Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Sep 22;78(Pt 10):1039–1043. doi: 10.1107/S2056989022009112

Crystal structure and Hirshfeld surface analysis of N-{[diphen­yl(vin­yl)sil­yl]meth­yl}-2-methyl­propan-2-ammonium chloride

Christoph Schwab a, Andreas Voss a, Carsten Strohmann a,*
Editor: W T A Harrisonb
PMCID: PMC9535837  PMID: 36250106

In the title hydro­chloride salt, the cation shows an unusually long Si—C bond length. In the crystal, the cations and anions are linked by N—H⋯Cl hydrogen bonds to generate [001] chains.

Keywords: crystal structure, Hirshfeld surfaces, hydro­chloride, hydrogen bond, amino­methyl­silane

Abstract

N-{[Diphen­yl(vin­yl)sil­yl]meth­yl}-2-methyl­propan-2-amine, C19H25NSi, is a newly synthesized secondary amino­methyl­silane that can be used, for example, to study carboli­thia­tion reactions of vinyl­silanes. Because the neutral compound did not crystallize well, the hydro­chloride salt, C19H26NSi+·Cl, was formed, in which the two chloride ions in the asymmetric unit have crystallographic Inline graphic site symmetry. An unusually long Si—C bond of 1.9117 (10) Å is observed in the cation, which may be ascribed to electronic effects due to the β N+ species. In the crystal, the cations and anions are linked by N—H⋯Cl hydrogen bonds to generate [001] chains. To further investigate the inter­molecular inter­actions, a Hirshfeld surface analysis was performed, which showed that H⋯H, C⋯H/H⋯C and H⋯Cl/Cl⋯H contacts contribute 70.4, 20.0 and 8.3%, respectively.

1. Chemical context

There are only a few secondary (amino­meth­yl)silanes known to date because the synthesis is not feasible due to the high energy requirement and reaction time. With the assistance of a Finkelstein reaction, the iodo­methyl­silane can be synthesized to enhance the reactivity and shorten the reaction time (Finkelstein et al., 1910; Abele & Strohmann, 1997). However, it was possible to synthesize the (amino­meth­yl)di­phenyl­vinyl­silane 1 in an efficient way, starting from a (chloro­meth­yl)silane. Because the (amino­meth­yl)silane 1 did not crystallize well, the hydro­chloride salt 2 was formed to characterize the compound via X-ray diffraction. For example, the newly synthesized (amino­meth­yl)vinyl­silane 1, C19H25NSi, can be used for investigations of a carboli­thia­tion reaction of the silane’s vinyl group via lithiumalkyls. The received product can be used for the synthesis of functionalized alcohols by a Tamao oxidation (Tamao et al., 1983). The mol­ecular structure is defined by an unusually long Si—C bond, which thus favors the cleavage of this bond. Usually, the amino­methyl sidearm contains two or three nitro­gen centers and is essential for the feasibility of the reaction. It helps to break down the lithiumalkyl aggregates by forming a dative bond and also precoordinates the lithium ions, so they are in proximity to the vinyl group of the silane. Our own studies have shown that this stabilizes the transition state of the reaction, hence the activation energy of the deprotonation of the vinyl group is minimized and the reaction can be done under low temperatures and kinetic control, to prevent side reactions such as the α-deprotonation or polymerization (Unkelbach & Strohmann, 2009). This new (amino­meth­yl)silane 1 contains only one nitro­gen center in the sidearm and undergoes the carboli­thia­tion by a new mechanism for vinyl­silanes. This mechanism is known from stilbenes, where two lithium cations stabilize the negative charge at the anionic carbon atom. With the use of chiral ligands, the reaction can be performed under stereogenic control (Tricotet et al., 2009). This opens a new field for inter­esting research in organosilicon chemistry. 1. 1.

2. Structural commentary

Compound 2 crystallized in a few minutes from an aqueous 1 M HCl solution of 1 at room temperature as a hydro­chloride salt, C19H26NSi+·Cl, in the form of colorless needles in the centrosymmetric space group P21 /n. The mol­ecular structure is illustrated in Fig. 1. Both chloride ions are located on special positions with Inline graphic site symmetry.

Figure 1.

Figure 1

The mol­ecular structure of 2 showing 50% displacement ellipsoids. Hydrogen bonds are indicated by dotted lines.

The Si1—C15 bond length in the cation is 1.9117 (10) Å, which is slightly longer than the average for an Si—C bond and the Si1—C15—N1 bond angle is 116.21 (7)°. The Si—C bond lengths are normally in the range of 1.857 to 1.905 Å for Csp3 —SiX 3 compounds (Allen et al., 1987). The extended bond length may be ascribed to the cationic nitro­gen atom in the β-position to the silicon atom. It increases the electronegativity, which enhances the electron-withdrawing effect of the substituted α-amino­functionality. This enhances the p-character of the Si1—C15 bond, which leads to an elongated bond (Bent, 1961). The extended Si1—C15—N1 bond angle is due to the steric demand of the tert-butyl group. Some further examples are given in the Database survey section (Kirchoff et al., 2022). The angle between the C3–C8 and C9–C14 phenyl groups in 2 is 89.63 (2)°, which is caused by the steric repulsion of the aromatic hydrogen atoms. The Si1—C1 bond length is 1.8577 (11) Å and C1—C2 is 1.3293 (16) Å; the latter is positioned at the end of the default range of Csp 2—Csp 2 bonds, which lie between 1.299 and 1.328 Å.

The cationic nitro­gen center features a slightly disordered tetra­hedral geometry. The angle between the hydrogen atoms is 107.2 (13)° (H1A—N1—H1B), the angles between the C atoms and the H atoms are 107.8 (10)° (H1B—N1—C15) and 109.6 (9)° (H1A—N1—C15). Between the carbon atoms, the angle is 117.10 (7)° (C15—N1—C16). All angles vary slightly from the ideal tetra­hedron angles of 109.5°: the large C—N—C angle results from the bigger space requirement of the carbon atoms in comparison to the H atoms. The sum of angles around the nitro­gen atom is 441.7°, so the overall structure is distorted tetra­hedral. The bond length between N1 and C15 is 1.4928 (12) Å and it is 1.5330 (13) Å between N1 and C16. In the literature, Csp3 —N bond lengths are in the range of 1.4816 to 1.5034 Å, so the N1—C16 bond is slightly extended.

3. Supra­molecular features

In the extended structure of 2 (Fig. 2), the cations and anions are linked by N—H⋯Cl hydrogen bonds (Table 1) to generate chains propagating in the [001] direction. The N⋯Cl separation of 3.1184 (8) Å for the N1—H1B⋯Cl2 hydrogen bond is slightly longer than that for N1—H1A⋯Cl1 at 3.0968 (8) Å. This may be due to the different surroundings of the Cl1 and Cl2 ions in the crystal. As shown in Fig. 3, Cl1 accepts two weak, near linear hydrogen-bond contacts [C6—H6⋯Cl1: 165.82 (7)°] from the aromatic para-hydrogen atoms H6 with a C6⋯Cl1 distance of 4.0013 (11) Å while Cl2 accepts two weak, near linear hydrogen-bond contacts [C7—H7⋯Cl2: 165.74 (7)°] from the aromatic meta-hydrogen atoms H7 with a C7⋯Cl2 distance of 3.9419 (12) Å. Both contacts are formed by the same aromatic ring. The bond angle for N1—H1B⋯Cl2 is 164.0 (13)°, compared to 172.8 (13)° for N1—H1A⋯Cl1. They differ from the optimal angle of 180° because of the different surroundings in the crystal packing.

Figure 2.

Figure 2

The crystal packing of compound 2 with hydrogen bonds shown as dotted lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.923 (15) 2.179 (15) 3.0968 (8) 172.8 (13)
N1—H1B⋯Cl2 0.912 (15) 2.231 (15) 3.1184 (8) 164.0 (13)

Figure 3.

Figure 3

The crystal packing of compound 2 showing the C—H⋯Cl contacts.

To further analyze the supra­molecular packing inter­actions, a Hirshfeld surface analysis was performed (Spackman & Jayatilaka, 2009). The Hirshfeld surface of the cation mapped over d norm in the range from −0.54 to 1.49 arbitrary units, generated by CrystalExplorer2021 (Spackman et al., 2021; Turner et al., 2017), is shown in Fig. 4. The fingerprint plots are illustrated in Fig. 5 and were also generated by CrystalExplorer2021. Particularly noticeable on the Hirshfeld surface are the short N—H⋯Cl contacts, which are shown in red on the potential surface, see Fig. 4. Although they represent the smallest fraction of inter­actions (8.3%), they presumably have the greatest effect on the crystal structure. The H⋯H contacts (70.4%) are the biggest fraction, but play a minor role in terms of the crystal packing. Analysis of the hydrogen-bonding network leads to the result that H1 can be assigned the graph-set symbols D 1 1(2) and D 1 2(3), which means that the hydrogen bond extends from N1—H1A⋯Cl1 to another H1A—N1 grouping of a neighboring mol­ecule. H2 can also be assigned D 1 1(2) and D 1 2(3) (Etter et al., 1990). Here, the hydrogen bond extends from N1—H1B⋯Cl2 to another H1B—N1 group of a neighboring mol­ecule. These hydrogen bonds may be the reason why 2 crystallizes well compared to the neutral mol­ecule 1.

Figure 4.

Figure 4

The Hirshfeld surface of compound 2 generated by CrystalExplorer21.

Figure 5.

Figure 5

Two-dimensional fingerprint plots of compound 2 showing (a) all contributions in the crystal and those delineated into (b) H⋯H, (c) C⋯H/H⋯C (d) Cl⋯H/H⋯Cl inter­actions.

4. Database survey

There are examples of crystallographically characterized structures with motifs like those in compound 2. The following examples were found in the Cambridge Structural Database (WebCSD, May 2022; Groom et al., 2016): 3,3-dimethyl-1-(4-methyl­benzene-1-sulfon­yl)-5-phenyl-1,2,3,6-tetra­hydro-1,3-aza­siline, C19H23NO2SSi (CSD refcode AZAFOZ; Wang et al. 2021), (S,S)-2-meth­oxy­methyl-1-[1-phenyl­eth­yl(dimeth­yl)sil­yl­meth­yl]pyrrolidinium iodide, C17H30NOSi+·I (AGILIL; Stroh­mann et al., 2002), [3-(di­phenyl­phosphino)amino­(tri­phen­yl­sil­yl)methyl­idene]carbon­yl(η5-cyclo­penta­dien­yl)iron(II) tetra­fluoro­borate, C40H37FeNOPSi+·BF4 (AMINOA; Yu et al., 2010), 2-(tri­phenyl­sil­yl)pyrrolidin-1-ium chloride methanol solvate, C22H24NSi+·CH4O·Cl (LAGLUE; Bauer & Strohmann, 2017), 1-[(benzyl­dimethyl­sil­yl)meth­yl]-1-ethyl­piperidin-1-ium ethansulfonate, C17H30NSi+·C2H5O4S (WAVXAW; Kirchhoff et al., 2022), 2-[ethen­yl(dimeth­yl)sil­yl]-1-[(4-nitro­phen­yl)sulfon­yl]aziridine, C12H16N2O4SSi (WOL­SEY; Astakhova et al., 2019) and 1-[(benz­yl(dimeth­yl)sil­yl)meth­yl]-1-methyl­piperidin-1-ium iodide, C16H28INSi (DAFKUT; Otte et al. 2017).

In LAGLUE, the N—H⋯Cl hydrogen bond has a slightly longer N⋯Cl separation (3.124 Å) than compound 2. The Si—C bond is shorter [1.905 (2) Å] and the Si—C—N bond angle is comparable [115.86 (14)°]. The lengths between the carbon atoms and the cationic nitro­gen center are similar to the corresponding bond lengths in 2 [1.498 (3) and 1.494 (3) Å].

In WOLSEY, the Si—C distance of 1.871 (4) Å is shorter than in 2 but the Si—C—N bond angle is similar [114.9 (2)°] and the C—N bond is a bit extended [1.505 (6) Å]. This could be caused by the ring strain of the aziridine ring and the electron-withdrawing effect of the (nitro­phen­yl)sulfonyl group located at the nitro­gen center. In addition, the Si—Csp 2 bond length is 1.859 (7) Å, which is only slightly longer that the value for 2.

Finally, in AGILIL, the Si—C bond length is slightly shorter [1.907 (7) Å] and the Si—C—N bond angle is slightly extended [120.8 (4)°], which is caused by the cyclic structure of the compound. The C—N distance is equal [1.498 (8) Å] and the cyclic N—C bond lengths marginally shorter [1.509 (8) and 1.516 (8) Å], again due to the cyclic structure.

The structures of WAVXAW and DAFKUT contain a similar structure motive (Si–C–N+) to 2. In WAVXAW and DAFKUT, the Si—C bond lengths are 1.9074 (11) and 1.907 (3) Å, respectively, comparable to the value in 2. These extended bond lengths are due to the same electronic effects already described.

5. Synthesis and crystallization

The reaction scheme for the synthesis of compound 2 is shown in the scheme. A 1 M aqueous solution of HCl (0.11 mmol, 11 mL) was added to N-{[diphen­yl(vin­yl)sil­yl]meth­yl}-2-methyl­propan-2-amine (1) (0.10 mmol, 0.03 g) at room temperature. The product (2) was formed after five minutes as colorless needles.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms except H1A and H1B were positioned geometrically (C—H = 0.95–1.00 Å) and refined using a riding model, with U iso(H) = 1.2U eq(C) for CH2 and CH hydrogen atoms and U iso(H) = 1.5U eq(C) for CH3 hydrogen atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C19H26NSi+·Cl
M r 331.95
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.7320 (11), 19.0598 (15), 10.9186 (10)
β (°) 110.526 (4)
V3) 1896.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.17 × 0.10 × 0.07
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.695, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 58662, 7200, 5850
R int 0.045
(sin θ/λ)max−1) 0.769
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.089, 1.05
No. of reflections 7200
No. of parameters 213
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.25

Computer programs: APEX2 and SAINT (Bruker, 2016), olex2.solve (Bourhis et al., 2015), SHELXL2014/7 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022009112/hb8033sup1.cif

e-78-01039-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022009112/hb8033Isup2.hkl

e-78-01039-Isup2.hkl (572.1KB, hkl)

CCDC reference: 2207007

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C19H26NSi+·Cl F(000) = 712
Mr = 331.95 Dx = 1.162 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.7320 (11) Å Cell parameters from 1675 reflections
b = 19.0598 (15) Å θ = 2.3–26.3°
c = 10.9186 (10) Å µ = 0.26 mm1
β = 110.526 (4)° T = 100 K
V = 1896.7 (3) Å3 Block, colourless
Z = 4 0.17 × 0.10 × 0.07 mm

Data collection

Bruker D8 Venture diffractometer 5850 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1 Rint = 0.045
ω and φ scans θmax = 33.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −14→13
Tmin = 0.695, Tmax = 0.746 k = −29→29
58662 measured reflections l = −16→16
7200 independent reflections

Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.8457P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
7200 reflections Δρmax = 0.38 e Å3
213 parameters Δρmin = −0.25 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.5000 0.5000 0.5000 0.02034 (7)
Cl2 0.5000 0.5000 0.0000 0.03673 (12)
Si1 0.70004 (3) 0.35895 (2) 0.32477 (3) 0.01456 (6)
N1 0.42114 (9) 0.43180 (4) 0.22648 (7) 0.01257 (14)
H1A 0.4520 (16) 0.4537 (8) 0.3070 (14) 0.023 (4)*
H1B 0.4530 (17) 0.4584 (8) 0.1722 (15) 0.027 (4)*
C1 0.78182 (12) 0.44067 (6) 0.28760 (11) 0.0215 (2)
H1 0.7881 0.4451 0.2031 0.026*
C2 0.83213 (14) 0.49340 (6) 0.37106 (14) 0.0298 (3)
H2A 0.8276 0.4908 0.4564 0.036*
H2B 0.8726 0.5337 0.3453 0.036*
C3 0.75986 (11) 0.28120 (5) 0.25064 (10) 0.01589 (17)
C4 0.72391 (13) 0.27683 (6) 0.11477 (11) 0.0212 (2)
H4 0.6756 0.3151 0.0612 0.025*
C5 0.75786 (14) 0.21724 (6) 0.05711 (11) 0.0249 (2)
H5 0.7325 0.2152 −0.0351 0.030*
C6 0.82860 (13) 0.16072 (6) 0.13383 (12) 0.0237 (2)
H6 0.8505 0.1199 0.0941 0.028*
C7 0.86709 (13) 0.16410 (6) 0.26881 (12) 0.0225 (2)
H7 0.9162 0.1258 0.3218 0.027*
C8 0.83342 (12) 0.22401 (5) 0.32627 (10) 0.01833 (18)
H8 0.8609 0.2261 0.4187 0.022*
C9 0.75476 (11) 0.34357 (5) 0.50486 (10) 0.01573 (17)
C10 0.90359 (11) 0.34952 (5) 0.58312 (10) 0.01859 (18)
H10 0.9723 0.3637 0.5441 0.022*
C11 0.95274 (12) 0.33515 (6) 0.71661 (11) 0.0212 (2)
H11 1.0538 0.3399 0.7678 0.025*
C12 0.85334 (13) 0.31377 (6) 0.77462 (11) 0.0222 (2)
H12 0.8863 0.3038 0.8656 0.027*
C13 0.70528 (13) 0.30706 (6) 0.69892 (11) 0.0221 (2)
H13 0.6372 0.2924 0.7383 0.027*
C14 0.65699 (12) 0.32180 (5) 0.56568 (11) 0.01951 (19)
H14 0.5558 0.3170 0.5150 0.023*
C15 0.49188 (11) 0.36139 (5) 0.23862 (10) 0.01691 (17)
H15A 0.4685 0.3417 0.1497 0.020*
H15B 0.4470 0.3301 0.2866 0.020*
C16 0.25301 (11) 0.43398 (5) 0.17306 (9) 0.01689 (17)
C17 0.19498 (13) 0.39711 (7) 0.26910 (11) 0.0244 (2)
H17A 0.2192 0.3471 0.2726 0.037*
H17B 0.0882 0.4028 0.2401 0.037*
H17C 0.2402 0.4178 0.3562 0.037*
C18 0.21343 (15) 0.51187 (6) 0.16345 (13) 0.0292 (3)
H18A 0.2562 0.5336 0.2499 0.044*
H18B 0.1065 0.5171 0.1322 0.044*
H18C 0.2522 0.5349 0.1021 0.044*
C19 0.19597 (13) 0.39877 (6) 0.03909 (10) 0.0230 (2)
H19A 0.2439 0.4196 −0.0176 0.035*
H19B 0.0896 0.4056 −0.0001 0.035*
H19C 0.2177 0.3484 0.0489 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02810 (18) 0.01878 (15) 0.01229 (13) −0.00014 (13) 0.00477 (12) −0.00446 (11)
Cl2 0.0490 (3) 0.0444 (3) 0.01419 (15) −0.0234 (2) 0.00777 (16) 0.00500 (15)
Si1 0.01262 (12) 0.01221 (11) 0.01785 (12) −0.00029 (9) 0.00410 (9) −0.00132 (9)
N1 0.0159 (4) 0.0105 (3) 0.0101 (3) 0.0012 (3) 0.0030 (3) 0.0000 (2)
C1 0.0188 (5) 0.0170 (4) 0.0285 (5) −0.0015 (4) 0.0080 (4) 0.0023 (4)
C2 0.0261 (6) 0.0172 (5) 0.0414 (7) −0.0045 (4) 0.0058 (5) −0.0013 (5)
C3 0.0149 (4) 0.0143 (4) 0.0196 (4) −0.0002 (3) 0.0074 (3) −0.0010 (3)
C4 0.0247 (5) 0.0187 (4) 0.0214 (5) 0.0008 (4) 0.0096 (4) 0.0005 (4)
C5 0.0305 (6) 0.0249 (5) 0.0231 (5) −0.0014 (4) 0.0143 (5) −0.0046 (4)
C6 0.0249 (5) 0.0189 (5) 0.0326 (6) −0.0011 (4) 0.0168 (5) −0.0067 (4)
C7 0.0215 (5) 0.0171 (4) 0.0312 (5) 0.0039 (4) 0.0121 (4) 0.0006 (4)
C8 0.0173 (5) 0.0171 (4) 0.0212 (4) 0.0021 (3) 0.0075 (4) 0.0002 (3)
C9 0.0136 (4) 0.0136 (4) 0.0191 (4) 0.0010 (3) 0.0046 (3) −0.0027 (3)
C10 0.0147 (4) 0.0181 (4) 0.0218 (4) −0.0001 (3) 0.0050 (4) −0.0040 (3)
C11 0.0184 (5) 0.0183 (4) 0.0222 (5) 0.0030 (4) 0.0012 (4) −0.0030 (4)
C12 0.0276 (6) 0.0163 (4) 0.0201 (5) 0.0059 (4) 0.0052 (4) 0.0005 (4)
C13 0.0233 (5) 0.0193 (5) 0.0255 (5) 0.0031 (4) 0.0107 (4) 0.0040 (4)
C14 0.0161 (5) 0.0182 (4) 0.0240 (5) 0.0010 (3) 0.0067 (4) 0.0009 (4)
C15 0.0142 (4) 0.0114 (4) 0.0221 (4) 0.0009 (3) 0.0026 (3) −0.0024 (3)
C16 0.0148 (4) 0.0166 (4) 0.0155 (4) 0.0040 (3) 0.0006 (3) −0.0014 (3)
C17 0.0187 (5) 0.0310 (6) 0.0255 (5) −0.0009 (4) 0.0100 (4) −0.0024 (4)
C18 0.0294 (6) 0.0188 (5) 0.0300 (6) 0.0112 (4) −0.0015 (5) −0.0022 (4)
C19 0.0223 (5) 0.0231 (5) 0.0164 (4) 0.0014 (4) −0.0024 (4) −0.0034 (4)

Geometric parameters (Å, º)

Si1—C1 1.8577 (11) C9—C14 1.4006 (14)
Si1—C3 1.8763 (10) C10—H10 0.9500
Si1—C9 1.8713 (10) C10—C11 1.3926 (15)
Si1—C15 1.9117 (10) C11—H11 0.9500
N1—H1A 0.923 (15) C11—C12 1.3902 (17)
N1—H1B 0.912 (15) C12—H12 0.9500
N1—C15 1.4928 (12) C12—C13 1.3931 (17)
N1—C16 1.5330 (13) C13—H13 0.9500
C1—H1 0.9500 C13—C14 1.3917 (15)
C1—C2 1.3293 (16) C14—H14 0.9500
C2—H2A 0.9500 C15—H15A 0.9900
C2—H2B 0.9500 C15—H15B 0.9900
C3—C4 1.4022 (15) C16—C17 1.5256 (15)
C3—C8 1.4028 (14) C16—C18 1.5281 (15)
C4—H4 0.9500 C16—C19 1.5260 (14)
C4—C5 1.3933 (15) C17—H17A 0.9800
C5—H5 0.9500 C17—H17B 0.9800
C5—C6 1.3899 (17) C17—H17C 0.9800
C6—H6 0.9500 C18—H18A 0.9800
C6—C7 1.3890 (17) C18—H18B 0.9800
C7—H7 0.9500 C18—H18C 0.9800
C7—C8 1.3961 (14) C19—H19A 0.9800
C8—H8 0.9500 C19—H19B 0.9800
C9—C10 1.4047 (14) C19—H19C 0.9800
C1—Si1—C3 110.28 (5) C10—C11—H11 120.1
C1—Si1—C9 112.03 (5) C12—C11—C10 119.74 (10)
C1—Si1—C15 109.47 (5) C12—C11—H11 120.1
C3—Si1—C15 104.04 (4) C11—C12—H12 120.1
C9—Si1—C3 108.21 (4) C11—C12—C13 119.79 (10)
C9—Si1—C15 112.51 (5) C13—C12—H12 120.1
H1A—N1—H1B 107.2 (13) C12—C13—H13 119.9
C15—N1—H1A 109.6 (9) C14—C13—C12 120.10 (10)
C15—N1—H1B 107.8 (10) C14—C13—H13 119.9
C15—N1—C16 117.10 (7) C9—C14—H14 119.4
C16—N1—H1A 107.3 (9) C13—C14—C9 121.26 (10)
C16—N1—H1B 107.4 (10) C13—C14—H14 119.4
Si1—C1—H1 117.7 Si1—C15—H15A 108.2
C2—C1—Si1 124.56 (10) Si1—C15—H15B 108.2
C2—C1—H1 117.7 N1—C15—Si1 116.21 (7)
C1—C2—H2A 120.0 N1—C15—H15A 108.2
C1—C2—H2B 120.0 N1—C15—H15B 108.2
H2A—C2—H2B 120.0 H15A—C15—H15B 107.4
C4—C3—Si1 120.21 (8) C17—C16—N1 109.21 (8)
C4—C3—C8 117.59 (9) C17—C16—C18 110.46 (10)
C8—C3—Si1 122.09 (8) C17—C16—C19 111.00 (9)
C3—C4—H4 119.5 C18—C16—N1 105.20 (9)
C5—C4—C3 121.04 (10) C19—C16—N1 109.50 (8)
C5—C4—H4 119.5 C19—C16—C18 111.30 (9)
C4—C5—H5 119.8 C16—C17—H17A 109.5
C6—C5—C4 120.35 (10) C16—C17—H17B 109.5
C6—C5—H5 119.8 C16—C17—H17C 109.5
C5—C6—H6 120.1 H17A—C17—H17B 109.5
C7—C6—C5 119.72 (10) H17A—C17—H17C 109.5
C7—C6—H6 120.1 H17B—C17—H17C 109.5
C6—C7—H7 120.1 C16—C18—H18A 109.5
C6—C7—C8 119.76 (10) C16—C18—H18B 109.5
C8—C7—H7 120.1 C16—C18—H18C 109.5
C3—C8—H8 119.2 H18A—C18—H18B 109.5
C7—C8—C3 121.52 (10) H18A—C18—H18C 109.5
C7—C8—H8 119.2 H18B—C18—H18C 109.5
C10—C9—Si1 118.64 (8) C16—C19—H19A 109.5
C14—C9—Si1 123.67 (8) C16—C19—H19B 109.5
C14—C9—C10 117.55 (9) C16—C19—H19C 109.5
C9—C10—H10 119.2 H19A—C19—H19B 109.5
C11—C10—C9 121.55 (10) H19A—C19—H19C 109.5
C11—C10—H10 119.2 H19B—C19—H19C 109.5
Si1—C3—C4—C5 −175.22 (9) C9—Si1—C3—C4 175.80 (8)
Si1—C3—C8—C7 174.88 (8) C9—Si1—C3—C8 −0.37 (10)
Si1—C9—C10—C11 −176.56 (8) C9—C10—C11—C12 0.57 (16)
Si1—C9—C14—C13 176.07 (8) C10—C9—C14—C13 0.42 (15)
C1—Si1—C3—C4 −61.36 (10) C10—C11—C12—C13 −0.17 (16)
C1—Si1—C3—C8 122.47 (9) C11—C12—C13—C14 −0.10 (16)
C1—Si1—C9—C10 −48.03 (9) C12—C13—C14—C9 −0.04 (16)
C1—Si1—C9—C14 136.36 (9) C14—C9—C10—C11 −0.69 (15)
C3—Si1—C1—C2 −141.05 (11) C15—Si1—C1—C2 105.06 (11)
C3—Si1—C9—C10 73.75 (9) C15—Si1—C3—C4 55.95 (9)
C3—Si1—C9—C14 −101.86 (9) C15—Si1—C3—C8 −120.22 (9)
C3—C4—C5—C6 −0.07 (18) C15—Si1—C9—C10 −171.88 (7)
C4—C3—C8—C7 −1.38 (16) C15—Si1—C9—C14 12.52 (10)
C4—C5—C6—C7 −0.76 (18) C15—N1—C16—C17 65.05 (11)
C5—C6—C7—C8 0.50 (17) C15—N1—C16—C18 −176.39 (9)
C6—C7—C8—C3 0.59 (17) C15—N1—C16—C19 −56.69 (11)
C8—C3—C4—C5 1.12 (16) C16—N1—C15—Si1 −172.72 (6)
C9—Si1—C1—C2 −20.47 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl1 0.923 (15) 2.179 (15) 3.0968 (8) 172.8 (13)
N1—H1B···Cl2 0.912 (15) 2.231 (15) 3.1184 (8) 164.0 (13)

References

  1. Abele, B. C. & Strohmann, C. (1997). Organosilicon Chemistry III. From Molecules to Materials, edited by N. Auner & J. Weis, pp. 206–210. Weinheim: Wiley-VCH.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19.
  3. Astakhova, V. V., Shainyan, B. A., Moskalik, M. Y. & Sterkhova, I. V. (2019). Tetrahedron, 75, 4531–4541.
  4. Bauer, J. O. & Strohmann, C. (2017). Inorganics 5, 88–96.
  5. Bent, H. A. (1961). Chem. Rev. 61, 275–311.
  6. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  7. Bruker (2016). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  10. Finkelstein, H. (1910). Ber. Dtsch. Chem. Ges. 43, 1528–1532.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Kirchhoff, J.-L., Koller, S. G., Louven, K. & Strohmann, C. (2022). Acta Cryst. E78, 135–139. [DOI] [PMC free article] [PubMed]
  13. Otte, F., Koller, S. G., Cuellar, E., Golz, C. & Strohmann, C. (2017). Inorg. Chim. Acta, 456, 44–48.
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  16. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  17. Strohmann, C., Lehmen, K., Wild, K. & Schildbach, D. (2002). Organometallics, 21, 3079–3081.
  18. Tamao, K., Ishida, N., Tanaka, T. & Kumada, M. (1983). Organometallics, 2, 1694–1696.
  19. Tricotet, T., Fleming, P., Cotter, J., Hogan, A. L., Strohmann, C., Gessner, V. H. & O’Shea, D. F. (2009). J. Am. Chem. Soc. 131, 3142–3143. [DOI] [PubMed]
  20. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackmann, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17, University of Western Australia.
  21. Unkelbach, C. & Strohmann, C. (2009). J. Am. Chem. Soc. 131, 17044–17045. [DOI] [PubMed]
  22. Wang, W., Zhou, S., Li, L., He, Y., Dong, X., Gao, L., Wang, Q. & Song, Z. (2021). J. Am. Chem. Soc. 143, 11141–11151. [DOI] [PubMed]
  23. Yu, I., Wallis, C. J., Patrick, B. O., Diaconescu, P. L. & Mehrkhodavandi, P. (2010). Organometallics, 29, 6065–6076.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022009112/hb8033sup1.cif

e-78-01039-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022009112/hb8033Isup2.hkl

e-78-01039-Isup2.hkl (572.1KB, hkl)

CCDC reference: 2207007

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES