Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Sep 22;78(Pt 10):1028–1033. doi: 10.1107/S2056989022009008

Synthesis and crystal structures of 1-benzoyl-4-(4-nitro­phen­yl)piperazine and 1-(4-bromo­benzo­yl)-4-phenyl­piperazine at 90 K

Sreeramapura D Archana a, Haruvegowda Kiran Kumar a, Holehundi J Shankara Prasad b, Hemmige S Yathirajan a,*, Sean Parkin c
Editor: B Therriend
PMCID: PMC9535836  PMID: 36250114

The syntheses and low-temperature (90 K) crystal structures of 1-benzoyl-4-(4-nitro­phen­yl)piperazine and 1-(4-bromo­benzo­yl)phenyl­piperazine are presented.

Keywords: piperazine, crystal structure, absolute structure, aggregate crystal

Abstract

Synthesis and crystal structures of 1-benzoyl-4-(4-nitro­phen­yl)piperazine, C17H17N3O3, (I) and 1-(4-bromo­benzo­yl)-4-phenyl­piperazine, C17H17BrN2O, (II) are described. Compounds I and II crystallize in the ortho­rhom­bic and monoclinic crystal systems with space groups Pna21 (Z′ = 2, I) and P21 (Z′ = 1, II), respectively. The crystal of II was a two-component aggregate, treated as a ‘twin’ for data-acquisition purposes. There are no conventional hydrogen bonds in either I or II, but there are weaker C—H⋯O contacts. Each mol­ecule consists of a central piperazine ring in a chair conformation, with either benzoyl and nitro­phenyl (I) or 4-bromo­benzoyl and phenyl (II) groups attached to different nitro­gen atoms of the piperazine. The various atom–atom contact coverages as qu­anti­fied by Hirshfeld surface analysis fingerprint plots are given.

1. Chemical context

Piperazines are important pharmacophores that are found in many biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005; Brockunier et al., 2004; Bogatcheva et al., 2006) such as anti­fungal (Upadhayaya et al., 2004), anti-bacterial, anti-malarial and anti-psychotic agents (Chaudhary et al., 2006). The pharmacological properties of phenyl­piperazines and their derivatives have been described by Cohen et al. (1982), Conrado et al. (2008), Neves et al. (2003), and by Hanano et al. (2000). The design and synthesis of phenyl­piperazine derivatives as potent anti­cancer agents for prostate cancer have been described by Demirci et al. (2019). Many pharmaceutical compounds are derived from 1-phenyl­piperazine, viz., oxypertine, trazodone, nefazodone, etc. Valuable insights into recent advances in anti­microbial activity of piperazine derivatives have been provided by Kharb et al. (2012). A review of current pharmacological and toxicological information for piperazine derivatives was conducted by Elliott (2011).

4-Nitro­phenyl­piperazinium chloride monohydrate has been used as an inter­mediate in the synthesis of anti­cancer drugs, transcriptase inhibitors and anti­fungal reagents, and is also an important reagent for potassium channel openers, which show considerable biomolecular current-voltage rectification characteristics (Lu, 2007). The inclusion behaviours of 4-sulf­on­ato­calix[n]arenes (SCXn) (n = 4, 6, 8) with 1-(4-nitro­phen­yl)piperazine (NPP) were investigated by UV and fluorescence spectroscopies at different pH values (Zhang et al., 2014). The design, synthesis and biological profiling of aryl piperazine-based scaffolds for the management of androgen-sensitive prostatic disorders has also been reported by Gupta et al. (2016). 4-Nitro­phenyl­piperazine was the starting material in the synthesis and biological evaluation of novel piperazine containing hydrazone derivatives (Kaya et al., 2016).

In view of the importance of piperazines in general and the use of 4-nitro­phenyl­piperazine and 1-phenyl­piperazine in particular, this paper reports the synthesis and crystal structures of 1-benzoyl-4-(4-nitro­phen­yl)piperazine, C17H17N3O3, (I) and 1-(4-bromo­benzo­yl)phenyl­piperazine, C17H17BrN2O, (II). 1.

2. Structural commentary

There are no unusual bond distances or angles in either I or II. The asymmetric unit of I (see scheme) contains two mol­ecules, suffixed ‘A’ and ‘B’ in Fig. 1. Each consists of a central piperazine ring in a chair conformation, with a benzoyl and nitro­phenyl group attached to different nitro­gen atoms. The nitro groups are almost coplanar with their attached benzene rings, forming dihedral angles of 4.4 (2) and 3.0 (2)° for mol­ecules A and B, respectively. The phenyl rings are twisted out of planarity with the carbonyl group and its linkage to the piperazine rings, giving N1—C11—C12—C13 torsion angles of −46.8 (3) and 45.4 (3)° for A and B, respectively. The dihedral angles between the phenyl and nitro­benzene rings are 51.52 (6)° in A and 57.23 (7)° in B. Compound II on the other hand has just one mol­ecule in its asymmetric unit (Fig. 2). The piperazine ring is also in a chair conformation and the brominated ring is torsioned [N1—C11—C12—C13 = 46.4 (4)°] to a similar degree to that in I, but the dihedral angle between the phenyl and brominated benzene rings is larger, at 86.6 (1)°.

Figure 1.

Figure 1

An ellipsoid plot (50% probability) of I showing the two mol­ecules in the asymmetric unit.

Figure 2.

Figure 2

An ellipsoid plot (50% probability) of II.

3. Supra­molecular features

There are no conventional hydrogen bonds in either I or II, but there are weaker C—H⋯O contacts (Table 1). For I, SHELXL identifies a number of ‘potential’ hydrogen-bonding inter­actions, but most of these have poor geometry for hydrogen bonds. The shortest donor–acceptor distances occur for the bifurcated pair C6B—H6B⋯O1A and C7B—H7B⋯O1A within the chosen asymmetric unit. A similar bifurcated pair of contacts C6A—H6A⋯O1B i and C7A—H7A⋯O1B i [symmetry code: (i) x, y, z + 1] occur between the A and B mol­ecules in adjacent (along c) asymmetric units. In combination, these inter­actions lead to double chains that extend parallel to [001] (Fig. 3). In contrast to I, SHELXL identifies no ‘potential’ hydrogen bonds for II. Mercury (Macrae et al., 2020) on the other hand, which has different default parameters for flagging hydrogen bonds, identifies a bifurcated pair, C13—H13⋯O1ii and C14—H14⋯O1ii [symmetry code: (ii) x, y + 1, z] (Table 1). A clearer picture of this inter­action is provided by a view of the Hirshfeld surface plotted over d norm, as calculated by CrystalExplorer (Spackman et al., 2021), which highlights contacts shorter than the van der Waals radius sum as red blobs (Fig. 4). This bifurcated pair of inter­actions link mol­ecules of II into chains that extend along [010]. The various atom–atom contacts as qu­anti­fied in Hirshfeld surface analysis fingerprint plots are given in Figs. 5 and 6.

Table 1. Short inter­molecular C—H⋯O contacts (Å, °) in I and II .

D—H⋯A D—H H⋯A DA D—H⋯A
I        
C6B—H6B⋯O1A 0.95 2.50 3.140 (2) 124.5
C7B—H7B⋯O1A 0.95 2.58 3.171 (2) 120.3
C6A—H6A⋯O1B i 0.95 2.47 3.173 (2) 131.0
C7A—H7A⋯O1B i 0.95 2.78 3.317 (2) 116.8
         
II        
C13—H13⋯O1ii 0.95 2.60 3.018 (4) 107.3
C14—H14⋯O1ii 0.95 2.68 3.052 (4) 104.0

Symmetry codes: (i) x, y, z + 1; (ii) x, y − 1, z

Figure 3.

Figure 3

A partial packing plot of I, showing close contacts (dashed lines) that connect the mol­ecules into chains parallel to the c-axis.

Figure 4.

Figure 4

A partial packing plot of II, showing the Hirshfeld surface of the central mol­ecule, highlighting (red blobs) the bifurcated close contacts (dashed lines) that join the mol­ecules into chains parallel to the b-axis.

Figure 5.

Figure 5

Hirshfeld surface analysis fingerprint plots showing the relative coverage of different atom-atom contacts in I: (a) H⋯H = 38.3%, (b) O⋯H/H⋯O = 28.8%, (c) C⋯H/H⋯C = 24.1%, (d) N⋯H/H⋯N = 4.1%, (e) C⋯O/O.·C = 2.4%, (f) C⋯C = 1.8%. All other contacts are negligible.

Figure 6.

Figure 6

Hirshfeld surface analysis fingerprint plots showing the relative coverage of different atom-atom contacts in II: (a) H⋯H = 45.5%, (b) C⋯H/H⋯C = 26.8, (c) Br⋯H/H⋯Br = 12.6%, (d) O⋯H/H⋯O = 7.1%, (e) N⋯H/H.·N = 3.1%, (f) O⋯Br/Br⋯O = 1.7%, (g) Br⋯Br = 1.1%, (h) C⋯Br/Br⋯C = 1.0%, (i) C⋯O/O⋯C = 0.8%. All other contacts are negligible.

4. Database survey

There are numerous crystal structures related to I and II in the Cambridge Structure Database (CSD v5.42 with updates through June 2022; Groom et al., 2016). A search on the central core, piperazine-1-carbaldehyde gave 834 hits whereas search fragments 4-benzoyl­piperazine and 4-phenyl­piperazine-1-carbaldehyde gave 132 and 110 hits, respectively. A search on 1-benzoyl-4-phenyl­piperazine gave 20 hits, two of which have little in common with I or II. An NMR-based investigation of conformational behaviour in solution by Wodtke et al. (2018) of acyl-functionalized piperazines includes the crystal structures of 1-(4-fluoro­benzo­yl)-4-(4-nitro­phen­yl)piperazine (BIQYIM), 1-(4-bromo­benzo­yl)-4-(4-nitro­phen­yl)piperazine (BIRHES), and 1-(3-bromo­benzo­yl)-4-(4-nitro­phen­yl)piperazine (BIRHIW). Six new 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines (VONFOW, VONGAJ, VONGEN, VONGIR, VONGOX, VONGUD) were prepared using coupling reactions between benzoic acids and N-(4-meth­oxy­phen­yl)piperazine (Kiran Kumar et al., 2019). Six 1-halobenzoyl-4-(2-meth­oxy­phen­yl)piperazines (FALHEJ, FALHIN, FALHOT, FALHUZ, FALJAH, FALJEL) with a variety of disorder, pseudosymmetry and twinning were described by Harish Chinthal et al. (2021). 1-(3,5-Di­nitro­benzo­yl)-4-(2-meth­oxy­phen­yl)piperazine (LAHBIJ) was published by Harish Chinthal et al. (2020). The remaining two hits are piperazine derivatives with (2-meth­oxy­phenyl­sulfan­yl)benzoyl groups plus 2,3-di­chloro­phenyl (DEGHAZ: Chu et al., 2006) and 2-meth­oxy­phenyl (SAYYEX: Li et al., 2006).

5. Synthesis and crystallization

Synthetic routes for compounds similar to I and II have already been reported by two separate research groups (Kumari et al., 2015; Wodtke et al., 2018). The present syntheses are totally different from those earlier reports. 1-(3-Di­methyl­amino­prop­yl)-3-ethyl­carbodi­imide hydro­chloride (109 mg, 0.7 mmol), 1-hy­droxy­benzotriazole (68 mg, 0.5 mmol) and tri­ethyl­amine (0.5 ml, 1.5 mmol) were added to a solution of benzoic acid (0.5 mmol) or 4-bromo­benzoic acid (0.5 mmol) in N,N-di­methyl­formamide (5 ml) and the resulting mixture was stirred for 20 min at 273 K. A solution of 1-(4-nitro­phen­yl)piperazine (104 mg, 0.5 mmol) or 1-phenyl­piperazine (81 mg, 0.5 mmol) in N,N-di­methyl­formamide (5 ml) was then added and stirring was continued overnight at ambient temperature. Reaction schemes are summarized in Fig. 7. When the reactions were confirmed to be complete using thin-layer chromatography, each mixture was quenched with water (10 ml) and extracted with ethyl acetate (20 ml). Each organic fraction was separated and washed successively with an aqueous hydro­chloric acid solution (1 mol dm−3), a saturated solution of sodium hydrogencarbonate, and lastly with brine. The organic phases were dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethyl acetate (I: yield 81%, m.p. 428–430 K; II: yield 75%, m.p. 394–396 K).

Figure 7.

Figure 7

Reaction schemes for the synthesis of I and II. EDC·HCl = 1-(3-di­methyl­amino­prop­yl)-3-ethyl­carbodi­imide hydro­chloride, HOBt = 1-hy­droxy­benzotriazole, TEA = tri­ethyl­amine, DMF = di­methyl­formamide.

6. Data collection and structure refinement

For I, an orange, irregular block-shaped crystal was mounted using polyisobutene oil on the tip of a fine glass fibre in a copper mounting pin. Cu radiation was chosen to facilitate setting the correct absolute structure, which was definitively established by variants of Flack’s parameter (Flack & Bernardinelli, 1999; Hooft et al., 2008; Parsons et al., 2013). For II, the available sample consisted of colourless plates, none of which were single crystals. A suitable specimen was mounted in the same way as for I. Diffraction data collected at 90 K showed two slightly mis-aligned, but sharp and distinct reciprocal lattices. These were not related by any rational twin operation, but by a seemingly arbitrary ∼4° rotation, presumably due to mis-stacking of aggregated plates. Nevertheless, for data acquisition and processing, facilities for handling twinning by non-merohedry were used. For a brief discussion of true twins vs aggregates, see Parkin (2021). The absolute structure was again determined unambiguously via the Flack parameter and related methods. Crystal data, data collection and refinement statistics are summarized in Table 2. For both structures, hydrogen atoms were included using riding models, with constrained distances set to 0.95 Å (Csp 2H) and 0.99 Å (R 2CH2). U iso(H) parameters were set to 1.2U eq of the attached atom.

Table 2. Experimental details.

  I II
Crystal data
Chemical formula C17H17N3O3 C17H17BrN2O
M r 311.33 345.23
Crystal system, space group Orthorhombic, P n a21 Monoclinic, P21
Temperature (K) 90 90
a, b, c (Å) 18.7779 (4), 10.0699 (2), 15.7288 (3) 7.5162 (3), 6.1125 (2), 15.7249 (5)
α, β, γ (°) 90, 90, 90 90, 98.625 (1), 90
V3) 2974.18 (10) 714.28 (4)
Z 8 2
Radiation type Cu Kα Mo Kα
μ (mm−1) 0.80 2.88
Crystal size (mm) 0.24 × 0.18 × 0.12 0.35 × 0.20 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture dual source Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (TWINABS; Sheldrick, 2012)
T min, T max 0.854, 0.942 0.568, 0.806
No. of measured, independent and observed [I > 2σ(I)] reflections 24139, 5684, 5575 6918, 6918, 6410
R int 0.027 0.065
(sin θ/λ)max−1) 0.625 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.028, 0.075, 1.04 0.023, 0.049, 1.04
No. of reflections 5684 6918
No. of parameters 416 191
No. of restraints 1 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.16 0.29, −0.22
Absolute structure Flack x determined using 2442 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 1306 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.01 (5) 0.012 (4)

Computer programs: APEX3 (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2019/2 (Sheldrick, 2015b ), SHELXTL and XP in SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989022009008/tx2058sup1.cif

e-78-01028-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022009008/tx2058Isup2.hkl

e-78-01028-Isup2.hkl (452.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022009008/tx2058IIsup3.hkl

e-78-01028-IIsup3.hkl (549.6KB, hkl)

CCDC references: 2205954, 2205953

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

One of the authors (SDA) is grateful to the University of Mysore for research facilities.

supplementary crystallographic information

1-Benzoyl-4-(4-nitrophenyl)piperazine (I). Crystal data

C17H17N3O3 Dx = 1.391 Mg m3
Mr = 311.33 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pna21 Cell parameters from 9920 reflections
a = 18.7779 (4) Å θ = 4.4–74.3°
b = 10.0699 (2) Å µ = 0.80 mm1
c = 15.7288 (3) Å T = 90 K
V = 2974.18 (10) Å3 Cut block, orange
Z = 8 0.24 × 0.18 × 0.12 mm
F(000) = 1312

1-Benzoyl-4-(4-nitrophenyl)piperazine (I). Data collection

Bruker D8 Venture dual source diffractometer 5684 independent reflections
Radiation source: microsource 5575 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1 Rint = 0.027
φ and ω scans θmax = 74.5°, θmin = 4.7°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −23→23
Tmin = 0.854, Tmax = 0.942 k = −12→11
24139 measured reflections l = −17→19

1-Benzoyl-4-(4-nitrophenyl)piperazine (I). Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.6857P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.18 e Å3
5684 reflections Δρmin = −0.15 e Å3
416 parameters Extinction correction: SHELXL2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.0022 (4)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack x determined using 2442 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.01 (5)

1-Benzoyl-4-(4-nitrophenyl)piperazine (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

1-Benzoyl-4-(4-nitrophenyl)piperazine (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.49268 (7) 0.25685 (14) 0.56553 (9) 0.0244 (3)
O2A 0.68624 (9) 0.60163 (17) 1.17477 (10) 0.0361 (4)
O3A 0.76060 (9) 0.73323 (17) 1.11319 (11) 0.0414 (4)
N1A 0.55858 (8) 0.41895 (16) 0.62597 (10) 0.0210 (3)
N2A 0.61000 (8) 0.49591 (17) 0.78914 (10) 0.0195 (3)
N3A 0.71215 (9) 0.65057 (17) 1.11034 (11) 0.0261 (4)
C1A 0.62179 (10) 0.5034 (2) 0.63281 (12) 0.0214 (4)
H1AA 0.607617 0.597868 0.628176 0.026*
H1AB 0.654911 0.483266 0.585577 0.026*
C2A 0.65919 (10) 0.48038 (19) 0.71744 (12) 0.0207 (4)
H2AA 0.679576 0.389723 0.718316 0.025*
H2AB 0.698868 0.544445 0.723448 0.025*
C3A 0.55049 (10) 0.4032 (2) 0.78203 (12) 0.0210 (4)
H3AA 0.517626 0.415436 0.830622 0.025*
H3AB 0.568435 0.310825 0.783299 0.025*
C4A 0.51124 (10) 0.4282 (2) 0.69932 (12) 0.0226 (4)
H4AA 0.472393 0.362465 0.693253 0.027*
H4AB 0.489499 0.517774 0.700923 0.027*
C5A 0.6365 (1) 0.52962 (18) 0.86888 (12) 0.0185 (4)
C6A 0.61095 (10) 0.4696 (2) 0.94373 (13) 0.0212 (4)
H6A 0.576303 0.401156 0.939965 0.025*
C7A 0.63554 (10) 0.5089 (2) 1.02259 (13) 0.0224 (4)
H7A 0.618067 0.467679 1.072742 0.027*
C8A 0.68595 (10) 0.6092 (2) 1.02784 (13) 0.0210 (4)
C9A 0.71253 (10) 0.67057 (19) 0.95518 (13) 0.0204 (4)
H9A 0.746997 0.739266 0.959720 0.025*
C10A 0.68827 (10) 0.63056 (19) 0.87663 (12) 0.0196 (4)
H10A 0.706667 0.671542 0.826856 0.024*
C11A 0.54106 (10) 0.33847 (18) 0.55996 (12) 0.0193 (4)
C12A 0.58053 (10) 0.35251 (18) 0.47737 (12) 0.0192 (4)
C13A 0.59294 (11) 0.47549 (19) 0.43979 (13) 0.0217 (4)
H13A 0.580037 0.554491 0.468986 0.026*
C14A 0.62417 (11) 0.4834 (2) 0.35964 (13) 0.0248 (4)
H14A 0.632511 0.567619 0.334269 0.030*
C15A 0.64312 (11) 0.3679 (2) 0.31679 (13) 0.0245 (4)
H15A 0.664928 0.373155 0.262397 0.029*
C16A 0.6302 (1) 0.24515 (19) 0.35343 (12) 0.0235 (4)
H16A 0.643110 0.166306 0.324057 0.028*
C17A 0.59843 (10) 0.23706 (19) 0.43299 (12) 0.0216 (4)
H17A 0.588821 0.152610 0.457348 0.026*
O1B 0.51435 (8) 0.27356 (15) 0.05162 (9) 0.0293 (3)
O2B 0.33405 (8) −0.06911 (15) 0.67739 (9) 0.0282 (3)
O3B 0.26109 (8) −0.20433 (15) 0.61629 (10) 0.0329 (4)
N1B 0.45677 (9) 0.11868 (16) 0.12905 (11) 0.0228 (4)
N2B 0.40172 (9) 0.04918 (17) 0.29159 (10) 0.0217 (3)
N3B 0.30667 (8) −0.11612 (16) 0.61295 (11) 0.0224 (3)
C1B 0.41561 (12) −0.0033 (2) 0.14059 (13) 0.0253 (4)
H1BA 0.448370 −0.078227 0.151953 0.030*
H1BB 0.388941 −0.023286 0.087827 0.030*
C2B 0.36400 (11) 0.0112 (2) 0.21386 (13) 0.0234 (4)
H2BA 0.328046 0.079722 0.199825 0.028*
H2BB 0.338820 −0.073922 0.223114 0.028*
C3B 0.44607 (11) 0.1676 (2) 0.28017 (13) 0.0233 (4)
H3BA 0.473969 0.183527 0.332597 0.028*
H3BB 0.415063 0.245682 0.270653 0.028*
C4B 0.49644 (10) 0.1524 (2) 0.20567 (13) 0.0250 (4)
H4BA 0.522715 0.236492 0.196672 0.030*
H4BB 0.531553 0.081701 0.218093 0.030*
C5B 0.37409 (10) 0.01813 (18) 0.37065 (13) 0.0188 (4)
C6B 0.40552 (10) 0.06711 (19) 0.44607 (13) 0.0217 (4)
H6B 0.442914 0.130351 0.442141 0.026*
C7B 0.38332 (10) 0.02550 (19) 0.52486 (13) 0.0199 (4)
H7B 0.405633 0.058671 0.574731 0.024*
C8B 0.32797 (10) −0.0655 (2) 0.53103 (13) 0.0215 (4)
C9B 0.29260 (11) −0.1085 (2) 0.45864 (14) 0.0291 (5)
H9B 0.252897 −0.166422 0.463589 0.035*
C10B 0.31504 (11) −0.0671 (2) 0.37969 (13) 0.0286 (5)
H10B 0.290331 −0.096502 0.330455 0.034*
C11B 0.46938 (10) 0.1852 (2) 0.05581 (13) 0.0220 (4)
C12B 0.42532 (10) 0.15513 (18) −0.02141 (13) 0.0221 (4)
C13B 0.35132 (11) 0.14223 (19) −0.01901 (14) 0.0256 (4)
H13B 0.327087 0.142772 0.034009 0.031*
C14B 0.31314 (12) 0.1286 (2) −0.09407 (15) 0.0306 (5)
H14B 0.262847 0.118875 −0.091983 0.037*
C15B 0.34732 (13) 0.1291 (2) −0.17155 (15) 0.0322 (5)
H15B 0.320685 0.120065 −0.222572 0.039*
C16B 0.42102 (13) 0.1427 (2) −0.17482 (14) 0.0299 (5)
H16B 0.444836 0.143404 −0.228106 0.036*
C17B 0.45955 (11) 0.15539 (19) −0.10018 (14) 0.0256 (4)
H17B 0.509876 0.164349 −0.102622 0.031*

1-Benzoyl-4-(4-nitrophenyl)piperazine (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0266 (7) 0.0212 (7) 0.0255 (7) −0.0069 (5) −0.0025 (6) −0.0020 (6)
O2A 0.0437 (9) 0.0473 (10) 0.0173 (7) −0.0087 (7) −0.0004 (7) −0.0012 (7)
O3A 0.0493 (9) 0.0485 (10) 0.0263 (8) −0.0226 (8) −0.0077 (8) −0.0045 (8)
N1A 0.0202 (8) 0.0234 (8) 0.0195 (8) −0.0048 (6) 0.0003 (6) −0.0035 (7)
N2A 0.0180 (7) 0.0237 (9) 0.0169 (8) −0.0036 (6) 0.0013 (6) −0.0035 (6)
N3A 0.0289 (8) 0.0304 (9) 0.0189 (8) −0.0013 (7) −0.0027 (7) −0.0021 (7)
C1A 0.0228 (9) 0.0241 (10) 0.0173 (10) −0.0060 (7) 0.0006 (7) −0.0028 (7)
C2A 0.0190 (9) 0.0244 (9) 0.0188 (10) −0.0021 (7) 0.0013 (7) −0.0036 (8)
C3A 0.0188 (8) 0.0249 (10) 0.0194 (9) −0.0062 (7) 0.0018 (7) −0.0022 (8)
C4A 0.0193 (9) 0.0273 (10) 0.0213 (10) −0.0036 (7) 0.0013 (8) −0.0043 (8)
C5A 0.0170 (8) 0.0199 (9) 0.0185 (9) 0.0025 (7) 0.0000 (7) −0.0021 (7)
C6A 0.0198 (9) 0.0218 (9) 0.0219 (10) −0.0022 (7) 0.0009 (8) −0.0001 (8)
C7A 0.0235 (9) 0.0255 (10) 0.0183 (9) 0.0000 (8) 0.0033 (8) 0.0008 (8)
C8A 0.0212 (9) 0.0243 (10) 0.0175 (9) 0.0027 (7) −0.0005 (7) −0.0035 (8)
C9A 0.0181 (8) 0.0200 (9) 0.0232 (10) −0.0010 (7) −0.0013 (8) −0.0019 (8)
C10A 0.0194 (9) 0.0213 (9) 0.0182 (9) 0.0004 (7) 0.0018 (7) 0.0008 (7)
C11A 0.0215 (9) 0.0170 (9) 0.0193 (9) 0.0016 (7) −0.0053 (7) 0.0004 (7)
C12A 0.0206 (9) 0.0187 (9) 0.0183 (9) 0.0000 (7) −0.0064 (7) −0.0027 (7)
C13A 0.0262 (9) 0.0198 (9) 0.0192 (9) 0.0008 (7) −0.0034 (8) −0.0007 (7)
C14A 0.027 (1) 0.0231 (10) 0.0243 (11) −0.0019 (8) −0.0061 (8) 0.0034 (8)
C15A 0.0224 (10) 0.0327 (11) 0.0185 (10) 0.0009 (8) −0.0033 (7) −0.0007 (8)
C16A 0.0233 (9) 0.0255 (10) 0.0218 (11) 0.0043 (8) −0.0047 (8) −0.0055 (8)
C17A 0.0244 (9) 0.0188 (9) 0.0215 (10) 0.0008 (7) −0.0058 (7) −0.0001 (7)
O1B 0.0278 (7) 0.0310 (8) 0.0290 (8) −0.0081 (6) 0.0022 (6) 0.0076 (6)
O2B 0.0288 (7) 0.0390 (8) 0.0169 (7) −0.0015 (6) −0.0034 (6) −0.0029 (6)
O3B 0.0366 (8) 0.0368 (8) 0.0255 (8) −0.0143 (7) 0.0050 (7) −0.0004 (7)
N1B 0.0261 (8) 0.0203 (8) 0.0221 (9) −0.0031 (7) 0.0031 (6) 0.0008 (7)
N2B 0.0228 (8) 0.0239 (8) 0.0183 (8) −0.0061 (7) −0.0002 (6) −0.0008 (6)
N3B 0.0220 (7) 0.0263 (8) 0.0189 (8) 0.0012 (6) 0.0009 (7) −0.0011 (7)
C1B 0.0353 (11) 0.0183 (9) 0.0224 (10) −0.0035 (8) 0.0039 (8) −0.0009 (7)
C2B 0.0285 (10) 0.024 (1) 0.0176 (10) −0.0089 (8) 0.0001 (8) −0.0007 (8)
C3B 0.0253 (9) 0.0245 (10) 0.0203 (10) −0.0070 (8) 0.0000 (8) −0.0004 (8)
C4B 0.0220 (9) 0.0263 (10) 0.0266 (11) −0.0026 (7) −0.0001 (8) 0.0035 (8)
C5B 0.0186 (9) 0.0188 (9) 0.0189 (9) 0.0028 (7) −0.0006 (7) −0.0011 (7)
C6B 0.0200 (8) 0.0214 (9) 0.0236 (9) −0.0025 (7) −0.0005 (8) −0.0024 (8)
C7B 0.0199 (9) 0.0204 (10) 0.0194 (9) 0.0003 (7) −0.0035 (7) −0.0041 (7)
C8B 0.0209 (9) 0.0248 (10) 0.0187 (9) 0.0004 (8) 0.0019 (7) −0.0014 (8)
C9B 0.0268 (10) 0.0377 (12) 0.0227 (10) −0.0135 (9) 0.0010 (9) −0.0025 (9)
C10B 0.0263 (10) 0.0397 (12) 0.0197 (10) −0.0116 (9) −0.0011 (8) −0.0035 (9)
C11B 0.0206 (9) 0.0196 (9) 0.0257 (10) 0.0019 (7) 0.0052 (8) 0.0007 (8)
C12B 0.0269 (10) 0.0136 (9) 0.0258 (10) 0.0013 (7) 0.0041 (8) 0.0028 (7)
C13B 0.0264 (10) 0.0194 (10) 0.0311 (12) 0.0011 (8) 0.0035 (8) −0.0021 (8)
C14B 0.0300 (11) 0.022 (1) 0.0398 (12) −0.0012 (8) −0.0013 (10) −0.0051 (9)
C15B 0.0452 (13) 0.0194 (10) 0.0319 (12) 0.0013 (9) −0.0079 (10) −0.0056 (9)
C16B 0.0457 (13) 0.0185 (10) 0.0256 (11) 0.0027 (8) 0.0056 (9) −0.0001 (8)
C17B 0.0299 (10) 0.0180 (9) 0.0289 (11) 0.0043 (8) 0.0065 (9) 0.0025 (8)

1-Benzoyl-4-(4-nitrophenyl)piperazine (I). Geometric parameters (Å, º)

O1A—C11A 1.228 (2) O1B—C11B 1.228 (2)
O2A—N3A 1.228 (2) O2B—N3B 1.231 (2)
O3A—N3A 1.234 (2) O3B—N3B 1.235 (2)
N1A—C11A 1.358 (2) N1B—C11B 1.354 (3)
N1A—C4A 1.459 (2) N1B—C4B 1.457 (3)
N1A—C1A 1.464 (2) N1B—C1B 1.462 (2)
N2A—C5A 1.391 (2) N2B—C5B 1.383 (3)
N2A—C3A 1.460 (2) N2B—C2B 1.464 (2)
N2A—C2A 1.466 (2) N2B—C3B 1.465 (2)
N3A—C8A 1.449 (3) N3B—C8B 1.442 (3)
C1A—C2A 1.523 (3) C1B—C2B 1.513 (3)
C1A—H1AA 0.9900 C1B—H1BA 0.9900
C1A—H1AB 0.9900 C1B—H1BB 0.9900
C2A—H2AA 0.9900 C2B—H2BA 0.9900
C2A—H2AB 0.9900 C2B—H2BB 0.9900
C3A—C4A 1.516 (3) C3B—C4B 1.514 (3)
C3A—H3AA 0.9900 C3B—H3BA 0.9900
C3A—H3AB 0.9900 C3B—H3BB 0.9900
C4A—H4AA 0.9900 C4B—H4BA 0.9900
C4A—H4AB 0.9900 C4B—H4BB 0.9900
C5A—C6A 1.407 (3) C5B—C10B 1.409 (3)
C5A—C10A 1.412 (3) C5B—C6B 1.414 (3)
C6A—C7A 1.381 (3) C6B—C7B 1.373 (3)
C6A—H6A 0.9500 C6B—H6B 0.9500
C7A—C8A 1.386 (3) C7B—C8B 1.389 (3)
C7A—H7A 0.9500 C7B—H7B 0.9500
C8A—C9A 1.392 (3) C8B—C9B 1.388 (3)
C9A—C10A 1.377 (3) C9B—C10B 1.376 (3)
C9A—H9A 0.9500 C9B—H9B 0.9500
C10A—H10A 0.9500 C10B—H10B 0.9500
C11A—C12A 1.502 (3) C11B—C12B 1.500 (3)
C12A—C13A 1.392 (3) C12B—C17B 1.396 (3)
C12A—C17A 1.397 (3) C12B—C13B 1.396 (3)
C13A—C14A 1.393 (3) C13B—C14B 1.388 (3)
C13A—H13A 0.9500 C13B—H13B 0.9500
C14A—C15A 1.391 (3) C14B—C15B 1.377 (3)
C14A—H14A 0.9500 C14B—H14B 0.9500
C15A—C16A 1.385 (3) C15B—C16B 1.392 (4)
C15A—H15A 0.9500 C15B—H15B 0.9500
C16A—C17A 1.389 (3) C16B—C17B 1.385 (3)
C16A—H16A 0.9500 C16B—H16B 0.9500
C17A—H17A 0.9500 C17B—H17B 0.9500
C11A—N1A—C4A 119.69 (15) C11B—N1B—C4B 119.94 (16)
C11A—N1A—C1A 126.84 (16) C11B—N1B—C1B 127.86 (17)
C4A—N1A—C1A 113.47 (15) C4B—N1B—C1B 111.31 (16)
C5A—N2A—C3A 119.91 (16) C5B—N2B—C2B 120.68 (15)
C5A—N2A—C2A 119.61 (16) C5B—N2B—C3B 120.49 (16)
C3A—N2A—C2A 110.80 (15) C2B—N2B—C3B 112.64 (16)
O2A—N3A—O3A 122.22 (18) O2B—N3B—O3B 122.08 (17)
O2A—N3A—C8A 119.29 (16) O2B—N3B—C8B 118.93 (15)
O3A—N3A—C8A 118.49 (17) O3B—N3B—C8B 118.99 (17)
N1A—C1A—C2A 110.46 (16) N1B—C1B—C2B 110.61 (16)
N1A—C1A—H1AA 109.6 N1B—C1B—H1BA 109.5
C2A—C1A—H1AA 109.6 C2B—C1B—H1BA 109.5
N1A—C1A—H1AB 109.6 N1B—C1B—H1BB 109.5
C2A—C1A—H1AB 109.6 C2B—C1B—H1BB 109.5
H1AA—C1A—H1AB 108.1 H1BA—C1B—H1BB 108.1
N2A—C2A—C1A 111.44 (16) N2B—C2B—C1B 110.58 (16)
N2A—C2A—H2AA 109.3 N2B—C2B—H2BA 109.5
C1A—C2A—H2AA 109.3 C1B—C2B—H2BA 109.5
N2A—C2A—H2AB 109.3 N2B—C2B—H2BB 109.5
C1A—C2A—H2AB 109.3 C1B—C2B—H2BB 109.5
H2AA—C2A—H2AB 108.0 H2BA—C2B—H2BB 108.1
N2A—C3A—C4A 109.37 (16) N2B—C3B—C4B 111.59 (17)
N2A—C3A—H3AA 109.8 N2B—C3B—H3BA 109.3
C4A—C3A—H3AA 109.8 C4B—C3B—H3BA 109.3
N2A—C3A—H3AB 109.8 N2B—C3B—H3BB 109.3
C4A—C3A—H3AB 109.8 C4B—C3B—H3BB 109.3
H3AA—C3A—H3AB 108.2 H3BA—C3B—H3BB 108.0
N1A—C4A—C3A 111.81 (15) N1B—C4B—C3B 110.14 (16)
N1A—C4A—H4AA 109.3 N1B—C4B—H4BA 109.6
C3A—C4A—H4AA 109.3 C3B—C4B—H4BA 109.6
N1A—C4A—H4AB 109.3 N1B—C4B—H4BB 109.6
C3A—C4A—H4AB 109.3 C3B—C4B—H4BB 109.6
H4AA—C4A—H4AB 107.9 H4BA—C4B—H4BB 108.1
N2A—C5A—C6A 121.83 (17) N2B—C5B—C10B 121.57 (18)
N2A—C5A—C10A 119.99 (17) N2B—C5B—C6B 121.25 (16)
C6A—C5A—C10A 118.13 (17) C10B—C5B—C6B 117.15 (18)
C7A—C6A—C5A 120.95 (17) C7B—C6B—C5B 121.61 (17)
C7A—C6A—H6A 119.5 C7B—C6B—H6B 119.2
C5A—C6A—H6A 119.5 C5B—C6B—H6B 119.2
C6A—C7A—C8A 119.36 (19) C6B—C7B—C8B 119.45 (18)
C6A—C7A—H7A 120.3 C6B—C7B—H7B 120.3
C8A—C7A—H7A 120.3 C8B—C7B—H7B 120.3
C7A—C8A—C9A 121.29 (19) C9B—C8B—C7B 120.44 (19)
C7A—C8A—N3A 119.65 (18) C9B—C8B—N3B 119.34 (17)
C9A—C8A—N3A 119.06 (17) C7B—C8B—N3B 120.22 (17)
C10A—C9A—C8A 119.21 (17) C10B—C9B—C8B 119.97 (18)
C10A—C9A—H9A 120.4 C10B—C9B—H9B 120.0
C8A—C9A—H9A 120.4 C8B—C9B—H9B 120.0
C9A—C10A—C5A 121.06 (18) C9B—C10B—C5B 121.08 (19)
C9A—C10A—H10A 119.5 C9B—C10B—H10B 119.5
C5A—C10A—H10A 119.5 C5B—C10B—H10B 119.5
O1A—C11A—N1A 121.61 (18) O1B—C11B—N1B 121.63 (19)
O1A—C11A—C12A 119.32 (17) O1B—C11B—C12B 118.80 (18)
N1A—C11A—C12A 119.05 (16) N1B—C11B—C12B 119.51 (17)
C13A—C12A—C17A 119.19 (18) C17B—C12B—C13B 118.9 (2)
C13A—C12A—C11A 122.26 (17) C17B—C12B—C11B 117.66 (17)
C17A—C12A—C11A 118.19 (16) C13B—C12B—C11B 123.07 (18)
C12A—C13A—C14A 120.40 (18) C14B—C13B—C12B 120.0 (2)
C12A—C13A—H13A 119.8 C14B—C13B—H13B 120.0
C14A—C13A—H13A 119.8 C12B—C13B—H13B 120.0
C15A—C14A—C13A 119.89 (19) C15B—C14B—C13B 120.76 (19)
C15A—C14A—H14A 120.1 C15B—C14B—H14B 119.6
C13A—C14A—H14A 120.1 C13B—C14B—H14B 119.6
C16A—C15A—C14A 120.00 (18) C14B—C15B—C16B 119.8 (2)
C16A—C15A—H15A 120.0 C14B—C15B—H15B 120.1
C14A—C15A—H15A 120.0 C16B—C15B—H15B 120.1
C15A—C16A—C17A 120.16 (18) C17B—C16B—C15B 119.8 (2)
C15A—C16A—H16A 119.9 C17B—C16B—H16B 120.1
C17A—C16A—H16A 119.9 C15B—C16B—H16B 120.1
C16A—C17A—C12A 120.32 (18) C16B—C17B—C12B 120.77 (19)
C16A—C17A—H17A 119.8 C16B—C17B—H17B 119.6
C12A—C17A—H17A 119.8 C12B—C17B—H17B 119.6
C11A—N1A—C1A—C2A −129.76 (19) C11B—N1B—C1B—C2B −132.2 (2)
C4A—N1A—C1A—C2A 51.1 (2) C4B—N1B—C1B—C2B 58.7 (2)
C5A—N2A—C2A—C1A −155.27 (17) C5B—N2B—C2B—C1B −154.05 (17)
C3A—N2A—C2A—C1A 58.7 (2) C3B—N2B—C2B—C1B 53.5 (2)
N1A—C1A—C2A—N2A −53.4 (2) N1B—C1B—C2B—N2B −55.6 (2)
C5A—N2A—C3A—C4A 155.04 (17) C5B—N2B—C3B—C4B 154.12 (18)
C2A—N2A—C3A—C4A −59.0 (2) C2B—N2B—C3B—C4B −53.3 (2)
C11A—N1A—C4A—C3A 127.48 (18) C11B—N1B—C4B—C3B 132.20 (19)
C1A—N1A—C4A—C3A −53.3 (2) C1B—N1B—C4B—C3B −57.7 (2)
N2A—C3A—C4A—N1A 56.2 (2) N2B—C3B—C4B—N1B 54.6 (2)
C3A—N2A—C5A—C6A 4.6 (3) C2B—N2B—C5B—C10B 9.5 (3)
C2A—N2A—C5A—C6A −138.34 (19) C3B—N2B—C5B—C10B 159.88 (19)
C3A—N2A—C5A—C10A −172.59 (16) C2B—N2B—C5B—C6B −172.66 (17)
C2A—N2A—C5A—C10A 44.4 (3) C3B—N2B—C5B—C6B −22.3 (3)
N2A—C5A—C6A—C7A −176.91 (18) N2B—C5B—C6B—C7B −172.84 (18)
C10A—C5A—C6A—C7A 0.4 (3) C10B—C5B—C6B—C7B 5.0 (3)
C5A—C6A—C7A—C8A 0.2 (3) C5B—C6B—C7B—C8B −0.9 (3)
C6A—C7A—C8A—C9A −0.3 (3) C6B—C7B—C8B—C9B −3.6 (3)
C6A—C7A—C8A—N3A −179.79 (17) C6B—C7B—C8B—N3B 176.42 (17)
O2A—N3A—C8A—C7A −4.2 (3) O2B—N3B—C8B—C9B −173.79 (18)
O3A—N3A—C8A—C7A 174.95 (19) O3B—N3B—C8B—C9B 5.5 (3)
O2A—N3A—C8A—C9A 176.25 (18) O2B—N3B—C8B—C7B 6.2 (3)
O3A—N3A—C8A—C9A −4.6 (3) O3B—N3B—C8B—C7B −174.52 (18)
C7A—C8A—C9A—C10A −0.1 (3) C7B—C8B—C9B—C10B 3.9 (3)
N3A—C8A—C9A—C10A 179.36 (17) N3B—C8B—C9B—C10B −176.2 (2)
C8A—C9A—C10A—C5A 0.7 (3) C8B—C9B—C10B—C5B 0.4 (3)
N2A—C5A—C10A—C9A 176.52 (17) N2B—C5B—C10B—C9B 173.1 (2)
C6A—C5A—C10A—C9A −0.8 (3) C6B—C5B—C10B—C9B −4.8 (3)
C4A—N1A—C11A—O1A −12.0 (3) C4B—N1B—C11B—O1B 0.7 (3)
C1A—N1A—C11A—O1A 168.91 (18) C1B—N1B—C11B—O1B −167.5 (2)
C4A—N1A—C11A—C12A 166.20 (16) C4B—N1B—C11B—C12B −176.48 (16)
C1A—N1A—C11A—C12A −12.9 (3) C1B—N1B—C11B—C12B 15.3 (3)
O1A—C11A—C12A—C13A 131.5 (2) O1B—C11B—C12B—C17B 40.6 (3)
N1A—C11A—C12A—C13A −46.8 (3) N1B—C11B—C12B—C17B −142.11 (18)
O1A—C11A—C12A—C17A −41.6 (2) O1B—C11B—C12B—C13B −131.9 (2)
N1A—C11A—C12A—C17A 140.11 (18) N1B—C11B—C12B—C13B 45.4 (3)
C17A—C12A—C13A—C14A −1.3 (3) C17B—C12B—C13B—C14B 0.6 (3)
C11A—C12A—C13A—C14A −174.32 (17) C11B—C12B—C13B—C14B 173.05 (18)
C12A—C13A—C14A—C15A 0.0 (3) C12B—C13B—C14B—C15B −0.7 (3)
C13A—C14A—C15A—C16A 0.7 (3) C13B—C14B—C15B—C16B 0.3 (3)
C14A—C15A—C16A—C17A −0.1 (3) C14B—C15B—C16B—C17B 0.2 (3)
C15A—C16A—C17A—C12A −1.2 (3) C15B—C16B—C17B—C12B −0.3 (3)
C13A—C12A—C17A—C16A 1.9 (3) C13B—C12B—C17B—C16B −0.2 (3)
C11A—C12A—C17A—C16A 175.23 (16) C11B—C12B—C17B—C16B −172.98 (18)

1-Benzoyl-4-(4-nitrophenyl)piperazine (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6B—H6B···O1A 0.95 2.50 3.140 (2) 125
C7B—H7B···O1A 0.95 2.58 3.171 (2) 120
C6A—H6A···O1Bi 0.95 2.47 3.173 (2) 131
C7A—H7A···O1Bi 0.95 2.78 3.317 (2) 117

Symmetry code: (i) x, y, z+1.

1-(4-Bromobenzoyl)-4-phenylpiperazine (II). Crystal data

C17H17BrN2O F(000) = 352
Mr = 345.23 Dx = 1.605 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 7.5162 (3) Å Cell parameters from 9856 reflections
b = 6.1125 (2) Å θ = 2.6–27.5°
c = 15.7249 (5) Å µ = 2.88 mm1
β = 98.625 (1)° T = 90 K
V = 714.28 (4) Å3 Slab cut from lath, colourless
Z = 2 0.35 × 0.20 × 0.06 mm

1-(4-Bromobenzoyl)-4-phenylpiperazine (II). Data collection

Bruker D8 Venture dual source diffractometer 6918 independent reflections
Radiation source: microsource 6410 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1 Rint = 0.065
φ and ω scans θmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (TWINABS; Sheldrick, 2012) h = −9→9
Tmin = 0.568, Tmax = 0.806 k = −7→7
6918 measured reflections l = −20→20

1-(4-Bromobenzoyl)-4-phenylpiperazine (II). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0158P)2 + 0.0999P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
6918 reflections Δρmax = 0.29 e Å3
191 parameters Δρmin = −0.22 e Å3
1 restraint Absolute structure: Flack x determined using 1306 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.012 (4)

1-(4-Bromobenzoyl)-4-phenylpiperazine (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF. Refined as a 2-component aggregate.

1-(4-Bromobenzoyl)-4-phenylpiperazine (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.09055 (3) 0.11286 (6) 0.95039 (2) 0.01878 (8)
O1 0.6730 (3) 0.8844 (4) 0.83992 (15) 0.0238 (5)
N1 0.7763 (3) 0.6022 (7) 0.76896 (13) 0.0138 (4)
N2 0.8022 (3) 0.5773 (4) 0.58908 (14) 0.0128 (6)
C1 0.7544 (4) 0.3913 (5) 0.72408 (19) 0.0170 (6)
H1A 0.666366 0.300535 0.749181 0.020*
H1B 0.870892 0.312654 0.731847 0.020*
C2 0.6896 (4) 0.4248 (5) 0.62881 (19) 0.0170 (6)
H2A 0.688355 0.281887 0.599077 0.020*
H2B 0.564666 0.480861 0.621072 0.020*
C3 0.8331 (4) 0.7843 (5) 0.63607 (18) 0.0151 (6)
H3A 0.719803 0.869390 0.629414 0.018*
H3B 0.923829 0.871335 0.611219 0.018*
C4 0.8985 (4) 0.7459 (5) 0.73118 (19) 0.0153 (6)
H4A 1.019905 0.679267 0.738344 0.018*
H4B 0.907757 0.887866 0.761819 0.018*
C5 0.7688 (3) 0.5918 (7) 0.49830 (16) 0.0139 (6)
C6 0.8200 (4) 0.7753 (5) 0.4548 (2) 0.0187 (6)
H6 0.874536 0.895931 0.486795 0.022*
C7 0.7922 (5) 0.7840 (5) 0.3655 (2) 0.0211 (7)
H7 0.828030 0.910876 0.337573 0.025*
C8 0.7134 (3) 0.6116 (10) 0.31631 (16) 0.0204 (5)
H8 0.694672 0.618576 0.255269 0.024*
C9 0.6633 (5) 0.4301 (6) 0.3587 (2) 0.0234 (7)
H9 0.610006 0.309579 0.326239 0.028*
C10 0.6889 (5) 0.4190 (5) 0.4478 (2) 0.0218 (7)
H10 0.651625 0.291940 0.475097 0.026*
C11 0.6668 (4) 0.6894 (5) 0.82122 (18) 0.0146 (6)
C12 0.5338 (4) 0.5444 (4) 0.85605 (17) 0.0135 (6)
C13 0.5770 (4) 0.3395 (5) 0.89205 (18) 0.0128 (6)
H13 0.696220 0.285267 0.894978 0.015*
C14 0.4476 (4) 0.2132 (5) 0.92378 (17) 0.0134 (6)
H14 0.477362 0.073859 0.948719 0.016*
C15 0.2748 (4) 0.2952 (5) 0.91818 (18) 0.0138 (6)
C16 0.2290 (4) 0.5014 (5) 0.88668 (18) 0.0148 (6)
H16 0.110701 0.556801 0.885896 0.018*
C17 0.3610 (3) 0.6267 (8) 0.85598 (15) 0.0153 (5)
H17 0.332668 0.769940 0.834754 0.018*

1-(4-Bromobenzoyl)-4-phenylpiperazine (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01541 (13) 0.01942 (13) 0.02254 (13) −0.0012 (2) 0.00626 (9) 0.00283 (19)
O1 0.0269 (12) 0.0140 (11) 0.0336 (13) −0.0023 (9) 0.0145 (11) −0.0065 (9)
N1 0.0159 (10) 0.0124 (10) 0.0136 (9) −0.0026 (16) 0.0042 (8) −0.0007 (16)
N2 0.0162 (11) 0.0102 (17) 0.0123 (10) −0.0017 (9) 0.0032 (8) −0.0013 (10)
C1 0.0258 (17) 0.0119 (14) 0.0149 (15) −0.0002 (12) 0.0081 (13) −0.0008 (12)
C2 0.0255 (17) 0.0119 (14) 0.0140 (15) −0.0060 (12) 0.0050 (12) −0.0023 (11)
C3 0.0161 (16) 0.0129 (14) 0.0159 (15) −0.0020 (11) 0.0016 (12) 0.0001 (12)
C4 0.0141 (15) 0.0179 (15) 0.0146 (14) −0.0037 (11) 0.0044 (12) 0.0001 (11)
C5 0.0101 (11) 0.0178 (17) 0.0136 (11) 0.0018 (15) 0.0010 (9) 0.0042 (15)
C6 0.0194 (17) 0.0190 (16) 0.0179 (16) −0.0020 (13) 0.0030 (13) 0.0020 (12)
C7 0.0218 (18) 0.0223 (17) 0.0202 (16) −0.0008 (13) 0.0066 (13) 0.0074 (13)
C8 0.0167 (12) 0.0307 (14) 0.0134 (11) 0.004 (2) 0.0013 (9) 0.002 (2)
C9 0.0257 (19) 0.0272 (18) 0.0167 (16) −0.0065 (14) 0.0010 (13) −0.0038 (13)
C10 0.0264 (19) 0.0216 (17) 0.0166 (16) −0.0074 (13) 0.0009 (13) 0.0012 (13)
C11 0.0146 (14) 0.0155 (13) 0.0130 (13) 0.002 (1) 0.0001 (11) 0.0007 (10)
C12 0.0154 (14) 0.0151 (15) 0.0097 (13) −0.0001 (10) 0.0007 (11) −0.0019 (9)
C13 0.0127 (14) 0.0143 (14) 0.0115 (13) 0.0026 (11) 0.0017 (11) −0.0019 (11)
C14 0.0173 (15) 0.0132 (14) 0.0095 (13) 0.0011 (11) 0.0010 (11) −0.0014 (11)
C15 0.0135 (14) 0.0174 (15) 0.0110 (14) −0.0032 (11) 0.0035 (11) −0.0015 (11)
C16 0.0122 (14) 0.0186 (15) 0.0138 (14) 0.0029 (11) 0.0029 (11) 0.0007 (12)
C17 0.0194 (12) 0.0145 (14) 0.0117 (11) 0.0030 (19) 0.0012 (9) 0.0014 (16)

1-(4-Bromobenzoyl)-4-phenylpiperazine (II). Geometric parameters (Å, º)

Br1—C15 1.904 (3) C6—C7 1.389 (4)
O1—C11 1.227 (4) C6—H6 0.9500
N1—C11 1.356 (4) C7—C8 1.387 (6)
N1—C4 1.460 (4) C7—H7 0.9500
N1—C1 1.467 (4) C8—C9 1.376 (6)
N2—C5 1.415 (3) C8—H8 0.9500
N2—C2 1.461 (4) C9—C10 1.387 (4)
N2—C3 1.466 (4) C9—H9 0.9500
C1—C2 1.518 (4) C10—H10 0.9500
C1—H1A 0.9900 C11—C12 1.500 (4)
C1—H1B 0.9900 C12—C17 1.393 (4)
C2—H2A 0.9900 C12—C13 1.393 (4)
C2—H2B 0.9900 C13—C14 1.391 (4)
C3—C4 1.521 (4) C13—H13 0.9500
C3—H3A 0.9900 C14—C15 1.383 (4)
C3—H3B 0.9900 C14—H14 0.9500
C4—H4A 0.9900 C15—C16 1.379 (4)
C4—H4B 0.9900 C16—C17 1.395 (5)
C5—C6 1.397 (5) C16—H16 0.9500
C5—C10 1.401 (5) C17—H17 0.9500
C11—N1—C4 119.1 (3) C5—C6—H6 119.5
C11—N1—C1 127.0 (3) C8—C7—C6 121.5 (3)
C4—N1—C1 111.4 (2) C8—C7—H7 119.3
C5—N2—C2 116.4 (2) C6—C7—H7 119.3
C5—N2—C3 116.4 (3) C9—C8—C7 117.9 (2)
C2—N2—C3 113.2 (2) C9—C8—H8 121.1
N1—C1—C2 110.6 (2) C7—C8—H8 121.1
N1—C1—H1A 109.5 C8—C9—C10 121.5 (3)
C2—C1—H1A 109.5 C8—C9—H9 119.3
N1—C1—H1B 109.5 C10—C9—H9 119.3
C2—C1—H1B 109.5 C9—C10—C5 121.2 (3)
H1A—C1—H1B 108.1 C9—C10—H10 119.4
N2—C2—C1 112.8 (2) C5—C10—H10 119.4
N2—C2—H2A 109.0 O1—C11—N1 121.5 (3)
C1—C2—H2A 109.0 O1—C11—C12 119.4 (3)
N2—C2—H2B 109.0 N1—C11—C12 119.1 (3)
C1—C2—H2B 109.0 C17—C12—C13 119.1 (3)
H2A—C2—H2B 107.8 C17—C12—C11 117.3 (3)
N2—C3—C4 111.4 (2) C13—C12—C11 123.6 (3)
N2—C3—H3A 109.3 C14—C13—C12 120.8 (3)
C4—C3—H3A 109.3 C14—C13—H13 119.6
N2—C3—H3B 109.3 C12—C13—H13 119.6
C4—C3—H3B 109.3 C15—C14—C13 118.5 (3)
H3A—C3—H3B 108.0 C15—C14—H14 120.8
N1—C4—C3 111.3 (2) C13—C14—H14 120.8
N1—C4—H4A 109.4 C16—C15—C14 122.4 (3)
C3—C4—H4A 109.4 C16—C15—Br1 118.6 (2)
N1—C4—H4B 109.4 C14—C15—Br1 119.0 (2)
C3—C4—H4B 109.4 C15—C16—C17 118.3 (3)
H4A—C4—H4B 108.0 C15—C16—H16 120.9
C6—C5—C10 117.0 (2) C17—C16—H16 120.9
C6—C5—N2 121.6 (3) C12—C17—C16 120.9 (4)
C10—C5—N2 121.4 (3) C12—C17—H17 119.6
C7—C6—C5 121.0 (3) C16—C17—H17 119.6
C7—C6—H6 119.5
C11—N1—C1—C2 105.4 (3) C6—C5—C10—C9 0.4 (5)
C4—N1—C1—C2 −56.4 (3) N2—C5—C10—C9 −177.2 (3)
C5—N2—C2—C1 170.4 (3) C4—N1—C11—O1 −2.8 (4)
C3—N2—C2—C1 −50.7 (3) C1—N1—C11—O1 −163.3 (3)
N1—C1—C2—N2 52.8 (3) C4—N1—C11—C12 176.5 (2)
C5—N2—C3—C4 −170.3 (2) C1—N1—C11—C12 16.0 (4)
C2—N2—C3—C4 50.8 (3) O1—C11—C12—C17 42.2 (4)
C11—N1—C4—C3 −105.9 (3) N1—C11—C12—C17 −137.1 (3)
C1—N1—C4—C3 57.5 (3) O1—C11—C12—C13 −134.3 (3)
N2—C3—C4—N1 −54.1 (3) N1—C11—C12—C13 46.4 (4)
C2—N2—C5—C6 158.2 (3) C17—C12—C13—C14 3.2 (4)
C3—N2—C5—C6 20.7 (4) C11—C12—C13—C14 179.6 (3)
C2—N2—C5—C10 −24.3 (4) C12—C13—C14—C15 0.5 (4)
C3—N2—C5—C10 −161.8 (3) C13—C14—C15—C16 −3.6 (4)
C10—C5—C6—C7 0.0 (5) C13—C14—C15—Br1 173.6 (2)
N2—C5—C6—C7 177.6 (3) C14—C15—C16—C17 2.9 (4)
C5—C6—C7—C8 −0.2 (5) Br1—C15—C16—C17 −174.3 (2)
C6—C7—C8—C9 −0.1 (5) C13—C12—C17—C16 −3.8 (4)
C7—C8—C9—C10 0.5 (5) C11—C12—C17—C16 179.5 (3)
C8—C9—C10—C5 −0.7 (5) C15—C16—C17—C12 0.9 (4)

1-(4-Bromobenzoyl)-4-phenylpiperazine (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13···O1i 0.95 2.60 3.018 (4) 107
C14—H14···O1i 0.95 2.68 3.052 (4) 104

Symmetry code: (i) x, y−1, z.

Funding Statement

Funding for this research was provided by: NSF (MRI CHE1625732) and the University of Kentucky (Bruker D8 182 Venture diffractometer). HSY thanks the UGC for a BSR Faculty fellowship for three years.

References

  1. Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371.
  2. Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048. [DOI] [PMC free article] [PubMed]
  3. Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766. [DOI] [PubMed]
  4. Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826. [DOI] [PubMed]
  6. Chu, J.-C., Shang, Z.-H., Zhou, X.-Q. & Liu, D.-Z. (2006). Acta Cryst. E62, o1042–o1043.
  7. Cohen, M. R., Hinsch, E., Palkoski, Z., Vergona, R., Urbano, S. & Sztokalo, J. (1982). J. Pharmacol. Exp. Ther. 223, 110–119. [PubMed]
  8. Conrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Dalla-Costa, T. (2008). J. Pharm. Pharmacol. 60, 699–707. [DOI] [PubMed]
  9. Demirci, S., Hayal, T. B., Kıratlı, B., Şişli, H. B., Demirci, S., Şahin, F. & Doğan, A. (2019). Chem. Biol. Drug Des. 94, 1584–1595. [DOI] [PubMed]
  10. Elliott, S. (2011). Drug Test. Anal. 3, 430–438. [DOI] [PubMed]
  11. Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915. [DOI] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Gupta, S., Pandey, D., Mandalapu, D., Bala, V., Sharma, V., Shukla, M., Yadav, S. K., Singh, N., Jaiswal, S., Maikhuri, J. P., Lal, J., Siddiqi, M. I., Gupta, G. & Sharma, V. L. (2016). MedChemComm, 7, 2111–2121.
  14. Hanano, T., Adachi, K., Aoki, Y., Morimoto, H., Naka, Y., Hisadome, M., Fukuda, T. & Sumichika, H. (2000). Bioorg. Med. Chem. Lett. 10, 875–879. [DOI] [PubMed]
  15. Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S. & Glidewell, C. (2020). IUCrData, 5, x201523. [DOI] [PMC free article] [PubMed]
  16. Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S. & Glidewell, C. (2021). Acta Cryst. E77, 5–13. [DOI] [PMC free article] [PubMed]
  17. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
  18. Kaya, B., Özkay, Y., Temel, H. E. & Kaplancikli, Z. A. (2016). J. Chem. Article ID 5878410.
  19. Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470–2488.
  20. Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253–1260. [DOI] [PMC free article] [PubMed]
  21. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  22. Kumari, S., Mishra, C. B. & Tiwari, M. (2015). Bioorg. Med. Chem. Lett. 25, 1092–1099. [DOI] [PubMed]
  23. Li, A.-J., Tao, M.-L., Ma, J., Zhou, X.-Q. & Liu, D.-Z. (2006). Acta Cryst. E62, o158–o159.
  24. Lu, Y.-X. (2007). Acta Cryst. E63, o3611.
  25. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  26. Neves, G., Fenner, R., Heckler, A. P., Viana, A. F., Tasso, L., Menegatti, R., Fraga, C. A. M., Barreiro, E. J., Dalla-Costa, T. & Rates, S. M. K. (2003). Braz. J. Med. Biol. Res. 36, 625–629. [DOI] [PubMed]
  27. Parkin, S. R. (2021). Acta Cryst. E77, 452–465. [DOI] [PMC free article] [PubMed]
  28. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  29. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  30. Sheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.
  31. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  32. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  33. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  34. Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238. [DOI] [PubMed]
  35. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  36. Wodtke, R., Steinberg, J., Köckerling, M., Löser, R. & Mamat, C. (2018). RSC Adv. 8, 40921–40933. [DOI] [PMC free article] [PubMed]
  37. Zhang, Y., Chao, J., Zhao, S., Xu, P., Wang, H., Guo, Z. & Liu, D. (2014). Spectrochim. Acta Part A. 132, 44–51. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989022009008/tx2058sup1.cif

e-78-01028-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022009008/tx2058Isup2.hkl

e-78-01028-Isup2.hkl (452.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022009008/tx2058IIsup3.hkl

e-78-01028-IIsup3.hkl (549.6KB, hkl)

CCDC references: 2205954, 2205953

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES