Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Sep 26;78(Pt 10):1044–1047. doi: 10.1107/S2056989022009227

Crystal structure of chlorido­[diphen­yl(thio­phen-2-yl)phosphine-κP]gold(I)

Thomas Neils a, Andrew LaDuca a, John E Bender a, Richard J Staples b, Shannon M Biros a,*
Editor: M Zellerc
PMCID: PMC9535822  PMID: 36250128

The crystal structure of the title gold(I) complex is described. The geometry around the gold atom is nearly linear, and the phospho­rus atom of the ligand adopts a slightly distorted tetra­hedral geometry. The structure features extensive disorder of the thienyl and phenyl groups with the thienyl substituent disordered over all three possible positions. Mol­ecules of the title compound are held together in the solid state via a variety of inter­molecular C—H⋯π inter­actions.

Keywords: crystal structure, gold complex, triaryl phosphine ligand, C—H⋯π inter­action, disorder

Abstract

The crystal structure of the title compound, [AuCl(C16H13PS)], is reported. The mol­ecular structure features a nearly linear arrangement of the chloride and phosphino ligands around the gold(I) center, with a P—Au—Cl bond angle of 179.42 (9)°. The Au—P and Au—Cl bond lengths are 2.226 (2) and 2.287 (2) Å, respectively. The geometry of the groups bonded to the phospho­rus atom of the ligand is a slightly distorted tetra­hedron. The phenyl and thienyl rings of the ligand are extensively disordered, with the thienyl refined over all three possible positions on the phospho­rus atom. The relative occupancy ratio between these positions was found to be 0.406 (3):0.406 (2):0.188 (2). One of the major thienyl ring positions with the relative occupancy of 0.406 was modeled as two rotational isomers around the C—P bond with a relative occupancy ratio of 0.278 (3):0.128 (3). Inter­molecular C—H⋯π inter­actions present in the crystal lattice link mol­ecules of the title compound together to form a complex three-dimensional network.

1. Chemical context

The incorporation of tri­aryl­phosphines as ligands in metal complexes has led to a multitude of species capable of, for example, catalyzing organic transformations, binding to biological targets, and combating cancer. The synthesis of unsymmetric tri­aryl­phosphines has the potential to add additional functionality and selectivity to the resultant metal–ligand complexes. If we consider gold(I)–PAr3 complexes, structural diversity of the phosphine ligand has led to properties such as selective catalysis for cyclo­isomerization reactions (Christian et al., 2017), triboluminescence (Kuchison et al., 2009), and enzyme inhibition (Zhang et al., 2014; Fonteh & Meyer, 2009). To this end, our group has been developing synthetic routes to unsymmetric tri­aryl­phosphines, their chalcogenide derivatives and the resultant metal–ligand complexes (Luster et al., 2022). While attempting to prepare a complex between gold(I) and the selenide derivative of diphenyl-2-thienylphosphine, we isolated single crystals of the title compound as a decomposition product. 1.

2. Structural commentary

The structure of compound I was solved in the ortho­rhom­bic space group P212121 with a Flack parameter of −0.002 (6) (Parsons et al., 2013). The phospho­rus–gold and chloride–gold bond lengths are 2.226 (2) and 2.287 (2) Å, respectively. The phenyl and thienyl rings of the ligand are disordered, with the thienyl ring being distributed over all three possible positions at the P atom. The relative occupancy ratio between these positions was found to be 0.406 (3):0.406 (2):0.188 (2). Furthermore, the thienyl ring position with a relative occupancy of 0.406 (3) was modeled as two rotational isomers around the C—P bond with a relative occupancy ratio of 0.279 (3):0.128 (3) (see the Refinement section for further details of the treatment of the disorder). The atom-labeling scheme for the predominant moiety (Part 1: phenyl rings C1–C6 and C14–C19 as well as thienyl ring S1C and C1C–C4C) is shown in Fig. 1.

Figure 1.

Figure 1

The mol­ecular structure of the title compound I, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level, all hydrogen atoms have been omitted and only the predominant Part 1 is shown for clarity.

The coordination geometry of the gold center is nearly linear with a P1—Au1—Cl1 bond angle of 179.42 (9)°. With regard to the phosphine ligand, for the most prevalent moiety the P—C bond lengths are 1.769 (7), 1.786 (7) and 1.874 (14) Å. The geometry around the phospho­rus atom P1 resembles a tetra­hedron with a τ4 descriptor for fourfold coordination of 0.95 (where 0.00 = square planar, 0.85 = trigonal pyramidal, and 1.00 = tetra­hedral; Yang et al., 2007). The C—P—C bond angles range from 105.3 (6) to 106.9 (11)°, and the Au—P—C bond angles range from 111.9 (5) to 113.6 (3)° for the most prelavent moiety.

3. Supra­molecular features

Individual mol­ecules of the title compound are held together through inter­molecular C—H⋯π inter­actions (Table 1). In Part 1, these inter­actions exist between the C14–C19 phenyl ring and the hydrogen atom C2C(H2C) of the thienyl ring as well as between hydrogen atom C18(H18) and the S1C/C1C–C4C thienyl ring. These inter­molecular C—H⋯π inter­actions link the mol­ecules together to form helices that propagate along the a-axis direction (Fig. 2). The helices are then held together through C—H⋯π inter­actions to form a complex 3D network (Fig. 3). The remainder of the inter­molecular C—H⋯π inter­actions present in this structure are not exclusive to Part 1, and are listed in Table 1.

Table 1. C—H⋯π interactions (Å, °).

Cg1, Cg2, Cg3, and Cg4 are the centroids of the S1C/C1C–C4C, S1D/C1D–C4D, C7–C12, and C14–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2C—H2CCg2i 0.95 2.80 141 4 (1)
C2C—H2CCg4i 0.95 2.79 139 4 (1)
C3D—H3DCg1ii 0.95 2.87 141 4 (1)
C3D—H3DCg3ii 0.95 2.85 141 4 (1)
C8—H8⋯Cg2i 0.95 2.80 131 4 (1)
C8—H8⋯Cg4i 0.95 2.77 130 4 (1)
C18—H18⋯Cg1ii 0.95 2.96 129 4 (1)
C18—H18⋯Cg3ii 0.95 2.95 128 4 (1)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 2.

Figure 2

The C—H⋯π inter­actions (solid, blue lines) found in crystals of the title compound that form helices that run along the a-axis direction, depicted using a ball-and-stick model with standard CPK colors (Au = tan , hydrogen = light pink). The chlorine atoms, phenyl ring C1–C6, and any hydrogen atom not involved in a C—H⋯π inter­action have been omitted for clarity. Only Part 1 is shown. Symmetry codes as in Table 1.

Figure 3.

Figure 3

The crystal packing of the title compound as viewed down the a-axis, depicted using a ball-and-stick model with standard CPK colors (Au = tan , Cl = green, H = light pink). Inter­molecular C—H⋯π inter­actions are shown with solid, blue lines. For clarity any hydrogen atoms not involved in a C—H⋯π inter­action have been omitted. Only Part 1 is shown.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, November, 2020; Groom et al., 2016) for structures containing a P—Au bond where the phospho­rus atom bears one thienyl ring resulted in 14 hits. Structures IHUJUQ (Ho & Tiekink, 2003) and IHUJUQ01 (Monkowius et al., 2003) are closely related to compound I, with a linear arrangement of chloride and one tris­(2-thien­yl)-substituted phosphine ligand bound to a gold(I) atom. Another related structure is IWAYUC (Yang et al., 2016), which contains a di­phenyl­phosphino-3-thienyl-1H-imidazole ligand again bound to a gold(I) atom that also bears a chloride. Finally, structure YAHPUT (Stott et al., 2005) features a terthio­phene-substituted di­phenyl­phosphinogold(I)–chloride complex.

5. Synthesis and crystallization

A small vial was charged with diphen­yl(2-thien­yl)phosphine selenide (10-15 mg; Luster et al., 2022) and a stoichiometric amount of chloro­(tetra­hydro­thio­phene)­gold(I). The solids were dissolved in 1 mL of CDCl3, and the reaction mixture was transferred to an NMR tube. Crystals of compound I were grown serendipitously via slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with U iso(H) = 1.2U eq(C). The electron density corresponding to the disordered phenyl rings and the thienyl ring was modeled over three parts. In the model, electron density corresponding to the thienyl ring was found at three positions on the phospho­rus atom. In one of these positions, the thienyl ring was also found to be present as two rotational isomers corresponding to a 180° rotation around the C—P bond. The relative occupancies of each position of the thienyl ring were refined, while the total occupancy of all thienyl sites as well as the occupancy sum of each site were constrained to unity using SUMP commands. The thienyl occupancy rates refined to be 0.406 (2):0.278 (3):0.128 (3):0.188 (2) for the sites of S1C, S1B, S1A and S1D. Bond lengths and angles of all four thienyl moieties were restrained to be similar to each other using SHELXL (Sheldrick, 2015b ) SAME commands with an esd of 0.001 Å. For the pivot moiety with the highest occupancy (S1C/C1C–C4C), distance restraints were used to ensure a model with bond lengths and angles that agree with known values. Bonds of the thienyl ring were restrained using DFIX commands to be 1.70 (S1C—C1C), 1.34 (C1C—C2C, C3C—C4C) and 1.41 (C2C—C3C) Å with an esd of 0.002 Å in SHELXL (Sheldrick, 2015b ). The less occupied thienyl rings A and B were also restrained to be planar and coplanar with the P atom using FLAT commands. All P1—C ipso distances were restrained to be similar to each other using SADI commands. The atoms of each phenyl ring C1–C6, C7–C13 and C14–C15 were constrained to resemble an ideal hexa­gon with C—C bond lengths of 1.39 Å using SHELXL AFIX 66 commands. Lastly, U ij components of all C, S and P atoms were restrained to be similar to each other for atoms closer than 2.0 Å with an esd of 0.002 Å2.

Table 2. Experimental details.

Crystal data
Chemical formula [AuCl(C16H13PS)]
M r 500.71
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 10.0322 (13), 12.0784 (15), 12.9412 (16)
V3) 1568.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.77
Crystal size (mm) 0.24 × 0.16 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.474, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 13335, 3075, 2854
R int 0.037
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.025, 0.059, 1.08
No. of reflections 3075
No. of parameters 341
No. of restraints 837
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.02, −0.53
Absolute structure Flack x determined using 1149 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.002 (6)

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2019/2 (Sheldrick, 2015b ), CrystalMaker (Palmer, 2007), and OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022009227/zl5036sup1.cif

e-78-01044-sup1.cif (468.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022009227/zl5036Isup2.hkl

e-78-01044-Isup2.hkl (245.8KB, hkl)

CCDC reference: 1848959

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the GVSU Chemistry Department’s Weldon Fund, CSCE and OURS for financial support of this work. The diffractometers at MSU were purchased/upgraded with departmental funds.

supplementary crystallographic information

Crystal data

[AuCl(C16H13PS)] Dx = 2.121 Mg m3
Mr = 500.71 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 8845 reflections
a = 10.0322 (13) Å θ = 2.3–26.0°
b = 12.0784 (15) Å µ = 9.77 mm1
c = 12.9412 (16) Å T = 173 K
V = 1568.1 (3) Å3 Block, clear colourless
Z = 4 0.24 × 0.16 × 0.11 mm
F(000) = 944

Data collection

Bruker APEXII CCD diffractometer 2854 reflections with I > 2σ(I)
φ and ω scans Rint = 0.037
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 26.0°, θmin = 2.3°
Tmin = 0.474, Tmax = 0.745 h = −12→12
13335 measured reflections k = −14→14
3075 independent reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025 H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0234P)2 + 0.2535P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
3075 reflections Δρmax = 1.02 e Å3
341 parameters Δρmin = −0.53 e Å3
837 restraints Absolute structure: Flack x determined using 1149 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dual Absolute structure parameter: −0.002 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Au1 0.33353 (3) 0.56862 (2) 0.75765 (2) 0.03375 (11)
Cl1 0.1218 (2) 0.5105 (2) 0.79464 (19) 0.0511 (6)
P1 0.5388 (2) 0.62695 (16) 0.72152 (16) 0.0324 (4)
C14 0.6564 (8) 0.5173 (6) 0.7053 (6) 0.0351 (9) 0.812 (2)
C15 0.6753 (8) 0.4457 (6) 0.7881 (4) 0.0368 (11) 0.812 (2)
H15 0.627496 0.456824 0.850642 0.044* 0.812 (2)
C16 0.7640 (7) 0.3578 (5) 0.7794 (4) 0.0375 (11) 0.812 (2)
H16 0.776914 0.308886 0.836035 0.045* 0.812 (2)
C17 0.8339 (7) 0.3415 (5) 0.6879 (5) 0.0377 (11) 0.812 (2)
H17 0.894563 0.281466 0.682016 0.045* 0.812 (2)
C18 0.8150 (8) 0.4131 (6) 0.6051 (4) 0.0371 (11) 0.812 (2)
H18 0.862795 0.401984 0.542603 0.045* 0.812 (2)
C19 0.7263 (9) 0.5010 (6) 0.6138 (5) 0.0363 (10) 0.812 (2)
H19 0.713377 0.549922 0.557208 0.044* 0.812 (2)
S1D 0.7040 (12) 0.4155 (10) 0.7816 (9) 0.0374 (10) 0.188 (2)
C1D 0.667 (4) 0.514 (2) 0.6928 (18) 0.0356 (10) 0.188 (2)
C2D 0.744 (4) 0.493 (3) 0.610 (2) 0.0362 (11) 0.188 (2)
H2D 0.746278 0.539222 0.550884 0.043* 0.188 (2)
C3D 0.821 (4) 0.396 (2) 0.6202 (18) 0.0370 (11) 0.188 (2)
H3D 0.869591 0.365043 0.564353 0.044* 0.188 (2)
C4D 0.819 (3) 0.351 (3) 0.7147 (17) 0.0375 (11) 0.188 (2)
H4D 0.873830 0.292031 0.738489 0.045* 0.188 (2)
C7 0.6082 (10) 0.7125 (13) 0.8182 (11) 0.0358 (9) 0.595 (2)
C8 0.5277 (8) 0.7756 (12) 0.8828 (10) 0.0351 (10) 0.595 (2)
H8 0.433508 0.772389 0.876081 0.042* 0.595 (2)
C9 0.5851 (9) 0.8435 (9) 0.9573 (8) 0.0363 (11) 0.595 (2)
H9 0.530123 0.886600 1.001469 0.044* 0.595 (2)
C10 0.7230 (9) 0.8482 (8) 0.9672 (7) 0.0372 (12) 0.595 (2)
H10 0.762189 0.894567 1.018065 0.045* 0.595 (2)
C11 0.8034 (8) 0.7851 (10) 0.9025 (8) 0.0380 (11) 0.595 (2)
H11 0.897640 0.788321 0.909272 0.046* 0.595 (2)
C12 0.7460 (10) 0.7172 (11) 0.8281 (9) 0.0381 (10) 0.595 (2)
H12 0.801027 0.674109 0.783882 0.046* 0.595 (2)
S1A 0.6318 (19) 0.8216 (16) 0.5903 (12) 0.0373 (9) 0.128 (3)
C1A 0.527 (3) 0.712 (2) 0.600 (2) 0.0365 (9) 0.128 (3)
C2A 0.450 (3) 0.714 (3) 0.515 (2) 0.0372 (10) 0.128 (3)
H2A 0.378806 0.663474 0.504209 0.045* 0.128 (3)
C3A 0.482 (3) 0.798 (2) 0.444 (2) 0.0374 (10) 0.128 (3)
H3A 0.438606 0.807240 0.379366 0.045* 0.128 (3)
C4A 0.581 (3) 0.864 (3) 0.4765 (19) 0.0373 (10) 0.128 (3)
H4A 0.616245 0.925573 0.439705 0.045* 0.128 (3)
S1B 0.4495 (10) 0.6766 (7) 0.5027 (7) 0.0381 (9) 0.278 (3)
C1B 0.539 (3) 0.7187 (17) 0.6068 (13) 0.0365 (9) 0.278 (3)
C2B 0.592 (3) 0.8176 (17) 0.5838 (16) 0.0370 (10) 0.278 (3)
H2B 0.639402 0.861263 0.632876 0.044* 0.278 (3)
C3B 0.572 (3) 0.8513 (18) 0.4807 (15) 0.0373 (10) 0.278 (3)
H3B 0.608977 0.916836 0.451653 0.045* 0.278 (3)
C4B 0.496 (3) 0.7797 (15) 0.4285 (15) 0.0374 (10) 0.278 (3)
H4B 0.471660 0.787607 0.357890 0.045* 0.278 (3)
C1 0.5435 (15) 0.7063 (10) 0.6066 (7) 0.0363 (9) 0.594 (3)
C2 0.4658 (12) 0.6722 (8) 0.5236 (8) 0.0376 (9) 0.594 (3)
H2 0.417715 0.604513 0.527384 0.045* 0.594 (3)
C3 0.4584 (10) 0.7370 (8) 0.4351 (7) 0.0377 (10) 0.594 (3)
H3 0.405272 0.713702 0.378334 0.045* 0.594 (3)
C4 0.5288 (11) 0.8360 (7) 0.4295 (6) 0.0371 (10) 0.594 (3)
H4 0.523707 0.880305 0.369030 0.045* 0.594 (3)
C5 0.6065 (11) 0.8701 (7) 0.5126 (7) 0.0373 (10) 0.594 (3)
H5 0.654586 0.937720 0.508777 0.045* 0.594 (3)
C6 0.6139 (14) 0.8052 (10) 0.6011 (7) 0.0372 (9) 0.594 (3)
H6 0.667031 0.828532 0.657829 0.045* 0.594 (3)
S1C 0.7765 (6) 0.7214 (6) 0.8449 (5) 0.0391 (9) 0.406 (2)
C1C 0.6089 (7) 0.716 (2) 0.8269 (19) 0.0359 (9) 0.406 (2)
C2C 0.5458 (15) 0.7872 (18) 0.8898 (16) 0.0353 (11) 0.406 (2)
H2C 0.451912 0.796796 0.892307 0.042* 0.406 (2)
C3C 0.6375 (13) 0.8457 (16) 0.9518 (14) 0.0365 (11) 0.406 (2)
H3C 0.611592 0.898620 1.002304 0.044* 0.406 (2)
C4C 0.7646 (14) 0.8193 (16) 0.9322 (14) 0.0375 (11) 0.406 (2)
H4C 0.838950 0.853177 0.964973 0.045* 0.406 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Au1 0.03260 (17) 0.03393 (17) 0.03470 (17) −0.00391 (13) 0.00094 (16) 0.00163 (15)
Cl1 0.0410 (13) 0.0613 (15) 0.0511 (14) −0.0158 (12) 0.0081 (10) −0.0031 (12)
P1 0.0345 (10) 0.0308 (9) 0.0319 (10) −0.0026 (8) −0.0018 (8) 0.0000 (8)
C14 0.0355 (18) 0.0308 (18) 0.0391 (17) −0.0009 (17) −0.0010 (16) −0.0016 (16)
C15 0.037 (2) 0.032 (2) 0.0414 (19) 0.001 (2) −0.0009 (19) −0.0015 (19)
C16 0.037 (2) 0.033 (2) 0.043 (2) 0.001 (2) 0.000 (2) −0.001 (2)
C17 0.037 (2) 0.033 (2) 0.043 (2) 0.000 (2) −0.001 (2) −0.0026 (19)
C18 0.037 (2) 0.033 (2) 0.042 (2) 0.000 (2) −0.0001 (19) −0.0017 (19)
C19 0.036 (2) 0.032 (2) 0.041 (2) 0.0000 (19) −0.0010 (18) −0.0017 (18)
S1D 0.038 (2) 0.033 (2) 0.0419 (18) 0.0001 (18) −0.0007 (18) −0.0017 (18)
C1D 0.0360 (19) 0.0315 (18) 0.0393 (18) −0.0006 (17) −0.0011 (17) −0.0014 (17)
C2D 0.036 (2) 0.032 (2) 0.041 (2) 0.000 (2) −0.0007 (19) −0.0017 (19)
C3D 0.037 (2) 0.032 (2) 0.042 (2) 0.000 (2) −0.001 (2) −0.002 (2)
C4D 0.037 (2) 0.033 (2) 0.042 (2) 0.000 (2) 0.000 (2) −0.002 (2)
C7 0.0374 (18) 0.0366 (17) 0.0336 (18) −0.0053 (17) −0.0045 (16) 0.0003 (15)
C8 0.037 (2) 0.036 (2) 0.033 (2) −0.005 (2) −0.0052 (19) 0.0002 (18)
C9 0.038 (2) 0.037 (2) 0.034 (2) −0.005 (2) −0.005 (2) −0.0004 (18)
C10 0.039 (2) 0.039 (2) 0.034 (2) −0.006 (2) −0.004 (2) −0.001 (2)
C11 0.039 (2) 0.040 (2) 0.035 (2) −0.006 (2) −0.005 (2) −0.0011 (18)
C12 0.039 (2) 0.0398 (19) 0.035 (2) −0.0060 (19) −0.0055 (19) −0.0005 (17)
S1A 0.0404 (18) 0.0373 (18) 0.0342 (18) −0.0033 (17) −0.0043 (17) 0.0025 (16)
C1A 0.0396 (17) 0.0364 (16) 0.0337 (17) −0.0032 (16) −0.0043 (15) 0.0022 (15)
C2A 0.0405 (18) 0.0372 (18) 0.0339 (18) −0.0033 (17) −0.0049 (17) 0.0024 (16)
C3A 0.0408 (19) 0.0376 (18) 0.0340 (18) −0.0034 (17) −0.0049 (17) 0.0026 (17)
C4A 0.0405 (19) 0.0374 (19) 0.0340 (19) −0.0034 (18) −0.0045 (17) 0.0025 (17)
S1B 0.0414 (18) 0.0384 (17) 0.0344 (18) −0.0036 (16) −0.0055 (16) 0.0027 (15)
C1B 0.0395 (17) 0.0363 (16) 0.0336 (17) −0.0031 (16) −0.0043 (15) 0.0022 (15)
C2B 0.0401 (19) 0.0371 (18) 0.0339 (18) −0.0032 (17) −0.0045 (17) 0.0025 (16)
C3B 0.0406 (19) 0.0374 (18) 0.0340 (19) −0.0034 (18) −0.0046 (17) 0.0026 (17)
C4B 0.0408 (19) 0.0376 (18) 0.0339 (18) −0.0034 (17) −0.0048 (17) 0.0026 (17)
C1 0.0393 (17) 0.0361 (16) 0.0334 (16) −0.0029 (16) −0.0042 (15) 0.0021 (15)
C2 0.0410 (18) 0.0377 (17) 0.0341 (18) −0.0034 (17) −0.0052 (16) 0.0027 (16)
C3 0.0411 (19) 0.0378 (19) 0.0341 (19) −0.0037 (18) −0.0050 (17) 0.0025 (17)
C4 0.040 (2) 0.037 (2) 0.034 (2) −0.0034 (19) −0.0045 (18) 0.0024 (18)
C5 0.0406 (19) 0.0373 (18) 0.0339 (19) −0.0034 (18) −0.0045 (17) 0.0027 (17)
C6 0.0403 (18) 0.0372 (18) 0.0341 (18) −0.0034 (17) −0.0043 (17) 0.0027 (16)
S1C 0.0392 (19) 0.0415 (17) 0.0367 (18) −0.0068 (17) −0.0065 (16) −0.0008 (15)
C1C 0.0373 (18) 0.0367 (17) 0.0337 (18) −0.0054 (17) −0.0048 (17) 0.0002 (16)
C2C 0.037 (2) 0.036 (2) 0.033 (2) −0.005 (2) −0.0052 (19) 0.0000 (18)
C3C 0.038 (2) 0.038 (2) 0.034 (2) −0.006 (2) −0.005 (2) −0.0006 (18)
C4C 0.039 (2) 0.039 (2) 0.035 (2) −0.006 (2) −0.0050 (19) −0.0010 (18)

Geometric parameters (Å, º)

Au1—Cl1 2.287 (2) C11—C12 1.3900
Au1—P1 2.226 (2) C12—H12 0.9500
P1—C14 1.786 (5) S1A—C1A 1.699 (3)
P1—C1D 1.907 (18) S1A—C4A 1.640 (15)
P1—C7 1.766 (7) C1A—C2A 1.342 (3)
P1—C1A 1.881 (18) C2A—H2A 0.9500
P1—C1B 1.852 (16) C2A—C3A 1.410 (3)
P1—C1 1.769 (7) C3A—H3A 0.9500
P1—C1C 1.874 (14) C3A—C4A 1.339 (3)
C14—C15 1.3900 C4A—H4A 0.9500
C14—C19 1.3900 S1B—C1B 1.699 (3)
C15—H15 0.9500 S1B—C4B 1.640 (15)
C15—C16 1.3900 C1B—C2B 1.342 (3)
C16—H16 0.9500 C2B—H2B 0.9500
C16—C17 1.3900 C2B—C3B 1.410 (3)
C17—H17 0.9500 C3B—H3B 0.9500
C17—C18 1.3900 C3B—C4B 1.339 (3)
C18—H18 0.9500 C4B—H4B 0.9500
C18—C19 1.3900 C1—C2 1.3900
C19—H19 0.9500 C1—C6 1.3900
S1D—C1D 1.699 (3) C2—H2 0.9500
S1D—C4D 1.640 (15) C2—C3 1.3900
C1D—C2D 1.342 (3) C3—H3 0.9500
C2D—H2D 0.9500 C3—C4 1.3900
C2D—C3D 1.410 (3) C4—H4 0.9500
C3D—H3D 0.9500 C4—C5 1.3900
C3D—C4D 1.339 (3) C5—H5 0.9500
C4D—H4D 0.9500 C5—C6 1.3900
C7—C8 1.3900 C6—H6 0.9500
C7—C12 1.3900 S1C—C1C 1.699 (3)
C8—H8 0.9500 S1C—C4C 1.640 (15)
C8—C9 1.3900 C1C—C2C 1.342 (3)
C9—H9 0.9500 C2C—H2C 0.9500
C9—C10 1.3900 C2C—C3C 1.410 (3)
C10—H10 0.9500 C3C—H3C 0.9500
C10—C11 1.3900 C3C—C4C 1.339 (3)
C11—H11 0.9500 C4C—H4C 0.9500
P1—Au1—Cl1 179.42 (9) C7—C12—H12 120.0
C14—P1—Au1 113.6 (3) C11—C12—C7 120.0
C14—P1—C1C 105.3 (6) C11—C12—H12 120.0
C1D—P1—Au1 116.0 (12) C4A—S1A—C1A 96.8 (12)
C7—P1—Au1 113.6 (5) S1A—C1A—P1 116.5 (13)
C7—P1—C1D 106.9 (14) C2A—C1A—P1 137.1 (15)
C7—P1—C1B 102.5 (8) C2A—C1A—S1A 106.2 (15)
C1A—P1—Au1 106.8 (9) C1A—C2A—H2A 122.7
C1B—P1—Au1 111.1 (8) C1A—C2A—C3A 115 (2)
C1B—P1—C1D 105.5 (12) C3A—C2A—H2A 122.7
C1—P1—Au1 111.9 (5) C2A—C3A—H3A 123.4
C1—P1—C14 106.6 (6) C4A—C3A—C2A 113 (2)
C1—P1—C1C 106.9 (11) C4A—C3A—H3A 123.4
C1C—P1—Au1 112.1 (6) S1A—C4A—H4A 125.5
C15—C14—P1 117.4 (4) C3A—C4A—S1A 109.0 (19)
C15—C14—C19 120.0 C3A—C4A—H4A 125.5
C19—C14—P1 122.6 (4) C4B—S1B—C1B 95.0 (9)
C14—C15—H15 120.0 S1B—C1B—P1 117.1 (9)
C16—C15—C14 120.0 C2B—C1B—P1 135.4 (10)
C16—C15—H15 120.0 C2B—C1B—S1B 107.5 (12)
C15—C16—H16 120.0 C1B—C2B—H2B 122.9
C15—C16—C17 120.0 C1B—C2B—C3B 114.2 (16)
C17—C16—H16 120.0 C3B—C2B—H2B 122.9
C16—C17—H17 120.0 C2B—C3B—H3B 124.0
C18—C17—C16 120.0 C4B—C3B—C2B 111.9 (18)
C18—C17—H17 120.0 C4B—C3B—H3B 124.0
C17—C18—H18 120.0 S1B—C4B—H4B 124.5
C17—C18—C19 120.0 C3B—C4B—S1B 110.9 (15)
C19—C18—H18 120.0 C3B—C4B—H4B 124.5
C14—C19—H19 120.0 C2—C1—P1 118.3 (6)
C18—C19—C14 120.0 C2—C1—C6 120.0
C18—C19—H19 120.0 C6—C1—P1 121.5 (6)
C4D—S1D—C1D 97.6 (11) C1—C2—H2 120.0
S1D—C1D—P1 121.1 (11) C1—C2—C3 120.0
C2D—C1D—P1 132.8 (13) C3—C2—H2 120.0
C2D—C1D—S1D 106.1 (14) C2—C3—H3 120.0
C1D—C2D—H2D 123.1 C2—C3—C4 120.0
C1D—C2D—C3D 113.7 (18) C4—C3—H3 120.0
C3D—C2D—H2D 123.1 C3—C4—H4 120.0
C2D—C3D—H3D 122.8 C5—C4—C3 120.0
C4D—C3D—C2D 114 (2) C5—C4—H4 120.0
C4D—C3D—H3D 122.8 C4—C5—H5 120.0
S1D—C4D—H4D 126.4 C4—C5—C6 120.0
C3D—C4D—S1D 107.3 (16) C6—C5—H5 120.0
C3D—C4D—H4D 126.4 C1—C6—H6 120.0
C8—C7—P1 121.2 (6) C5—C6—C1 120.0
C8—C7—C12 120.0 C5—C6—H6 120.0
C12—C7—P1 118.8 (6) C4C—S1C—C1C 92.8 (8)
C7—C8—H8 120.0 S1C—C1C—P1 119.5 (8)
C7—C8—C9 120.0 C2C—C1C—P1 129.2 (7)
C9—C8—H8 120.0 C2C—C1C—S1C 111.0 (10)
C8—C9—H9 120.0 C1C—C2C—H2C 124.5
C10—C9—C8 120.0 C1C—C2C—C3C 111.0 (13)
C10—C9—H9 120.0 C3C—C2C—H2C 124.5
C9—C10—H10 120.0 C2C—C3C—H3C 123.4
C11—C10—C9 120.0 C4C—C3C—C2C 113.2 (14)
C11—C10—H10 120.0 C4C—C3C—H3C 123.4
C10—C11—H11 120.0 S1C—C4C—H4C 124.1
C10—C11—C12 120.0 C3C—C4C—S1C 111.8 (12)
C12—C11—H11 120.0 C3C—C4C—H4C 124.1
Au1—P1—C14—C15 −59.1 (5) C7—P1—C1B—S1B −167.2 (16)
Au1—P1—C14—C19 119.9 (4) C7—P1—C1B—C2B 10 (3)
Au1—P1—C7—C8 −27.0 (10) C7—C8—C9—C10 0.0
Au1—P1—C7—C12 153.9 (6) C8—C7—C12—C11 0.0
Au1—P1—C1A—S1A 145.5 (19) C8—C9—C10—C11 0.0
Au1—P1—C1A—C2A −30 (4) C9—C10—C11—C12 0.0
Au1—P1—C1B—S1B −45 (2) C10—C11—C12—C7 0.0
Au1—P1—C1B—C2B 132 (3) C12—C7—C8—C9 0.0
Au1—P1—C1—C2 −39.9 (9) S1A—C1A—C2A—C3A 4 (3)
Au1—P1—C1—C6 134.8 (6) C1A—S1A—C4A—C3A 1 (2)
Au1—P1—C1C—S1C 152.2 (14) C1A—C2A—C3A—C4A −3 (3)
Au1—P1—C1C—C2C −33 (3) C2A—C3A—C4A—S1A 1 (3)
P1—C14—C15—C16 179.0 (7) C4A—S1A—C1A—P1 −179 (3)
P1—C14—C19—C18 −179.0 (7) C4A—S1A—C1A—C2A −3 (2)
P1—C1D—C2D—C3D −177 (4) S1B—C1B—C2B—C3B −7 (2)
P1—C7—C8—C9 −179.1 (13) C1B—P1—C7—C8 93.0 (13)
P1—C7—C12—C11 179.1 (13) C1B—P1—C7—C12 −86.1 (14)
P1—C1A—C2A—C3A 179 (4) C1B—S1B—C4B—C3B −3.7 (17)
P1—C1B—C2B—C3B 176 (3) C1B—C2B—C3B—C4B 4 (3)
P1—C1—C2—C3 174.8 (11) C2B—C3B—C4B—S1B 0 (2)
P1—C1—C6—C5 −174.6 (12) C4B—S1B—C1B—P1 −176 (2)
P1—C1C—C2C—C3C −174 (2) C4B—S1B—C1B—C2B 5.9 (18)
C14—P1—C1—C2 84.9 (8) C1—P1—C14—C15 177.2 (5)
C14—P1—C1—C6 −100.4 (8) C1—P1—C14—C19 −3.8 (7)
C14—P1—C1C—S1C 28 (2) C1—P1—C1C—S1C −84.9 (19)
C14—P1—C1C—C2C −158 (2) C1—P1—C1C—C2C 89 (2)
C14—C15—C16—C17 0.0 C1—C2—C3—C4 0.0
C15—C14—C19—C18 0.0 C2—C1—C6—C5 0.0
C15—C16—C17—C18 0.0 C2—C3—C4—C5 0.0
C16—C17—C18—C19 0.0 C3—C4—C5—C6 0.0
C17—C18—C19—C14 0.0 C4—C5—C6—C1 0.0
C19—C14—C15—C16 0.0 C6—C1—C2—C3 0.0
S1D—C1D—C2D—C3D 4 (4) S1C—C1C—C2C—C3C 0 (2)
C1D—P1—C7—C8 −156.3 (10) C1C—P1—C14—C15 63.9 (11)
C1D—P1—C7—C12 24.6 (12) C1C—P1—C14—C19 −117.1 (10)
C1D—P1—C1B—S1B 81 (2) C1C—P1—C1—C2 −162.9 (7)
C1D—P1—C1B—C2B −101 (3) C1C—P1—C1—C6 11.8 (9)
C1D—S1D—C4D—C3D −6 (3) C1C—S1C—C4C—C3C 2.5 (19)
C1D—C2D—C3D—C4D −9 (5) C1C—C2C—C3C—C4C 1 (2)
C2D—C3D—C4D—S1D 10 (4) C2C—C3C—C4C—S1C −3 (2)
C4D—S1D—C1D—P1 −178 (3) C4C—S1C—C1C—P1 173.6 (19)
C4D—S1D—C1D—C2D 1 (3) C4C—S1C—C1C—C2C −1.6 (19)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg3, and Cg4 are the centroids of the S1C/C1C–C4C, S1D/C1D–C4D, C7–C12, and C14–C19 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C2C—H2C···Cg2i 0.95 2.80 141 4 (1)
C2C—H2C···Cg4i 0.95 2.79 139 4 (1)
C3D—H3D···Cg1ii 0.95 2.87 141 4 (1)
C3D—H3D···Cg3ii 0.95 2.85 141 4 (1)
C8—H8···Cg2i 0.95 2.80 131 4 (1)
C8—H8···Cg4i 0.95 2.77 130 4 (1)
C18—H18···Cg1ii 0.95 2.96 129 4 (1)
C18—H18···Cg3ii 0.95 2.95 128 4 (1)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+3/2, −y+1, z−1/2.

Funding Statement

Funding for this research was provided by: GVSU Office of Undergraduate Research (grant No. MS3 to A. LaDuca).

References

  1. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  2. Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Christian, A. H., Niemeyer, Z. L., Sigman, M. S. & Toste, F. D. (2017). ACS Catal. 7, 3973–3978. [DOI] [PMC free article] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Fonteh, P. & Meyer, D. (2009). Metallomics, 1, 427–433. [DOI] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Ho, S. Y. & Tiekink, E. R. T. (2003). Z. Kristallogr. New Cryst. Struct. 218, 73–74.
  8. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  9. Kuchison, A. M., Wolf, M. O. & Patrick, B. O. (2009). Chem. Commun. pp. 7387–7389. [DOI] [PubMed]
  10. Luster, T., Van de Roovaart, H., Korman, K. J., Sands, G. G., Dunn, K. M., Spyker, A., Staples, R. J., Biros, S. M. & Bender, J. E. (2022). Dalton Trans. 51, 9103–9115. [DOI] [PubMed]
  11. Monkowius, U., Nogai, S. & Schmidbaur, H. (2003). Z. Naturforsch. Teil B, 58, 751–758.
  12. Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Stott, T. L., Wolf, M. O. & Patrick, B. O. (2005). Inorg. Chem. 44, 620–627. [DOI] [PubMed]
  17. Yang, D., Liu, H., Wang, D.-L., Lu, Y., Zhao, X.-L. & Liu, Y. (2016). J. Mol. Catal. A Chem. 424, 323–330.
  18. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]
  19. Zhang, D., Xu, Z., Yuan, J., Zhao, Y.-X., Qiao, Z.-Y., Gao, Y.-J., Yu, G.-A., Li, J. & Wang, H. (2014). J. Med. Chem. 57, 8132–8139. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022009227/zl5036sup1.cif

e-78-01044-sup1.cif (468.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022009227/zl5036Isup2.hkl

e-78-01044-Isup2.hkl (245.8KB, hkl)

CCDC reference: 1848959

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES