151.Kenney D.J., O’Connell A.K., Turcinovic J., Montanaro P., Hekman R.M., Tamura T., Berneshawi A.R., Cafiero T.R., Abdullatif S.A., Blum B., Goldstein S.I., Heller B.L., Gertje H.P., Bullitt E., Trachtenberg A.J., Chavez E., Sheikh A., Kurnick S., Grosz K., Bosmann M., Ericsson M., Huber B.R., Saeed M., Balazs A.B., Francis K.P., Klose A., Paragas N., Campbell J.D., Connor J.H., Emili A., Crossland N.A., Ploss A., Douam F. bioRxiv; 2021. Macrophages Govern Antiviral Responses in Human Lung Tissues Protected From SARS-CoV-2 Infection. 2021.07.17.452554. [Google Scholar]
- 152.Hojyo S., Uchida M., Tanaka K., Hasebe R., Tanaka Y., Murakami M., Hirano T. How COVID-19 induces cytokine storm with high mortality. Inflamm. Regen. 2020;40:37. doi: 10.1186/s41232-020-00146-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153.Ozato K., Tsujimura H., Tamura T. Toll-like receptor signaling and regulation of cytokine gene expression in the immune system. Biotechniques. 2002:66–68. 70, 72 passim. [PubMed] [Google Scholar]
- 154.Gustine J.N., Jones D. Immunopathology of hyperinflammation in COVID-19. Am. J. Pathol. 2021;191(1):4–17. doi: 10.1016/j.ajpath.2020.08.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Hu B., Huang S., Yin L. The cytokine storm and COVID-19. J. Med. Virol. 2021;93(1):250–256. doi: 10.1002/jmv.26232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan,China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 157.Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H., Wang T., Zhang X., Chen H., Yu H., Zhang X., Zhang M., Wu S., Song J., Chen T., Han M., Li S., Luo X., Zhao J., Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 2020;130(5):2620–2629. doi: 10.1172/JCI137244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 158.Nawroth P.P., Stern D.M. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J. Exp. Med. 1986;163(3):740–745. doi: 10.1084/jem.163.3.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Nawroth P.P., Handley D.A., Esmon C.T., Stern D.M. Interleukin 1 induces endothelial cell procoagulant while suppressing cell-surface anticoagulant activity. Proc. Natl. Acad. Sci. U. S. A. 1986;83(10):3460–3464. doi: 10.1073/pnas.83.10.3460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.Herbert J.M., Savi P., Laplace M.C., Lale A. IL-4 inhibits LPS-, IL-1 beta- and TNF alpha-induced expression of tissue factor in endothelial cells and monocytes. FEBS Lett. 1992;310(1):31–33. doi: 10.1016/0014-5793(92)81139-d. [DOI] [PubMed] [Google Scholar]
- 161.Schwager I., Jungi T.W. Effect of human recombinant cytokines on the induction of macrophage procoagulant activity. Blood. 1994;83(1):152–160. [PubMed] [Google Scholar]
- 162.Schecter A.D., Rollins B.J., Zhang Y.J., Charo I.F., Fallon J.T., Rossikhina M., Giesen P.L., Nemerson Y., Taubman M.B. Tissue factor is induced by monocyte chemoattractant protein-1 in human aortic smooth muscle and THP-1 cells. J. Biol. Chem. 1997;272(45):28568–28573. doi: 10.1074/jbc.272.45.28568. [DOI] [PubMed] [Google Scholar]
- 163.Neumann F.J., Ott I., Marx N., Luther T., Kenngott S., Gawaz M., Kotzsch M., Schomig A. Effect of human recombinant interleukin-6 and interleukin-8 on monocyte procoagulant activity. Arterioscler. Thromb. Vasc. Biol. 1997;17(12):3399–3405. doi: 10.1161/01.atv.17.12.3399. [DOI] [PubMed] [Google Scholar]
- 164.De Palma R., Cirillo P., Ciccarelli G., Barra G., Conte S., Pellegrino G., Pasquale G., Nassa G., Pacifico F., Leonardi A., Insabato L., Cali G., Golino P., Cimmino G. Expression of functional tissue factor in activated T-lymphocytes in vitro and in vivo: a possible contribution of immunity to thrombosis? Int. J. Cardiol. 2016;218:188–195. doi: 10.1016/j.ijcard.2016.04.177. [DOI] [PubMed] [Google Scholar]
- 165.Hu Z.J., Xu J., Yin J.M., Li L., Hou W., Zhang L.L., Zhou Z., Yu Y.Z., Li H.J., Feng Y.M., Jin R.H. Lower circulating interferon-gamma is a risk factor for lung fibrosis in COVID-19 patients. Front. Immunol. 2020;11 doi: 10.3389/fimmu.2020.585647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 166.Sower L.E., Froelich C.J., Carney D.H., Fenton J.W., II, Klimpel G.R. Thrombin induces IL-6 production in fibroblasts and epithelial cells. Evidence for the involvement of the seven-transmembrane domain (STD) receptor for alpha-thrombin. J. Immunol. 1995;155(2):895–901. [PubMed] [Google Scholar]
- 167.Qi J., Goralnick S., Kreutzer D.L. Fibrin regulation of interleukin-8 gene expression in human vascular endothelial cells. Blood. 1997;90(9):3595–3602. [PubMed] [Google Scholar]
- 168.Ueno A., Murakami K., Yamanouchi K., Watanabe M., Kondo T. Thrombin stimulates production of interleukin-8 in human umbilical vein endothelial cells. Immunology. 1996;88(1):76–81. doi: 10.1046/j.1365-2567.1996.d01-635.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 169.Anrather D., Millan M.T., Palmetshofer A., Robson S.C., Geczy C., Ritchie A.J., Bach F.H., Ewenstein B.M. Thrombin activates nuclear factor-kappaB and potentiates endothelial cell activation by TNF. J. Immunol. 1997;159(11):5620–5628. [PubMed] [Google Scholar]
- 170.Subramaniam S., Ruf W., Bosmann M. Advocacy of targeting protease-activated receptors in severe coronavirus disease 2019. Br. J. Pharmacol. 2022 May;179(10):2086–2099. doi: 10.1111/bph.15587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171.Fara A., Mitrev Z., Rosalia R.A., Assas B.M. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biol. 2020;10(9) doi: 10.1098/rsob.200160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172.Ragab D., Salah Eldin H., Taeimah M., Khattab R., Salem R. The COVID-19 cytokine storm; what we know so far. Front. Immunol. 2020;11:1446. doi: 10.3389/fimmu.2020.01446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 173.Park W.B., Kwon N.J., Choi S.J., Kang C.K., Choe P.G., Kim J.Y., Yun J., Lee G.W., Seong M.W., Kim N.J., Seo J.S., Oh M.D. Virus isolation from the first patient with SARS-CoV-2 in Korea. J. Korean Med. Sci. 2020;35(7) doi: 10.3346/jkms.2020.35.e84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 174.Giannakopoulos B., Krilis S.A. The pathogenesis of the antiphospholipid syndrome. N. Engl. J. Med. 2013;368(11):1033–1044. doi: 10.1056/NEJMra1112830. [DOI] [PubMed] [Google Scholar]
- 175.Petri M. Epidemiology of the antiphospholipid antibody syndrome. J. Autoimmun. 2000;15(2):145–151. doi: 10.1006/jaut.2000.0409. [DOI] [PubMed] [Google Scholar]
- 176.Juby A.G., Davis P. Prevalence and disease associations of certain autoantibodies in elderly patients. Clin. Invest. Med. 1998;21(1):4–11. [PubMed] [Google Scholar]
- 177.Zuo Y., Shi H., Li C., Knight J.S. Antiphospholipid syndrome: a clinical perspective. Chin. Med. J. 2020;133(8):929–940. doi: 10.1097/CM9.0000000000000705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 178.Yalavarthi S., Gould T.J., Rao A.N., Mazza L.F., Morris A.E., Nunez-Alvarez C., Hernandez-Ramirez D., Bockenstedt P.L., Liaw P.C., Cabral A.R., Knight J.S. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67(11):2990–3003. doi: 10.1002/art.39247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 179.Lopez-Pedrera C., Buendia P., Barbarroja N., Siendones E., Velasco F., Cuadrado M.J. Antiphospholipid-mediated thrombosis: interplay between anticardiolipin antibodies and vascular cells. Clin. Appl. Thromb. Hemost. 2006;12(1):41–45. doi: 10.1177/107602960601200107. [DOI] [PubMed] [Google Scholar]
- 180.Dobado-Berrios P.M., Lopez-Pedrera C., Velasco F., Aguirre M.A., Torres A., Cuadrado M.J. Increased levels of tissue factor mRNA in mononuclear blood cells of patients with primary antiphospholipid syndrome. Thromb. Haemost. 1999;82(6):1578–1582. [PubMed] [Google Scholar]
- 181.Reverter J.C., Tassies D., Font J., Monteagudo J., Escolar G., Ingelmo M., Ordinas A. Hypercoagulable state in patients with antiphospholipid syndrome is related to high induced tissue factor expression on monocytes and to low free protein s. Arterioscler. Thromb. Vasc. Biol. 1996;16(11):1319–1326. doi: 10.1161/01.atv.16.11.1319. [DOI] [PubMed] [Google Scholar]
- 182.Boles J., Mackman N. Role of tissue factor in thrombosis in antiphospholipid antibody syndrome. Lupus. 2010;19(4):370–378. doi: 10.1177/0961203309360810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183.Sene D., Piette J.C., Cacoub P. Antiphospholipid antibodies, antiphospholipid syndrome and viral infections. Rev. Med. Interne. 2009;30(2):135–141. doi: 10.1016/j.revmed.2008.05.020. [DOI] [PubMed] [Google Scholar]
- 184.Uthman I.W., Gharavi A.E. Viral infections and antiphospholipid antibodies. Semin. Arthritis Rheum. 2002;31(4):256–263. doi: 10.1053/sarh.2002.28303. [DOI] [PubMed] [Google Scholar]
- 185.Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W., Chen H., Ding X., Zhao H., Zhang H., Wang C., Zhao J., Sun X., Tian R., Wu W., Wu D., Ma J., Chen Y., Zhang D., Xie J., Yan X., Zhou X., Liu Z., Wang J., Du B., Qin Y., Gao P., Qin X., Xu Y., Zhang W., Li T., Zhang F., Zhao Y., Li Y., Zhang S. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N. Engl. J. Med. 2020;382(17) doi: 10.1056/NEJMc2007575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 186.Asherson R.A., Cervera R. Antiphospholipid antibodies and infections. Ann. Rheum. Dis. 2003;62(5):388–393. doi: 10.1136/ard.62.5.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 187.Vila P., Hernandez M.C., Lopez-Fernandez M.F., Batlle J. Prevalence, follow-up and clinical significance of the anticardiolipin antibodies in normal subjects. Thromb. Haemost. 1994;72(2):209–213. [PubMed] [Google Scholar]
- 188.Connell N.T., Battinelli E.M., Connors J.M. Coagulopathy of COVID-19 and antiphospholipid antibodies. J. Thromb. Haemost. 2020 doi: 10.1111/jth.14893. May 7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 189.McDonnell T., Wincup C., Buchholz I., Pericleous C., Giles I., Ripoll V., Cohen H., Delcea M., Rahman A. The role of beta-2-glycoprotein I in health and disease associating structure with function: more than just APS. Blood Rev. 2020;39 doi: 10.1016/j.blre.2019.100610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 190.Salmon J.E., de Groot P.G. Pathogenic role of antiphospholipid antibodies. Lupus. 2008;17(5):405–411. doi: 10.1177/0961203308090025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 191.Andreoli L., Fredi M., Nalli C., Franceschini F., Meroni P.L., Tincani A. Antiphospholipid antibodies mediate autoimmunity against dying cells. Autoimmunity. 2013;46(5):302–306. doi: 10.3109/08916934.2013.783025. [DOI] [PubMed] [Google Scholar]
- 192.Espinola R.G., Pierangeli S.S., Gharavi A.E., Harris E.N. Hydroxychloroquine reverses platelet activation induced by human IgG antiphospholipid antibodies. Thromb. Haemost. 2002;87(3):518–522. [PubMed] [Google Scholar]
- 193.Robbins D.L., Leung S., Miller-Blair D.J., Ziboh V. Effect of anticardiolipin/beta2-glycoprotein I complexes on production of thromboxane A2 by platelets from patients with the antiphospholipid syndrome. J. Rheumatol. 1998;25(1):51–56. [PubMed] [Google Scholar]
- 194.Tegla C.A., Cudrici C., Patel S., Trippe R., III, Rus V., Niculescu F., Rus H. Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol. Res. 2011;51(1):45–60. doi: 10.1007/s12026-011-8239-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 195.Wetsel R.A. Structure, function and cellular expression of complement anaphylatoxin receptors. Curr. Opin. Immunol. 1995;7(1):48–53. doi: 10.1016/0952-7915(95)80028-x. [DOI] [PubMed] [Google Scholar]
- 196.Tung M.L., Tan B., Cherian R., Chandra B. Anti-phospholipid syndrome and COVID-19 thrombosis: connecting the dots. Rheumatol. Adv. Pract. 2021;5(1) doi: 10.1093/rap/rkaa081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 197.Muller-Calleja N., Ritter S., Hollerbach A., Falter T., Lackner K.J., Ruf W. Complement C5 but not C3 is expendable for tissue factor activation by cofactor-independent antiphospholipid antibodies. Blood Adv. 2018;2(9):979–986. doi: 10.1182/bloodadvances.2018017095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 198.Zuo Y., Estes S.K., Ali R.A., Gandhi A.A., Yalavarthi S., Shi H., Sule G., Gockman K., Madison J.A., Zuo M., Yadav V., Wang J., Woodard W., Lezak S.P., Lugogo N.L., Smith S.A., Morrissey J.H., Kanthi Y., Knight J.S. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 2020;12(570) doi: 10.1126/scitranslmed.abd3876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 199.Subramaniam S., Hekman R.M., Jayaraman A., O’Connell A.K., Montanaro P., Blum B., Kenney D., Ericsson M., Ravid K., Crossland N.A., Emili A., Douam F., Bosmann M. bioRxiv; 2021. Platelet Proteome Analysis Reveals an Early Hyperactive Phenotype in SARS-CoV-2-infected Humanized ACE2 Mice. 2021.08.19.457020. [Google Scholar]
- 200.Ali R.A., Wuescher L.M., Worth R.G. Platelets: essential components of the immune system. Curr. Trends Immunol. 2015;16:65–78. [PMC free article] [PubMed] [Google Scholar]
- 201.Vorobjeva N.V., Chernyak B.V. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc) 2020;85(10):1178–1190. doi: 10.1134/S0006297920100065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 202.Zuo Y., Zuo M., Yalavarthi S., Gockman K., Madison J.A., Shi H., Woodard W., Lezak S.P., Lugogo N.L., Knight J.S., Kanthi Y. Neutrophil extracellular traps and thrombosis in COVID-19. J. Thromb. Thrombolysis. 2021;51(2):446–453. doi: 10.1007/s11239-020-02324-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 203.Shi H., Zuo Y., Yalavarthi S., Gockman K., Zuo M., Madison J.A., Blair C., Woodward W., Lezak S.P., Lugogo N.L., Woods R.J., Lood C., Knight J.S., Kanthi Y. Neutrophil calprotectin identifies severe pulmonary disease in COVID-19. J. Leukoc. Biol. 2021;109(1):67–72. doi: 10.1002/JLB.3COVCRA0720-359R. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 204.Barnes B.J., Adrover J.M., Baxter-Stoltzfus A., Borczuk A., Cools-Lartigue J., Crawford J.M., Dassler-Plenker J., Guerci P., Huynh C., Knight J.S., Loda M., Looney M.R., McAllister F., Rayes R., Renaud S., Rousseau S., Salvatore S., Schwartz R.E., Spicer J.D., Yost C.C., Weber A., Zuo Y., Egeblad M. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J. Exp. Med. 2020;217(6) doi: 10.1084/jem.20200652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 205.Folco E.J., Mawson T.L., Vromman A., Bernardes-Souza B., Franck G., Persson O., Nakamura M., Newton G., Luscinskas F.W., Libby P. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1alpha and cathepsin G. Arterioscler. Thromb. Vasc. Biol. 2018;38(8):1901–1912. doi: 10.1161/ATVBAHA.118.311150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 206.Kinev A.V., Roubey R.A. Tissue factor in the antiphospholipid syndrome. Lupus. 2008;17(10):952–958. doi: 10.1177/0961203308096662. [DOI] [PubMed] [Google Scholar]
- 207.Shantsila E., Lip G.Y. The role of monocytes in thrombotic disorders. Insights from tissue factor, monocyte-platelet aggregates and novel mechanisms. Thromb. Haemost. 2009;102(5):916–924. doi: 10.1160/TH09-01-0023. [DOI] [PubMed] [Google Scholar]
- 208.Cho C.S., Cho M.L., Chen P.P., Min S.Y., Hwang S.Y., Park K.S., Kim W.U., Min D.J., Min J.K., Park S.H., Kim H.Y. Antiphospholipid antibodies induce monocyte chemoattractant protein-1 in endothelial cells. J. Immunol. 2002;168(8):4209–4215. doi: 10.4049/jimmunol.168.8.4209. [DOI] [PubMed] [Google Scholar]
- 209.Cuadrado M.J., Lopez-Pedrera C., Khamashta M.A., Camps M.T., Tinahones F., Torres A., Hughes G.R., Velasco F. Thrombosis in primary antiphospholipid syndrome: a pivotal role for monocyte tissue factor expression. Arthritis Rheum. 1997;40(5):834–841. doi: 10.1002/art.1780400509. [DOI] [PubMed] [Google Scholar]
- 210.Yasuda S., Bohgaki M., Atsumi T., Koike T. Pathogenesis of antiphospholipid antibodies: impairment of fibrinolysis and monocyte activation via the p38 mitogen-activated protein kinase pathway. Immunobiology. 2005;210(10):775–780. doi: 10.1016/j.imbio.2005.10.009. [DOI] [PubMed] [Google Scholar]
- 211.Alard J.E., Gaillard F., Daridon C., Shoenfeld Y., Jamin C., Youinou P. TLR2 is one of the endothelial receptors for beta 2-glycoprotein I. J. Immunol. 2010;185(3):1550–1557. doi: 10.4049/jimmunol.1000526. [DOI] [PubMed] [Google Scholar]
- 212.Raschi E., Chighizola C.B., Grossi C., Ronda N., Gatti R., Meroni P.L., Borghi M.O. beta2-glycoprotein I, lipopolysaccharide and endothelial TLR4: three players in the two hit theory for anti-phospholipid-mediated thrombosis. J. Autoimmun. 2014;55:42–50. doi: 10.1016/j.jaut.2014.03.001. [DOI] [PubMed] [Google Scholar]
- 213.Raschi E., Testoni C., Bosisio D., Borghi M.O., Koike T., Mantovani A., Meroni P.L. Role of the MyD88 transduction signaling pathway in endothelial activation by antiphospholipid antibodies. Blood. 2003;101(9):3495–3500. doi: 10.1182/blood-2002-08-2349. [DOI] [PubMed] [Google Scholar]
- 214.Velasquez M., Rojas M., Abrahams V.M., Escudero C., Cadavid A.P. Mechanisms of endothelial dysfunction in antiphospholipid syndrome: association with clinical manifestations. Front. Physiol. 2018;9:1840. doi: 10.3389/fphys.2018.01840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 215.Vega-Ostertag M., Casper K., Swerlick R., Ferrara D., Harris E.N., Pierangeli S.S. Involvement of p38 MAPK in the up-regulation of tissue factor on endothelial cells by antiphospholipid antibodies. Arthritis Rheum. 2005;52(5):1545–1554. doi: 10.1002/art.21009. [DOI] [PubMed] [Google Scholar]
- 216.Shi H., Zuo Y., Gandhi A.A., Sule G., Yalavarthi S., Gockman K., Madison J.A., Wang J., Zuo M., Shi Y., Knight J.S., Kanthi Y. medRxiv; 2021. Endothelial Cell-activating Antibodies in COVID-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217.Borghi M.O., Beltagy A., Garrafa E., Curreli D., Cecchini G., Bodio C., Grossi C., Blengino S., Tincani A., Franceschini F., Andreoli L., Lazzaroni M.G., Piantoni S., Masneri S., Crisafulli F., Brugnoni D., Muiesan M.L., Salvetti M., Parati G., Torresani E., Mahler M., Heilbron F., Pregnolato F., Pengo M., Tedesco F., Pozzi N., Meroni P.L. Anti-phospholipid antibodies in COVID-19 are different from those detectable in the anti-phospholipid syndrome. Front. Immunol. 2020;11 doi: 10.3389/fimmu.2020.584241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 218.Skendros P., Mitsios A., Chrysanthopoulou A., Mastellos D.C., Metallidis S., Rafailidis P., Ntinopoulou M., Sertaridou E., Tsironidou V., Tsigalou C., Tektonidou M., Konstantinidis T., Papagoras C., Mitroulis I., Germanidis G., Lambris J.D., Ritis K. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Invest. 2020;130(11):6151–6157. doi: 10.1172/JCI141374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 219.Davalos D., Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin. Immunopathol. 2012;34(1):43–62. doi: 10.1007/s00281-011-0290-8. [DOI] [PubMed] [Google Scholar]
- 220.Lee J.W., Jang J.H., Kim J.S., Yoon S.S., Lee J.H., Kim Y.K., Jo D.Y., Chung J., Sohn S.K. Clinical signs and symptoms associated with increased risk for thrombosis in patients with paroxysmal nocturnal hemoglobinuria from a Korean Registry. Int. J. Hematol. 2013;97(6):749–757. doi: 10.1007/s12185-013-1346-4. [DOI] [PubMed] [Google Scholar]
- 221.Hill A., Kelly R.J., Hillmen P. Thrombosis in paroxysmal nocturnal hemoglobinuria. Blood. 2013;121(25):4985–4996. doi: 10.1182/blood-2012-09-311381. [DOI] [PubMed] [Google Scholar]
- 222.Wong E.K.S., Kavanagh D. Diseases of complement dysregulation-an overview. Semin. Immunopathol. 2018;40(1):49–64. doi: 10.1007/s00281-017-0663-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 223.Lipcsey M., Persson B., Eriksson O., Blom A.M., Fromell K., Hultstrom M., Huber-Lang M., Ekdahl K.N., Frithiof R., Nilsson B. The outcome of critically ill COVID-19 patients is linked to thromboinflammation dominated by the Kallikrein/Kinin system. Front. Immunol. 2021;12 doi: 10.3389/fimmu.2021.627579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 224.Stravalaci M., Pagani I., Paraboschi E.M., Pedotti M., Doni A., Scavello F., Mapelli S.N., Sironi M., Perucchini C., Varani L., Matkovic M., Cavalli A., Cesana D., Gallina P., Pedemonte N., Capurro V., Clementi N., Mancini N., Invernizzi P., Bayarri-Olmos R., Garred P., Rappuoli R., Duga S., Bottazzi B., Uguccioni M., Asselta R., Vicenzi E., Mantovani A., Garlanda C. Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nat. Immunol. 2022;23(2):275–286. doi: 10.1038/s41590-021-01114-w. [DOI] [PubMed] [Google Scholar]
- 225.Afzali B., Noris M., Lambrecht B.N., Kemper C. The state of complement in COVID-19. Nat. Rev. Immunol. 2022;22(2):77–84. doi: 10.1038/s41577-021-00665-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 226.Henry B.M., Szergyuk I., de Oliveira M.H.S., Lippi G., Benoit J.L., Vikse J., Benoit S.W. Complement levels at admission as a reflection of coronavirus disease 2019 (COVID-19) severity state. J. Med. Virol. 2021;93(9):5515–5522. doi: 10.1002/jmv.27077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 227.Bosmann M. Complement activation during critical illness: current findings and an outlook in the era of COVID-19. Am. J. Respir. Crit. Care Med. 2020;202(2):163–165. doi: 10.1164/rccm.202005-1926ED. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 228.Bosmann M. Complement control for COVID-19. Sci. Immunol. 2021;6(59) doi: 10.1126/sciimmunol.abj1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 229.Bosmann M., Ward P.A. Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis. Adv. Exp. Med. Biol. 2012;946:147–159. doi: 10.1007/978-1-4614-0106-3_9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 230.Chauhan A.J., Wiffen L.J., Brown T.P. COVID-19: a collision of complement, coagulation and inflammatory pathways. J. Thromb. Haemost. 2020;18(9):2110–2117. doi: 10.1111/jth.14981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 231.Carvelli J., Demaria O., Vely F., Batista L., Benmansour N.Chouaki, Fares J., Carpentier S., Thibult M.L., Morel A., Remark R., Andre P., Represa A., Piperoglou C., Explore C.-I.P.H.g., Explore C.-M.I.g., Cordier P.Y., Dault E.Le, Guervilly C., Simeone P., Gainnier M., Morel Y., Ebbo M., Schleinitz N., Vivier E. Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis. Nature. 2020;588(7836):146–150. doi: 10.1038/s41586-020-2600-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 232.Ritis K., Doumas M., Mastellos D., Micheli A., Giaglis S., Magotti P., Rafail S., Kartalis G., Sideras P., Lambris J.D. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J. Immunol. 2006;177(7):4794–4802. doi: 10.4049/jimmunol.177.7.4794. [DOI] [PubMed] [Google Scholar]
- 233.Redecha P., Tilley R., Tencati M., Salmon J.E., Kirchhofer D., Mackman N., Girardi G. Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood. 2007;110(7):2423–2431. doi: 10.1182/blood-2007-01-070631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 234.Foley J.H., Conway E.M. Cross talk pathways between coagulation and inflammation. Circ. Res. 2016;118(9):1392–1408. doi: 10.1161/CIRCRESAHA.116.306853. [DOI] [PubMed] [Google Scholar]
- 235.Cugno M., Meroni P.L., Gualtierotti R., Griffini S., Grovetti E., Torri A., Panigada M., Aliberti S., Blasi F., Tedesco F., Peyvandi F. Complement activation in patients with COVID-19: a novel therapeutic target. J. Allergy Clin. Immunol. 2020;146(1):215–217. doi: 10.1016/j.jaci.2020.05.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 236.Giudice V., Pagliano P., Vatrella A., Masullo A., Poto S., Polverino B.M., Gammaldi R., Maglio A., Sellitto C., Vitale C., Serio B., Cuffa B., Borrelli A., Vecchione C., Filippelli A., Selleri C. Combination of ruxolitinib and eculizumab for treatment of severe SARS-CoV-2-related acute respiratory distress syndrome: a controlled study. Front. Pharmacol. 2020;11:857. doi: 10.3389/fphar.2020.00857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 237.Ma L., Sanjaya K.S., Cano M., Kuppuswamy V., Bajwa J. Increased complement activation is a distinctive feature of severe SARS-CoV-2 infection. Sci. Immunol. 2021;6(59) doi: 10.1126/sciimmunol.abh2259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 238.Gao T., Hu M., Zhang X., Li H., Zhu L., Liu H., Dong Q., Zhang Z., Wang Z., Hu Y., Fu Y., Jin Y., Li K., Zhao S., Xiao Y., Luo S., Li L., Zhao L., Liu J., Zhao H., Liu Y., Yang W., Peng J., Chen X., Li P., Liu Y., Xie Y., Song J., Zhang L., Ma Q., Bian X., Chen W., Liu X., Mao Q., Cao C. medRxiv; 2020. Highly Pathogenic Coronavirus N Protein Aggravates Lung Injury by MASP-2-mediated Complement Over-activation. 2020.03.29.20041962. [Google Scholar]
- 239.Ikeda K., Nagasawa K., Horiuchi T., Tsuru T., Nishizaka H., Niho Y. C5a induces tissue factor activity on endothelial cells. Thromb. Haemost. 1997;77(2):394–398. [PubMed] [Google Scholar]
- 240.Noris M., Benigni A., Remuzzi G. The case of complement activation in COVID-19 multiorgan impact. Kidney Int. 2020;98(2):314–322. doi: 10.1016/j.kint.2020.05.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 241.Li J., Liu B. The roles and potential therapeutic implications of C5a in the pathogenesis of COVID-19-associated coagulopathy. Cytokine Growth Factor Rev. 2021;58:75–81. doi: 10.1016/j.cytogfr.2020.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 242.Laurence J., Mulvey J.J., Seshadri M., Racanelli A., Harp J., Schenck E.J., Zappetti D., Horn E.M., Magro C.M. Anti-complement C5 therapy with eculizumab in three cases of critical COVID-19. Clin. Immunol. 2020;219 doi: 10.1016/j.clim.2020.108555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 243.Amor S., Fernandez Blanco L., Baker D. Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clin. Exp. Immunol. 2020;202(2):193–209. doi: 10.1111/cei.13523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 244.Ramlall V., Thangaraj P.M., Meydan C., Foox J., Butler D., Kim J., May B., De Freitas J.K., Glicksberg B.S., Mason C.E., Tatonetti N.P., Shapira S.D. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nat. Med. 2020;26(10):1609–1615. doi: 10.1038/s41591-020-1021-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 245.Langer F., Spath B., Fischer C., Stolz M., Ayuk F.A., Kroger N., Bokemeyer C., Ruf W. Rapid activation of monocyte tissue factor by antithymocyte globulin is dependent on complement and protein disulfide isomerase. Blood. 2013;121(12):2324–2335. doi: 10.1182/blood-2012-10-460493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 246.Subramaniam S., Jurk K., Hobohm L., Jackel S., Saffarzadeh M., Schwierczek K., Wenzel P., Langer F., Reinhardt C., Ruf W. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood. 2017;129(16):2291–2302. doi: 10.1182/blood-2016-11-749879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 247.van Niel G., D'Angelo G., Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018;19(4):213–228. doi: 10.1038/nrm.2017.125. [DOI] [PubMed] [Google Scholar]
- 248.Chen Z., Larregina A.T., Morelli A.E. Impact of extracellular vesicles on innate immunity. Curr. Opin. Organ Transpl. 2019;24(6):670–678. doi: 10.1097/MOT.0000000000000701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 249.Kouwaki T., Okamoto M., Tsukamoto H., Fukushima Y., Oshiumi H. Extracellular vesicles deliver host and virus RNA and regulate innate immune response. Int. J. Mol. Sci. 2017;18(3) doi: 10.3390/ijms18030666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 250.McFadyen J.D., Stevens H., Peter K. The emerging threat of (micro)thrombosis in COVID-19 and its therapeutic implications. Circ. Res. 2020;127(4):571–587. doi: 10.1161/CIRCRESAHA.120.317447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 251.Marchandot B., Sattler L., Jesel L., Matsushita K., Schini-Kerth V., Grunebaum L., Morel O. COVID-19 related coagulopathy: a distinct entity? J. Clin. Med. 2020;9(6) doi: 10.3390/jcm9061651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 252.Zaid Y., Puhm F., Allaeys I., Naya A., Oudghiri M., Khalki L., Limami Y., Zaid N., Sadki K., Ben El Haj R., Mahir W., Belayachi L., Belefquih B., Benouda A., Cheikh A., Langlois M.A., Cherrah Y., Flamand L., Guessous F., Boilard E. Platelets can associate with SARS-Cov-2 RNA and are hyperactivated in COVID-19. Circ. Res. 2020;127(11):1404–1418. doi: 10.1161/CIRCRESAHA.120.317703. Sep 17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 253.Balbi C., Burrello J., Bolis S., Lazzarini E., Biemmi V., Pianezzi E., Burrello A., Caporali E., Grazioli L.G., Martinetti G., Fusi-Schmidhauser T., Vassalli G., Melli G., Barile L. Circulating extracellular vesicles are endowed with enhanced procoagulant activity in SARS-CoV-2 infection. EBioMedicine. 2021;67 doi: 10.1016/j.ebiom.2021.103369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 254.Rosell A., Havervall S., von Meijenfeldt F., Hisada Y., Aguilera K., Grover S.P., Lisman T., Mackman N., Thalin C. Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality. Arterioscler. Thromb. Vasc. Biol. 2021 Feb;41(2):878–882. doi: 10.1161/ATVBAHA.120.315547. ATVBAHA120315547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 255.Campello E., Radu C.M., Simion C., Spiezia L., Bulato C., Gavasso S., Tormene D., Perin N., Turatti G., Simioni P. Longitudinal trend of plasma concentrations of extracellular vesicles in patients hospitalized for COVID-19. Front. Cell Dev. Biol. 2021;9 doi: 10.3389/fcell.2021.770463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 256.Guervilly C., Bonifay A., Burtey S., Sabatier F., Cauchois R., Abdili E., Arnaud L., Lano G., Pietri L., Robert T., Velier M., Papazian L., Albanese J., Kaplanski G., Dignat-George F., Lacroix R. Dissemination of extreme levels of extracellular vesicles: tissue factor activity in patients with severe COVID-19. Blood Adv. 2021;5(3):628–634. doi: 10.1182/bloodadvances.2020003308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 257.Yang Y., Tang H. Aberrant coagulation causes a hyper-inflammatory response in severe influenza pneumonia. Cell Mol. Immunol. 2016;13(4):432–442. doi: 10.1038/cmi.2016.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 258.Munoz-Fontela C., Dowling W.E., Funnell S.G.P., Gsell P.S., Riveros-Balta A.X., Albrecht R.A., Andersen H., Baric R.S., Carroll M.W., Cavaleri M., Qin C., Crozier I., Dallmeier K., de Waal L., de Wit E., Delang L., Dohm E., Duprex W.P., Falzarano D., Finch C.L., Frieman M.B., Graham B.S., Gralinski L.E., Guilfoyle K., Haagmans B.L., Hamilton G.A., Hartman A.L., Herfst S., Kaptein S.J.F., Klimstra W.B., Knezevic I., Krause P.R., Kuhn J.H., Le Grand R., Lewis M.G., Liu W.C., Maisonnasse P., McElroy A.K., Munster V., Oreshkova N., Rasmussen A.L., Rocha-Pereira J., Rockx B., Rodriguez E., Rogers T.F., Salguero F.J., Schotsaert M., Stittelaar K.J., Thibaut H.J., Tseng C.T., Vergara-Alert J., Beer M., Brasel T., Chan J.F.W., Garcia-Sastre A., Neyts J., Perlman S., Reed D.S., Richt J.A., Roy C.J., Segales J., Vasan S.S., Henao-Restrepo A.M., Barouch D.H. Animal models for COVID-19. Nature. 2020;586(7830):509–515. doi: 10.1038/s41586-020-2787-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 259.Jiang Z., Tang X., Xiao R., Jiang L., Chen X. Dengue virus regulates the expression of hemostasis-related molecules in human vein endothelial cells. J. Infect. 2007;55(2):e23–e28. doi: 10.1016/j.jinf.2007.04.351. [DOI] [PubMed] [Google Scholar]
- 260.Huang Y.H., Lei H.Y., Liu H.S., Lin Y.S., Chen S.H., Liu C.C., Yeh T.M. Tissue plasminogen activator induced by dengue virus infection of human endothelial cells. J. Med. Virol. 2003;70(4):610–616. doi: 10.1002/jmv.10438. [DOI] [PubMed] [Google Scholar]
- 261.Krishnamurti C., Alving B. Effect of dengue virus on procoagulant and fibrinolytic activities of monocytes. Rev. Infect. Dis. 1989;11(Suppl 4):S843–S846. doi: 10.1093/clinids/11.supplement_4.s843. [DOI] [PubMed] [Google Scholar]
- 262.Krishnamurti C., Wahl L.M., Alving B.M. Stimulation of plasminogen activator inhibitor activity in human monocytes infected with dengue virus. Am. J. Trop. Med. Hyg. 1989;40(1):102–107. doi: 10.4269/ajtmh.1989.40.102. [DOI] [PubMed] [Google Scholar]
- 263.Chunhakan S., Butthep P., Yoksan S., Tangnararatchakit K., Chuansumrit A. Vascular leakage in dengue hemorrhagic fever is associated with dengue infected monocytes, monocyte activation/exhaustion, and cytokines production. Int. J. Vasc. Med. 2015;2015 doi: 10.1155/2015/917143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 264.de Azeredo E.Leal, Solorzano V.E., de Oliveira D.B., Marinho C.F., de Souza L.J., da Cunha R.V., Damasco P.V., Kubelka C.F., de-Oliveira-Pinto L.M. Increased circulating procoagulant and anticoagulant factors as TF and TFPI according to severity or infecting serotypes in human dengue infection. Microbes Infect. 2017;19(1):62–68. doi: 10.1016/j.micinf.2016.08.005. [DOI] [PubMed] [Google Scholar]
- 265.Huang Y.H., Liu C.C., Wang S.T., Lei H.Y., Liu H.L., Lin Y.S., Wu H.L., Yeh T.M. Activation of coagulation and fibrinolysis during dengue virus infection. J. Med. Virol. 2001;63(3):247–251. doi: 10.1002/1096-9071(200103)63:3<247::aid-jmv1008>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
- 266.Sosothikul D., Seksarn P., Pongsewalak S., Thisyakorn U., Lusher J. Activation of endothelial cells, coagulation and fibrinolysis in children with Dengue virus infection. Thromb. Haemost. 2007;97(4):627–634. [PubMed] [Google Scholar]
- 267.de Azeredo E.L., Kubelka C.F., Alburquerque L.M., Barbosa L.S., Damasco P.V., Avila C.A., Motta-Castro A.R., da Cunha R.V., Monteiro R.Q. Tissue factor expression on monocytes from patients with severe dengue fever. Blood Cells Mol. Dis. 2010;45(4):334–335. doi: 10.1016/j.bcmd.2010.08.004. [DOI] [PubMed] [Google Scholar]
- 268.Bok R.A., Jacob H.S., Balla J., Juckett M., Stella T., Shatos M.A., Vercellotti G.M. Herpes simplex virus decreases endothelial cell plasminogen activator inhibitor. Thromb. Haemost. 1993;69(3):253–258. [PubMed] [Google Scholar]
- 269.Yeo W.M., Osterrieder N., Stokol T. Equine herpesvirus type 1 infection induces procoagulant activity in equine monocytes. Vet. Res. 2013;44:16. doi: 10.1186/1297-9716-44-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 270.Sutherland M.R., Ruf W., Pryzdial E.L. Tissue factor and glycoprotein C on herpes simplex virus type 1 are protease-activated receptor 2 cofactors that enhance infection. Blood. 2012;119(15):3638–3645. doi: 10.1182/blood-2011-08-376814. [DOI] [PubMed] [Google Scholar]
- 271.Tatsumi K., Antoniak S., Subramaniam S., Gondouin B., Neidich S.D., Beck M.A., Mickelson J., Monroe D.M., III, Bastarache J.A., Mackman N. Anticoagulation increases alveolar hemorrhage in mice infected with influenza A. Physiol. Rep. 2016;4(24) doi: 10.14814/phy2.13071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 272.Schechter M.E., Andrade B.B., He T., Richter G.H., Tosh K.W., Policicchio B.B., Singh A., Raehtz K.D., Sheikh V., Ma D., Brocca-Cofano E., Apetrei C., Tracy R., Ribeiro R.M., Sher A., Francischetti I.M.B., Pandrea I., Sereti I. Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy. Sci. Transl. Med. 2017;9(405) doi: 10.1126/scitranslmed.aam5441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 273.Baker J.V., Huppler Hullsiek K., Bradford R.L., Prosser R., Tracy R.P., Key N.S. Circulating levels of tissue factor microparticle procoagulant activity are reduced with antiretroviral therapy and are associated with persistent inflammation and coagulation activation among HIV-positive patients. J. Acquir. Immune Defic. Syndr. 2013;63(3):367–371. doi: 10.1097/QAI.0b013e3182910121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 274.Mayne E., Funderburg N.T., Sieg S.F., Asaad R., Kalinowska M., Rodriguez B., Schmaier A.H., Stevens W., Lederman M.M. Increased platelet and microparticle activation in HIV infection: upregulation of P-selectin and tissue factor expression. J. Acquir. Immune Defic. Syndr. 2012;59(4):340–346. doi: 10.1097/QAI.0b013e3182439355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 275.Xiong Y., Liu Y., Cao L., Wang D., Guo M., Jiang A., Guo D., Hu W., Yang J., Tang Z., Wu H., Lin Y., Zhang M., Zhang Q., Shi M., Liu Y., Zhou Y., Lan K., Chen Y. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg. Microbes Infect. 2020;9(1):761–770. doi: 10.1080/22221751.2020.1747363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 276.Liao M., Liu Y., Yuan J., Wen Y., Xu G., Zhao J., Cheng L., Li J., Wang X., Wang F., Liu L., Amit I., Zhang S., Zhang Z. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 2020;26(6):842–844. doi: 10.1038/s41591-020-0901-9. [DOI] [PubMed] [Google Scholar]
- 277.FitzGerald E.S., Chen Y., Fitzgerald K.A., Jamieson A.M. Lung epithelial cell transcriptional regulation as a factor in COVID-19-associated coagulopathies. Am. J. Respir. Cell Mol. Biol. 2021;64(6):687–697. doi: 10.1165/rcmb.2020-0453OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 278.Canzano P., Brambilla M., Porro B., Cosentino N., Tortorici E., Vicini S., Poggio P., Cascella A., Pengo M.F., Veglia F., Fiorelli S., Bonomi A., Cavalca V., Trabattoni D., Andreini D., Omodeo Sale E., Parati G., Tremoli E., Camera M. Platelet and endothelial activation as potential mechanisms behind the thrombotic complications of COVID-19 patients. JACC Basic Transl. Sci. 2021;6(3):202–218. doi: 10.1016/j.jacbts.2020.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 279.Rosell A., Havervall S., von Meijenfeldt F., Hisada Y., Aguilera K., Grover S.P., Lisman T., Mackman N., Thalin C. Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality-brief report. Arterioscler. Thromb. Vasc. Biol. 2021;41(2):878–882. doi: 10.1161/ATVBAHA.120.315547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 280.Campbell R.A., Hisada Y., Denorme F., Grover S.P., Bouck E.G., Middleton E.A., Wolberg A.S., Rondina M.T., Mackman N. Comparison of the coagulopathies associated with COVID-19 and sepsis. Res. Pract. Thromb. Haemost. 2021;5(4) doi: 10.1002/rth2.12525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 281.Francischetti I.M.B., Toomer K., Zhang Y., Jani J., Siddiqui Z., Brotman D.J., Hooper J.E., Kickler T.S. Upregulation of pulmonary tissue factor, loss of thrombomodulin and immunothrombosis in SARS-CoV-2 infection. EClin. Med. 2021;39 doi: 10.1016/j.eclinm.2021.101069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 282.Jha P.K., Vijay A., Halu A., Uchida S., Aikawa M. Gene expression profiling reveals the shared and distinct transcriptional signatures in human lung epithelial cells infected with SARS-CoV-2, MERS-CoV, or SARS-CoV: potential implications in cardiovascular complications of COVID-19. Front. Cardiovasc. Med. 2020;7 doi: 10.3389/fcvm.2020.623012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 283.Qin Z., Liu F., Blair R., Wang C., Yang H., Mudd J., Currey J.M., Iwanaga N., He J., Mi R., Han K., Midkiff C.C., Alam M.A., Aktas B.H., Heide R.S.V., Veazey R., Piedimonte G., Maness N.J., Ergun S., Mauvais-Jarvis F., Rappaport J., Kolls J.K., Qin X. Endothelial cell infection and dysfunction, immune activation in severe COVID-19. Theranostics. 2021;11(16):8076–8091. doi: 10.7150/thno.61810. [DOI] [PMC free article] [PubMed] [Google Scholar]

