Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Sep 27;78(Pt 10):1056–1060. doi: 10.1107/S2056989022009306

Synthesis and structure of clozapine N-oxide hemi(hydro­chloride): an infinite hydrogen-bonded poly[n]catenane

Phillip L van der Peet a, Rohan D Joyce b, Holger Ott c, Sebastian M Marcuccio b, Jonathan M White a,*, Spencer J Williams a
Editor: W T A Harrisond
PMCID: PMC9535830  PMID: 36250113

The recrystallization of clozapine N-oxide hydro­chloride from a range of solvents leads to the loss of half an equivalent of HCl and the formation of single crystals of a hydrogen-bond-linked poly[n]catenane of clozapine N-oxide hemi­hydro­chloride.

Keywords: hydrogen bonding, crystal structure, hydrogen-bonding catenation

Abstract

The structure of the title compound, 2C18H19ClN4O·HCl or (CNO)2·HCl (C36H39Cl3N8O2), at 100 K has tetra­gonal (I4/m) symmetry. The dihedral angle between the benzene rings of the fused ring system of the CNO mol­ecule is 40.08 (6)° and the equivalent angle between the seven-membered ring and its pendant N-oxide ring is 31.14 (7)°. The structure contains a very strong, symmetrical O—H⋯O hydrogen bond [O⋯O = 2.434 (2) Å] between two equivalent R 3N+—O moieties, which share a proton lying on a crystallographic twofold rotation axis. These units then form a (CNO)4·(HCl)2 ring by way of two equivalent N—H⋯Cl hydrogen bonds (Cl site symmetry m). These rings are catenated into infinite chains propagating along the c-axis direction by way of shape complementarity and directional C—H⋯N and C—H⋯π inter­actions.

1. Chemical context

Coordination-driven self-assembly of supra­molecular structures is a major focus area of materials science. However, hydrogen-bond-driven self-assembly has been less well studied, most likely as a consequence of the weakness of hydrogen bonding relative to coordinate bonding. Nevertheless, the directionality of hydrogen bonding can lend it to the controllable formation of supra­molecular networks (González-Rodríguez & Schenning, 2011; Steiner, 2002; Prins et al., 2001). The simplest infinite inter­locking systems are the one-dimensional polycatenanes (poly[n]catenanes). Such systems have been described involving inter­penetrating metallocycles of silver/bis­(2-methyl­imidazol­yl) (Jin et al., 2006, 2008, 2018) and mercury/1,2-bis­[(pyridin-4-yl­thio)­meth­yl]benzene (Xue et al., 2015). However, the lack of many examples beyond these suggests that the self-assembly of this inter­esting topological architecture is not easily achieved. Here, we report the serendipitous discovery of an infinite one-dimensional polycatenane architecture templated by a chloride anion that forms upon the attempted recrystallization of clozapine N-oxide (C18H19ClN4O; hereafter CNO) mono-hydro­chloride, an inactive metabolite of clozapine that is utilized as an actuator of engineered muscarinic acetyl­choline receptors (Armbruster et al., 2007; Urban & Roth, 2015; Dong et al., 2010; Gomez et al., 2017).

As part of efforts to develop a water-soluble salt form of CNO (van der Peet et al., 2018) we synthesized CNO·HBr and CNO·HCl by formation of the salt in methanol (Scheme 1). 1.

The latter compound has been reported previously (Allen et al., 2019), but its preparation was not described. Elemental analysis of the precipitated CNO·HCl was consistent with the proposed structure in Scheme 1. Although crystals suitable for single crystal X-ray analysis were not obtained from the crude precipitate, powder X-ray diffraction of the precipitate suggested the material was substanti­ally crystalline. To obtain structural verification and to locate the site of protonation, we attempted to grow single crystals of CNO·HCl for single crystal X-ray analysis. Slow evaporation of a solution of CNO·HCl from a variety of solvents, or by diffusion of diethyl ether into a variety of solvents consistently yielded small orange block-shaped crystals of the title hemi­hydro­chloride, which were found to be no longer soluble in water or other solvents (Scheme 2). 1.

2. Structural commentary

Single-crystal X-ray diffraction analysis of the orange crystals revealed that the CNO·HCl salt implied by the analysis for the initially formed salt (above) had lost half an equivalent of HCl upon crystallization and crystallized as a hemi­hydro­chloride, (CNO)2·HCl, in the tetra­gonal space group I4/m (Scheme 2 and Fig. 1). In this structure, two mol­ecules of CNO, which are related by a crystallographic twofold axis, share a proton, which is located on the rotation axis and forms a strong, essentially linear and apparently symmetric O—H⋯O/O⋯H—O hydrogen bond between the two mol­ecules via the N-oxide moieties [O1⋯O1i = 2.434 (2) Å; symmetry code (i) −x, 1 − y, z]. Within the structure, the chloride counter-ion (Cl2) is located on a crystallographic mirror plane and accepts equivalent N—H⋯Cl hydrogen bonds [N1⋯Cl2 = 3.3259 (14) Å] to two mirror-related (CNO)2H+ moieties resulting in the formation of a cyclic structure templated by the Cl counter-ions (Fig. 2). The diazepine ring core in (CNO)2·HCl adopts a boat conformation (Table 1) in which the N1(H) group is at the bow and the C7=N2 imine group is the stern. A consequence of the boat conformation is the mean planes of the two fused benzene rings lie at an angle 40.08 (6)° to one another; this represents a less puckered ring to that observed in the (CNO)·MeOH solvate in which the aromatic rings are at an angle of 56.2° (van der Peet et al., 2018) demonstrating the flexibility of this ring system. The equivalent angle between the seven-membered diazepine ring and its pendant N-oxide ring is 31.14 (7)°

Figure 1.

Figure 1

The mol­ecular structure of (CNO)2·HCl showing 50% displacement ellipsoids with C-bound H atoms omitted for clarity. The unlabelled atoms are generated by the symmetry operation −x, 1 − y, z.

Figure 2.

Figure 2

The cyclic tetra­mer (CNO)4·(HCl)2 templated by N—H⋯Cl hydrogen-bonding inter­actions.

Table 1. Selected torsion angles (°).

C8—N1—C1—C2 55.7 (2) C7—N2—C9—C8 33.5 (2)
C9—N2—C7—C2 3.2 (2) C1—N1—C8—C9 −54.0 (2)
N1—C1—C2—C7 0.9 (2) N2—C9—C8—N1 −4.9 (2)
N2—C7—C2—C1 −35.2 (2)    

3. Supra­molecular features

The tetra­meric cyclic structures are catenated and form infinite chains extending along the z-direction (Figs. 3 and 4) in which adjacent links in the chain are related by a 42 screw axis. The catenated rings form both as a result of general complementarity in the shapes of the inter­nal cavities of the inter­acting (CNO)2 dimers related by the symmetry operation ( Inline graphic  − y, Inline graphic  + x, Inline graphic  − z), and further stabilized by four equivalent non-classical hydrogen-bonding inter­actions involving the polarized C—H bond adjacent to the N-oxide moiety; (C15—H15A⋯N1, Table 2) in addition to four equivalent C—H⋯π inter­actions [H15A⋯C8 = 2.706 (2) Å] (Fig. 5). Solvent voids, which account for approximately 17% of the unit-cell volume, lie between the catenated chains: the disordered solvent was accounted for using the Squeeze procedure in PLATON (Spek, 2015). To establish the relationship between the original material and that obtained after crystallization, powder X-ray diffraction data were obtained for the orange crystals and compared to that for the original material (Fig. 6). The two powder diffraction patterns are substanti­ally different, which is consistent with the combustion analysis of the original material that analysed as (CNO)·HCl, whereas the crystallized material is (CNO)2·HCl. Application of the same approach to CNO·HBr did not lead to an equivalent polymeric material.

Figure 3.

Figure 3

Partial structure of (CNO)2·HCl catenated chain showing two members of the poly[n]catenane; adjacent links in the chain are related by a 42 screw axis.

Figure 4.

Figure 4

Partial structure of (CNO)2·HCl catenated chain showing three members of the poly[n]catenane; adjacent links in the chain are related by a 42 screw axis.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O1i 1.22 (1) 1.22 (1) 2.434 (2) 179 (4)
N1—H1⋯Cl2 0.86 (2) 2.46 (2) 3.3259 (14) 176 (2)
C15—H15A⋯O1i 0.97 2.64 3.2598 (19) 122
C15—H15A⋯N1ii 0.97 2.51 3.416 (2) 156
C15—H15B⋯Cl1iii 0.97 2.91 3.8431 (17) 162

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 5.

Figure 5

C—H⋯N and C—H⋯π inter­actions at the inter­face of neighbouring tetra­meric (CNO)4·(HCl) rings in the poly[n]catenane.

Figure 6.

Figure 6

Overlay of powder patterns of the initial precipitate of (CNO)·HCl and the recrystallized material (CNO)2·HCl.

4. Database survey

The formation of strong hydrogen bonds is predicted to occur when the pK a value for the donor acid matches that for the acceptor’s conjugate acid form (Gilli et al., 2009). In this structure, a strong hydrogen bond between a protonated tertiary amine N-oxide and its conjugate base is predicted. A search of the Cambridge Structural Database (2022.2.0, September 2022; Groom et al., 2016) for structures containing the R 3N—OH⋯O—NR 3 moiety with constraints on the R factor to 5% or less and only organic structures surveyed gave eight good-quality structures (CSD refcodes: RAJDAL (Bettencourt et al., 2021), AJESEQ (Wlaźlak et al., 2018), AREREW (Moore et al., 2016), BAYDEK (Jaskólski et al., 1982), EPSPOX (Małuszyńska & Okaya, 1977), FUBMAS (Moore et al., 2015), NUCDUK (Krzywda et al., 1996) and OBECUV (Bohmer et al., 2011): these structures are characterized by O⋯O distances ranging from 2.426–2.445 Å, which is comparable to the O⋯O distance of 2.434 (2) Å in this structure, thus all can be classified as strong O—H⋯O hydrogen bonds as predicted.

5. Synthesis and crystallization

Preparation of clozapine N-oxide hydro­chloride (CNO·HCl)

A 250 ml round-bottom flask was charged with clozapine N-oxide (5.00 g, 0.015 mol) and methanol (50 ml) and stirred under N2. Initially, the solid dissolved but then precipitated as a presumed CNO·methano­late adduct. A solution of HCl in ethyl acetate (2.8 M, 6 ml, 0.017 mol, 1.1 eq) was added slowly to the suspension. After 10 min the solid dissolved, and then precipitated as a faint yellow solid. The suspension was stirred for 1 h, then the solid was collected by filtration, and washed with ethyl acetate to afford CNO·HCl as a yellow solid (2.2 g, 39%). Degradation point: 473–478 K (corrected); 1H NMR (400 MHz, CD3OD) δ 3.35–3.45 (m, 6 H), 3.65–3.80 (m, 4 H), 3.95 (br s, 2 H), 6.83 (d, J 8.4 Hz, 1 H), 6.87 (d, J 2.4, 8.4 Hz, 1 H), 6.97 (dd, J = 2.4 Hz, 1H), 7.01 (dd, J 1.0, 8.0 Hz, 1H), 7.06 (dt, J 1.1, 7.6 Hz, 1H), 7.33 (dd, J 1.4, 7.8 Hz, 1H), 7.37 (dt, J 1.5, 6.4 Hz, 1H); 13C NMR (100 MHz, CD3OD) δ 43.1, 58.9, 65.3, 121.5, 121.6, 123.6, 124.3, 125.1, 127.4, 129.6, 131.2, 133.9, 142.5, 143.1, 155.5, 164.0. Elemental analysis: calculated for C18H20Cl2N4O: C 57.0, H 5.3, N 14.8. Found: C 56.8, H 5.6, N 14.8.

Preparation of clozapine N-oxide hemi­hydro­chloride (CNO)2·HCl

The above material (CNO·HCl) was recrystallized by diffusion of diethyl ether into a methanol solution giving (CNO)2·HCl as small orange blocks.

Preparation of clozapine N-oxide hydro­bromide

A 25 ml round-bottom flask was charged with clozapine N-oxide (1.00 g, 2.92 mmol, 1 eq.) and methanol (5 ml) and stirred under N2. Initially, the solid dissolved but then precipitated as a presumed CNO·methano­late adduct. The solution was cooled in an ice–water bath and 48% HBr in water (0.35 ml, 3.07 mmol, 1.05 eq) was added slowly to the suspension. The mixture stirred for 1 h at rt, without formation of a precipitate. The solvent was evaporated and the residue suspended in EtOAc (10 ml). The resulting solid was collected by filtration and washed with EtOAc to afford CNO·HBr as a yellow solid (1.1 g, 89%). Degradation point: 483–493 K (corrected); 1H NMR (400 MHz, CD3OD) δ 3.68 (s, 3 H), 3.87 (br d, J 11.6 Hz, 2 H), 3.9–4.2 (m, 6 H), 7.01 (d, J 8.6 Hz, 1 H), 7.13–7.23 (m, 3 H), 7.27 (br s, 1 H), 7.53–7.60 (m, 2 H); 13C NMR (100 MHz, CD3OD) δ 44.7, 57.8, 57.9, 64.6, 64.7, 122.6, 124.9, 125.0, 126.7, 126.8, 128.4, 130.0, 133.1, 136.5, 145.9, 156.4.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Regions of the unit cell occupied by disordered solvent (1409 Å3; ≃ 18.1% of the unit-cell volume) were processed with the Squeeze algorithm in PLATON (Spek, 2015); the stated composition, density, etc. do not take account of the solvent.

Table 3. Experimental details.

Crystal data
Chemical formula 2C18H19ClN4O·HCl
M r 722.10
Crystal system, space group Tetragonal, I4/m
Temperature (K) 100
a, c (Å) 17.305 (2), 26.040 (5)
V3) 7798 (3)
Z 8
Radiation type Synchrotron, λ = 0.710757 Å
μ (mm−1) 0.28
Crystal size (mm) 0.06 × 0.05 × 0.04
 
Data collection
Diffractometer ADSC Quantum 210r
No. of measured, independent and observed [I > 2σ(I)] reflections 66433, 5901, 5096
R int 0.049
(sin θ/λ)max−1) 0.741
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.138, 1.03
No. of reflections 5901
No. of parameters 231
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.81, −0.49

Computer programs: AS QEGUI, XDS (Kabsch, 1993), SHELXT (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022009306/hb8039sup1.cif

e-78-01056-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022009306/hb8039Isup2.hkl

e-78-01056-Isup2.hkl (470.3KB, hkl)

CCDC reference: 2208459

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Australian Synchrotron Collaborative Access Program is thanked for beamtime on MX1.

supplementary crystallographic information

Crystal data

2C18H19ClN4O·HCl Dx = 1.230 Mg m3
Mr = 722.10 Synchrotron radiation, λ = 0.710757 Å
Tetragonal, I4/m Cell parameters from 5908 reflections
a = 17.305 (2) Å θ = 1.4–31.8°
c = 26.040 (5) Å µ = 0.28 mm1
V = 7798 (3) Å3 T = 100 K
Z = 8 Block, yellow
F(000) = 3024 0.06 × 0.05 × 0.04 mm

Data collection

ADSC Quantum 210r diffractometer 5096 reflections with I > 2σ(I)
Radiation source: MX1 Beamline Australian Synchrotron Rint = 0.049
Silicon Double Crystal monochromator θmax = 31.8°, θmin = 1.4°
ω Scan scans h = −25→25
66433 measured reflections k = −25→25
5901 independent reflections l = −36→36

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0661P)2 + 11.4576P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.138 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.81 e Å3
5901 reflections Δρmin = −0.49 e Å3
231 parameters Extinction correction: SHELXL2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0069 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.13932 (3) 0.04426 (2) 0.37292 (2) 0.03680 (13)
Cl2 0.16534 (4) 0.44691 (3) 0.500000 0.03563 (15)
O1 0.02559 (6) 0.43450 (7) 0.13599 (5) 0.0285 (2)
N3 0.17304 (7) 0.39022 (7) 0.21729 (5) 0.0225 (2)
N2 0.15846 (7) 0.30145 (7) 0.28157 (5) 0.0228 (2)
N1 0.18161 (8) 0.38441 (8) 0.37970 (5) 0.0261 (3)
N4 0.10378 (8) 0.43810 (8) 0.12165 (5) 0.0248 (3)
C1 0.23713 (9) 0.42470 (8) 0.35074 (6) 0.0242 (3)
C7 0.18814 (8) 0.36630 (8) 0.26780 (5) 0.0216 (3)
C2 0.24220 (8) 0.41696 (8) 0.29712 (6) 0.0228 (3)
C10 0.15645 (9) 0.18517 (9) 0.32919 (6) 0.0252 (3)
H10 0.150809 0.159189 0.298148 0.030*
C14 0.14157 (9) 0.46872 (8) 0.21112 (6) 0.0239 (3)
H14A 0.170572 0.504443 0.232387 0.029*
H14B 0.088144 0.469610 0.222369 0.029*
C9 0.16811 (8) 0.26540 (8) 0.32932 (6) 0.0228 (3)
C16 0.13708 (9) 0.35868 (9) 0.12884 (6) 0.0254 (3)
H16A 0.190585 0.358444 0.117741 0.030*
H16B 0.108830 0.322118 0.107741 0.030*
C15 0.14617 (9) 0.49399 (8) 0.15559 (6) 0.0245 (3)
H15A 0.123725 0.545067 0.152003 0.029*
H15B 0.199875 0.496810 0.145089 0.029*
C3 0.29823 (9) 0.46033 (9) 0.27067 (6) 0.0256 (3)
H3 0.302804 0.454729 0.235282 0.031*
C11 0.15328 (9) 0.14442 (9) 0.37477 (6) 0.0291 (3)
C5 0.33991 (10) 0.52005 (10) 0.34901 (7) 0.0317 (3)
H5 0.371497 0.554918 0.366272 0.038*
C8 0.17647 (9) 0.30343 (9) 0.37683 (6) 0.0253 (3)
C17 0.13260 (9) 0.33393 (8) 0.18470 (5) 0.0237 (3)
H17A 0.078931 0.330314 0.195175 0.028*
H17B 0.156037 0.283374 0.188721 0.028*
C6 0.28604 (9) 0.47695 (10) 0.37606 (6) 0.0291 (3)
H6 0.282259 0.482756 0.411475 0.035*
C4 0.34685 (9) 0.51128 (9) 0.29616 (7) 0.0294 (3)
H4 0.383731 0.539293 0.278039 0.035*
C13 0.17144 (12) 0.26047 (10) 0.42216 (6) 0.0352 (4)
H13 0.176053 0.285737 0.453531 0.042*
C12 0.15973 (11) 0.18114 (10) 0.42162 (7) 0.0361 (4)
H12 0.156323 0.153376 0.452117 0.043*
C18 0.10927 (11) 0.46237 (11) 0.06669 (6) 0.0345 (4)
H18A 0.079973 0.427372 0.045739 0.052*
H18B 0.162386 0.461630 0.056060 0.052*
H18C 0.088990 0.513702 0.062973 0.052*
H1 0.1789 (13) 0.3988 (13) 0.4114 (9) 0.037 (6)*
H1A 0.000000 0.500000 0.1357 (17) 0.077 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0421 (2) 0.02417 (19) 0.0442 (2) 0.00136 (15) 0.01026 (17) 0.00663 (15)
Cl2 0.0513 (4) 0.0331 (3) 0.0224 (2) 0.0004 (2) 0.000 0.000
O1 0.0225 (5) 0.0313 (6) 0.0318 (6) −0.0003 (4) −0.0012 (4) 0.0007 (4)
N3 0.0265 (6) 0.0200 (5) 0.0210 (5) −0.0002 (4) −0.0015 (4) −0.0017 (4)
N2 0.0234 (6) 0.0225 (5) 0.0224 (5) 0.0017 (4) 0.0001 (4) −0.0013 (4)
N1 0.0321 (7) 0.0252 (6) 0.0211 (6) 0.0006 (5) 0.0007 (5) −0.0034 (4)
N4 0.0263 (6) 0.0271 (6) 0.0210 (6) −0.0012 (5) 0.0007 (4) −0.0003 (4)
C1 0.0234 (6) 0.0237 (6) 0.0256 (7) 0.0024 (5) −0.0024 (5) −0.0013 (5)
C7 0.0216 (6) 0.0219 (6) 0.0214 (6) 0.0025 (5) 0.0000 (5) −0.0024 (5)
C2 0.0219 (6) 0.0214 (6) 0.0249 (6) 0.0018 (5) −0.0018 (5) −0.0015 (5)
C10 0.0234 (6) 0.0241 (7) 0.0282 (7) 0.0020 (5) 0.0025 (5) 0.0007 (5)
C14 0.0272 (7) 0.0211 (6) 0.0233 (6) 0.0015 (5) −0.0014 (5) −0.0014 (5)
C9 0.0203 (6) 0.0236 (6) 0.0246 (6) 0.0021 (5) 0.0006 (5) 0.0006 (5)
C16 0.0286 (7) 0.0256 (7) 0.0220 (6) −0.0001 (6) 0.0009 (5) −0.0028 (5)
C15 0.0264 (7) 0.0228 (6) 0.0241 (6) −0.0020 (5) −0.0011 (5) 0.0003 (5)
C3 0.0239 (6) 0.0236 (6) 0.0293 (7) 0.0010 (5) 0.0000 (5) −0.0010 (5)
C11 0.0286 (7) 0.0238 (7) 0.0349 (8) 0.0030 (6) 0.0051 (6) 0.0046 (6)
C5 0.0275 (7) 0.0284 (7) 0.0392 (9) −0.0019 (6) −0.0071 (6) −0.0053 (6)
C8 0.0258 (7) 0.0257 (7) 0.0245 (7) 0.0022 (5) −0.0009 (5) 0.0001 (5)
C17 0.0275 (7) 0.0230 (6) 0.0205 (6) −0.0010 (5) −0.0005 (5) −0.0027 (5)
C6 0.0294 (7) 0.0304 (7) 0.0274 (7) 0.0016 (6) −0.0056 (6) −0.0055 (6)
C4 0.0233 (7) 0.0262 (7) 0.0387 (8) −0.0019 (5) −0.0006 (6) −0.0014 (6)
C13 0.0494 (10) 0.0340 (8) 0.0224 (7) 0.0029 (7) −0.0001 (7) 0.0013 (6)
C12 0.0477 (10) 0.0327 (8) 0.0279 (8) 0.0034 (7) 0.0032 (7) 0.0070 (6)
C18 0.0464 (9) 0.0368 (8) 0.0203 (7) −0.0016 (7) 0.0000 (6) 0.0033 (6)

Geometric parameters (Å, º)

Cl1—C11 1.7506 (17) C9—C8 1.409 (2)
O1—N4 1.4051 (17) C16—C17 1.518 (2)
O1—H1A 1.2169 (12) C16—H16A 0.9700
N3—C7 1.4035 (18) C16—H16B 0.9700
N3—C17 1.4692 (18) C15—H15A 0.9700
N3—C14 1.4723 (18) C15—H15B 0.9700
N2—C7 1.2852 (19) C3—C4 1.388 (2)
N2—C9 1.4012 (19) C3—H3 0.9300
N1—C1 1.406 (2) C11—C12 1.380 (2)
N1—C8 1.406 (2) C5—C6 1.386 (2)
N1—H1 0.86 (2) C5—C4 1.390 (2)
N4—C18 1.494 (2) C5—H5 0.9300
N4—C15 1.5016 (19) C8—C13 1.398 (2)
N4—C16 1.502 (2) C17—H17A 0.9700
C1—C6 1.403 (2) C17—H17B 0.9700
C1—C2 1.405 (2) C6—H6 0.9300
C7—C2 1.492 (2) C4—H4 0.9300
C2—C3 1.406 (2) C13—C12 1.388 (3)
C10—C11 1.382 (2) C13—H13 0.9300
C10—C9 1.403 (2) C12—H12 0.9300
C10—H10 0.9300 C18—H18A 0.9600
C14—C15 1.513 (2) C18—H18B 0.9600
C14—H14A 0.9700 C18—H18C 0.9600
C14—H14B 0.9700
N4—O1—H1A 107.9 (6) N4—C15—H15A 109.5
C7—N3—C17 115.75 (12) C14—C15—H15A 109.5
C7—N3—C14 116.31 (11) N4—C15—H15B 109.5
C17—N3—C14 111.87 (11) C14—C15—H15B 109.5
C7—N2—C9 126.07 (13) H15A—C15—H15B 108.1
C1—N1—C8 120.58 (13) C4—C3—C2 121.53 (15)
C1—N1—H1 114.0 (15) C4—C3—H3 119.2
C8—N1—H1 109.5 (15) C2—C3—H3 119.2
O1—N4—C18 109.17 (12) C12—C11—C10 121.41 (15)
O1—N4—C15 110.03 (11) C12—C11—Cl1 119.43 (13)
C18—N4—C15 110.59 (12) C10—C11—Cl1 119.16 (13)
O1—N4—C16 107.20 (11) C6—C5—C4 120.17 (15)
C18—N4—C16 110.61 (12) C6—C5—H5 119.9
C15—N4—C16 109.18 (12) C4—C5—H5 119.9
C6—C1—C2 119.37 (14) C13—C8—N1 119.28 (14)
C6—C1—N1 118.67 (14) C13—C8—C9 119.13 (15)
C2—C1—N1 121.88 (13) N1—C8—C9 121.24 (13)
N2—C7—N3 116.40 (13) N3—C17—C16 110.00 (12)
N2—C7—C2 128.37 (13) N3—C17—H17A 109.7
N3—C7—C2 115.03 (12) C16—C17—H17A 109.7
C1—C2—C3 118.60 (14) N3—C17—H17B 109.7
C1—C2—C7 121.68 (13) C16—C17—H17B 109.7
C3—C2—C7 119.68 (13) H17A—C17—H17B 108.2
C11—C10—C9 120.58 (14) C5—C6—C1 120.92 (15)
C11—C10—H10 119.7 C5—C6—H6 119.5
C9—C10—H10 119.7 C1—C6—H6 119.5
N3—C14—C15 110.58 (12) C3—C4—C5 119.38 (15)
N3—C14—H14A 109.5 C3—C4—H4 120.3
C15—C14—H14A 109.5 C5—C4—H4 120.3
N3—C14—H14B 109.5 C12—C13—C8 121.79 (16)
C15—C14—H14B 109.5 C12—C13—H13 119.1
H14A—C14—H14B 108.1 C8—C13—H13 119.1
N2—C9—C10 114.92 (13) C11—C12—C13 118.44 (15)
N2—C9—C8 125.70 (13) C11—C12—H12 120.8
C10—C9—C8 118.63 (13) C13—C12—H12 120.8
N4—C16—C17 110.97 (12) N4—C18—H18A 109.5
N4—C16—H16A 109.4 N4—C18—H18B 109.5
C17—C16—H16A 109.4 H18A—C18—H18B 109.5
N4—C16—H16B 109.4 N4—C18—H18C 109.5
C17—C16—H16B 109.4 H18A—C18—H18C 109.5
H16A—C16—H16B 108.0 H18B—C18—H18C 109.5
N4—C15—C14 110.53 (12)
C8—N1—C1—C6 −127.64 (15) C18—N4—C15—C14 −179.16 (13)
C8—N1—C1—C2 55.7 (2) C16—N4—C15—C14 −57.23 (15)
C9—N2—C7—N3 177.72 (13) N3—C14—C15—N4 57.38 (16)
C9—N2—C7—C2 3.2 (2) C1—C2—C3—C4 −1.4 (2)
C17—N3—C7—N2 −6.69 (19) C7—C2—C3—C4 176.48 (14)
C14—N3—C7—N2 127.72 (14) C9—C10—C11—C12 1.4 (2)
C17—N3—C7—C2 168.54 (12) C9—C10—C11—Cl1 −179.55 (11)
C14—N3—C7—C2 −57.05 (17) C1—N1—C8—C13 132.81 (16)
C6—C1—C2—C3 2.0 (2) C1—N1—C8—C9 −54.0 (2)
N1—C1—C2—C3 178.72 (13) N2—C9—C8—C13 168.37 (15)
C6—C1—C2—C7 −175.82 (13) C10—C9—C8—C13 −1.2 (2)
N1—C1—C2—C7 0.9 (2) N2—C9—C8—N1 −4.9 (2)
N2—C7—C2—C1 −35.2 (2) C10—C9—C8—N1 −174.45 (14)
N3—C7—C2—C1 150.21 (14) C7—N3—C17—C16 −166.50 (12)
N2—C7—C2—C3 146.92 (15) C14—N3—C17—C16 57.13 (16)
N3—C7—C2—C3 −27.63 (19) N4—C16—C17—N3 −57.28 (16)
C7—N3—C14—C15 166.35 (12) C4—C5—C6—C1 −0.8 (2)
C17—N3—C14—C15 −57.55 (16) C2—C1—C6—C5 −1.0 (2)
C7—N2—C9—C10 −156.61 (14) N1—C1—C6—C5 −177.76 (15)
C7—N2—C9—C8 33.5 (2) C2—C3—C4—C5 −0.3 (2)
C11—C10—C9—N2 −170.69 (14) C6—C5—C4—C3 1.4 (2)
C11—C10—C9—C8 0.0 (2) N1—C8—C13—C12 174.49 (17)
O1—N4—C16—C17 −61.75 (15) C9—C8—C13—C12 1.1 (3)
C18—N4—C16—C17 179.32 (13) C10—C11—C12—C13 −1.5 (3)
C15—N4—C16—C17 57.41 (16) Cl1—C11—C12—C13 179.46 (14)
O1—N4—C15—C14 60.16 (15) C8—C13—C12—C11 0.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O1i 1.22 (1) 1.22 (1) 2.434 (2) 179 (4)
N1—H1···Cl2 0.86 (2) 2.46 (2) 3.3259 (14) 176 (2)
C15—H15A···O1i 0.97 2.64 3.2598 (19) 122
C15—H15A···N1ii 0.97 2.51 3.416 (2) 156
C15—H15B···Cl1iii 0.97 2.91 3.8431 (17) 162

Symmetry codes: (i) −x, −y+1, z; (ii) −y+1/2, x+1/2, −z+1/2; (iii) −x+1/2, −y+1/2, −z+1/2.

Funding Statement

Funding for this research was provided by: Australian Research Council (award No. DP160100597; award No. DP180101957); Australian Synchrotron (grant No. 13618b).

References

  1. Allen, D. C., Carlson, T. L., Xiong, Y., Jin, J., Grant, K. A. & Cuzon Carlson, V. C. (2019). J. Pharmacol. Exp. Ther. 368, 199–207. [DOI] [PMC free article] [PubMed]
  2. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. (2007). Proc. Natl Acad. Sci. USA, 104, 5163–5168. [DOI] [PMC free article] [PubMed]
  3. Bettencourt, C. J., Chow, S., Moore, P. W., Read, C. D. G., Jiao, Y., Bakker, J. P., Zhao, S., Bernhardt, P. V. & Williams, C. M. (2021). Aust. J. Chem. 74, 652–659.
  4. Bohmer, V., Brusko, V. & Bolte, M. (2011). Private Communication (refcode OBECUV). CCDC, Cambridge, England. https://doi.org/10.5517/ccx8ltk
  5. Dong, S., Allen, J. A., Farrell, M. & Roth, B. L. (2010). Mol. BioSyst. 6, 1376–1380. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Gilli, P., Pretto, V., Bertolasi, V. & Gilli, G. (2009). Acc. Chem. Res. 42, 33–44. [DOI] [PubMed]
  8. Gomez, J. L., Bonaventura, J., Lesniak, W., Mathews, W. B., Sysa-Shah, P., Rodriguez, L. A., Ellis, R. J., Richie, C. T., Harvey, B. K., Dannals, R. F., Pomper, M. G., Bonci, A. & Michaelides, M. (2017). Science, 357, 503–507. [DOI] [PMC free article] [PubMed]
  9. González-Rodríguez, D. & Schenning, A. P. H. J. (2011). Chem. Mater. 23, 310–325.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Jaskólski, M., Olovsson, I., Tellgren, R. & Mickiewicz-Wichłacz, D. (1982). Acta Cryst. B38, 291–294.
  12. Jin, C. M., Lu, H., Wu, L. Y. & Huang, J. (2006). Chem. Commun. pp. 5039–5041. [DOI] [PubMed]
  13. Jin, C.-M., Wu, L.-Y., Lu, H. & Xu, Y. (2008). Cryst. Growth Des. 8, 215–218.
  14. Jin, T., Zhou, J., Pan, Y., Huang, Y. & Jin, C. (2018). J. Mol. Struct. 1160, 222–226.
  15. Kabsch, W. (1993). J. Appl. Cryst. 26, 795–800.
  16. Krzywda, S., Jaskólski, M., Gdaniec, M., Dega-Szafran, Z., Grundwald-Wyspiańska, M., Szafran, M., Dauter, Z. & Davies, G. (1996). J. Mol. Struct. 375, 197–206.
  17. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  18. Małuszyńska, H. & Okaya, Y. (1977). Acta Cryst. B33, 3049–3054.
  19. Moore, P. W., Jiao, Y., Mirzayans, P. M., Sheng, L. N. Q., Hooker, J. P. & Williams, C. M. (2016). Eur. J. Org. Chem. pp. 3401–3407.
  20. Moore, P. W., Mirzayans, P. M. & Williams, C. M. (2015). Chem. Eur. J. 21, 3567–3571. [DOI] [PubMed]
  21. Peet, P. L. van der, Gunawan, C., Abdul-Ridha, A., Ma, S., Scott, D. J., Gundlach, A. L., Bathgate, R. A. D., White, J. M. & Williams, S. J. (2018). MethodsX, 5, 257–267. [DOI] [PMC free article] [PubMed]
  22. Prins, L. J., Reinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. 40, 2382–2426. [DOI] [PubMed]
  23. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  24. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  25. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  26. Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.
  27. Urban, D. J. & Roth, B. L. (2015). Annu. Rev. Pharmacol. Toxicol. 55, 399–417. [DOI] [PubMed]
  28. Wlaźlak, E., Kalinowska-Tłuścik, J., Nitek, W., Klejna, S., Mech, K., Macyk, W. & Szaciłowski, K. (2018). ChemElectroChem, 5, 3486–3497.
  29. Xue, H., Jiang, F., Chen, Q., Yuan, D., Pang, J., Lv, G., Wan, X., Liang, L. & Hong, M. (2015). Chem. Commun. 51, 13706–13709. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022009306/hb8039sup1.cif

e-78-01056-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022009306/hb8039Isup2.hkl

e-78-01056-Isup2.hkl (470.3KB, hkl)

CCDC reference: 2208459

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES