Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Sep 30;78(Pt 10):1077–1080. doi: 10.1107/S2056989022009380

Crystal structure of ethyl 4-[(4-methyl­benz­yl)­oxy]benzoate

Md Hasan Al Banna a, Md Rezaul Haque Ansary a,*, Ryuta Miyatake b, Md Chanmiya Sheikh c, Ennio Zangrando d
Editor: M Weile
PMCID: PMC9535838  PMID: 36250124

Three mol­ecules of the title compound are present in the asymmetric unit, exhibiting different conformations relative to the eth­oxy group.

Keywords: crystal structure, ester, ether, conformational flexibility

Abstract

The title compound, C17H18O3, crystallizes with three mol­ecules in the asymmetric unit. The mol­ecules differ in the conformation related to the eth­oxy group and in the orientation of the two phenyl rings, one of which has the eth­oxy group disordered over two positions with refined occupancies of 0.735:0.265 (9). In the crystal packing, the mol­ecules are connected by weak C—H⋯π inter­actions.

1. Chemical context

Alkyl­benzoates are an important class of compounds with inter­esting physical properties and applications in industry. For example, 4-hy­droxy­benzoic acid and its esters are widely used as preservatives in cosmetic and pharmaceutical products known as parabens, for which the physical properties and crystal structures have been widely described (Giordano et al., 1999; Yang et al., 2014).

Alkyl­benzoates of different properties have been designed, amongst other things, with the aim of preparing liquid crystalline compounds (Abser et al., 1993), functionalized poly(benzyl ether) dendrimers with methyl ester decorations as efficient organogelators (Feng et al., 2009), or non-linear optical materials (Perumal et al., 2002). Moreover, the ester bond has a prominent position in cell biology and medicinal chemistry (Lavis, 2008), and carbohydrazones can be obtained by reacting corresponding esters with suitable hydrazine derivatives. 1.

We report here the synthesis and crystal structure of another example of a derivatized alkyl­benzoate with an ether group.

2. Structural commentary

Three mol­ecules, which slightly differ in their conformations, are present in the asymmetric unit of the title compound (Figs. 1–3 ). The main conformational differences of mol­ecules A, B and C are related to the eth­oxy group with C—O—CH2—CH3 torsion angles of 174.0 (6), 82.6 (6) and 89.6 (7)°, and in the orientation of the two phenyl rings that form a dihedral angle of 46.4 (1), 70.3 (1), and 62.2 (1)°, respectively. A side view of the mol­ecules displayed in Fig. 4 highlights these differences. All these features are indicative of the conformational freedom of this mol­ecule. Nevertheless, all bond lengths and angles in the three mol­ecules relating to the ether and the ester groups are similar within their standard uncertainties. In general, bond lengths (Allen et al., 1987) and angles are within normal ranges. In mol­ecule C, the eth­oxy group O9/C5/C51 is disordered over two sets of sites (Fig. 3).

Figure 1.

Figure 1

Mol­ecule A of the title compound, drawn with displacement ellipsoids at the 50% probability level.

Figure 2.

Figure 2

Mol­ecule B of the title compound, drawn with displacement ellipsoids at the 50% probability level.

Figure 3.

Figure 3

Mol­ecule C of the title compound, drawn with displacement ellipsoids at the 50% probability level. The eth­oxy group O9/C5/C51 is disordered over two sets of sites.

Figure 4.

Figure 4

Side view of the three independent mol­ecules displaying the different conformations.

In the parent methyl 4-(benz­yloxy)-3-meth­oxy­benzoate compound, which is an important organic inter­mediate for the synthesis of the anti­neoplastic drug Cediranib (Wang et al., 2013), the two aromatic rings are almost normal to each other forming a dihedral angle of 85.81 (10)° and bond lengths are close comparable with those determined here.

3. Supra­molecular features

Despite the number of phenyl rings, the aromatic rings have rather distant centroid-to-centroid distances of between 4.727 (3) and 4.946 (3) Å, but with unsuitable orientations for efficient π-stacking inter­actions. On the other hand, the crystal packing indicates a series of C—H⋯π ring inter­actions in the range 2.65–2.94 Å (Table 1), as derived with PLATON (Spek, 2020). A view of the unit cell is displayed in Fig. 5, showing these kinds of inter­actions. In addition, non-conventional C—H⋯O hydrogen bonds are observed in the crystal packing (Table 2).

Table 1. Analysis of C—H⋯Cg(π-ring) inter­actions (Å, °).

C—H⋯π = angle of the X—H bond with the π-plane (perpendicular = 90°, parallel = 0°). Ring Cg1 = C35–C40; Cg2 = C43–C48; Cg3 = C1–C6; Cg4 = C9–C14; Cg6 = C26–C31

C—H Cg(J) Symmetry code (J) H⋯Cg C—H⋯Cg C⋯Cg C—H⋯π
C8—H8A Cg3 -x, Inline graphic  + y, −z 2.90 144 3.749 (5) 59
C20—H20 Cg1 x, y, z 2.81 147 3.653 (6) 62
C22—H22 Cg4 x, 1 + y, 1 + z 2.93 137 3.688 (6) 50
C25—H25A Cg2 x, 1 + y, z 2.81 143 3.654 (6) 50
C41—H41B Cg1 1 − x, Inline graphic  + y, 3 − z 2.67 156 3.590 (5) 75
C45—H45 Cg6 x, y, z 2.82 147 3.654 (4) 51
C47—H47 Cg2 1 − x, − Inline graphic  + y, 2 − z 2.77 148 3.615 (4) 65

Figure 5.

Figure 5

Perspective view of the crystal packing of the title compound down the c axis with indication of the C—H⋯π-ring inter­actions. H atoms not involved in the inter­actions were omitted for clarity.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C42—H42A⋯O8i 0.99 2.65 3.269 (5) 121
C44—H44⋯O4 0.95 2.66 3.374 (5) 133

Symmetry code: (i) Inline graphic .

4. Database survey

The conformations of the three independent mol­ecules present in the crystal structure of the title compound agree with previous structurally characterized species containing the (benz­yloxy)phenyl fragment, where the two aromatic rings form dihedral angles of 64.5 (2)° (mean value of two independent mol­ecules; Bats & Canenbley, 1984) and 69.19 (6)° (Qin et al., 2019). However, a few structures exhibit almost coplanar orientations of the phenyl rings (Jasinski et al., 2008; Feng et al., 2009), or small dihedral angles such as the 4.1 (2) and 10.9 (4)° reported for 3,5-bis­(benz­yloxy)benzoic acid (Moreno-Fuquen et al. 2012). The latter conformations favour electron delocalization between the two rings, but packing requirements also play a role.

5. Synthesis and crystallization

A mixture of ethyl-4-hy­droxy­benzoate (8.75 g, 52.65 mmol) and 4-methyl­benzyl­bromide (9.75 g, 52.68 mmol) in acetone (100 ml) was refluxed for 14 h over anhydrous potassium carbonate (20 g). The solvent was removed in vacuo, and the remaining solid was dissolved in water and extracted with di­chloro­methane. Left overnight, colourless needle-shaped crystals were formed, filtered off, washed, and dried over silica gel in a desiccator. Yield: 12.58 g, 88% Melting point: 323 −324 K. FT–IR: 1706 ν (C=O), 1258, 1276 ν (C—Oester), 1106, 1102 ν (C—Oether). 1H NMR (CDCl3,600 MHz): δ = 1.37 (t, 3H, CH3CH2-, J = 10.5 Hz), 2.36 (s, 3H, C6H4–CH3),4.35 (q, 2H, CH3–CH2, J = 10.5 Hz), 5.07 (s, 2H, C6H4–CH2–), 6.98 (d, 2H, H-5,6, J =7.8 Hz), 7.20 (d, 2H, H-10,11, J = 11.4 Hz), 7.31 (d, 2H, H-8,9, J = 12 Hz), 7.99 (d, 2H, H-3,4, J = 6.6 Hz), ppm. 13C NMR (CDCl3, 600 MHz): 14.4 (C11), 21.3 (C7), 60.7 (C10), 70.1 (C8), 114.4 (C-3,5), 123.15 (C1), 127.73 (C-2′,6′), 129.1 (C-3′,5′), 131.6 (C-2,6), 133.31 (C1′),138.13 (C4), 162.5 (C4′), 166.4 (C9), ppm. LC–MS (ESI) m/z: [M + H]+. Calculated for C17H18O3 271.13; found 271.13.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The structure was refined as a two-component inversion twin. The –OCH2CH3 moiety of mol­ecule C was found to be disordered over two sets of sites with refined occupancies of 0.735 (9):0.265 (9). For modelling the minor disordered part, all atoms were refined with isotropic displacement parameters, and C—C and C—O bond lengths were restrained by using DFIX commands.

Table 3. Experimental details.

Crystal data
Chemical formula C17H18O3
M r 270.31
Crystal system, space group Monoclinic, P21
Temperature (K) 173
a, b, c (Å) 16.1906 (10), 7.5752 (4), 17.7591 (9)
β (°) 95.360 (7)
V3) 2168.6 (2)
Z 6
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.20 × 0.05
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995)
T min, T max 0.533, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 16200, 7609, 5301
R int 0.042
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.051, 0.125, 0.97
No. of reflections 7609
No. of parameters 560
No. of restraints 5
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.17
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.6 (14)

Computer programs: CrystalStructure (Rigaku, 2018), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022009380/wm5660sup1.cif

e-78-01077-sup1.cif (627.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022009380/wm5660Isup2.hkl

e-78-01077-Isup2.hkl (604.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022009380/wm5660Isup3.cml

CCDC reference: 2174691

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Department of Chemistry, University of Rajshahi for laboratory facilities. MCS thanks the Department of Applied Chemistry, Faculty of Engineering, University of Toyama for analytical facilities.

supplementary crystallographic information

Crystal data

C17H18O3 F(000) = 864
Mr = 270.31 Dx = 1.242 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71075 Å
a = 16.1906 (10) Å Cell parameters from 13948 reflections
b = 7.5752 (4) Å θ = 2.3–27.5°
c = 17.7591 (9) Å µ = 0.08 mm1
β = 95.360 (7)° T = 173 K
V = 2168.6 (2) Å3 Prism, colorless
Z = 6 0.30 × 0.20 × 0.05 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 5301 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1 Rint = 0.042
ω scans θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −19→19
Tmin = 0.533, Tmax = 0.996 k = −9→9
16200 measured reflections l = −21→21
7609 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0667P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125 (Δ/σ)max = 0.001
S = 0.97 Δρmax = 0.16 e Å3
7609 reflections Δρmin = −0.17 e Å3
560 parameters Absolute structure: Refined as an inversion twin
5 restraints Absolute structure parameter: 0.6 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.10822 (15) 0.3014 (4) 0.12187 (14) 0.0520 (7)
O2 0.19050 (18) 0.4249 (6) 0.47508 (17) 0.0864 (12)
O3 0.06054 (17) 0.3271 (5) 0.47163 (14) 0.0648 (8)
O4 0.24935 (14) 0.7272 (4) 1.05090 (15) 0.0496 (7)
O5 0.14434 (17) 0.5821 (4) 0.70340 (16) 0.0648 (8)
O6 0.26005 (16) 0.7442 (4) 0.69644 (15) 0.0625 (8)
O7 0.40986 (15) 0.2922 (3) 1.18050 (15) 0.0510 (7)
O8 0.44677 (16) 0.0780 (4) 0.83691 (16) 0.0599 (8)
C1 0.0495 (2) 0.2152 (5) −0.0013 (2) 0.0443 (9)
C2 −0.0147 (2) 0.2495 (5) −0.0573 (2) 0.0489 (10)
H2 −0.066049 0.293542 −0.043362 0.059*
C3 −0.0046 (2) 0.2202 (6) −0.1331 (2) 0.0543 (11)
H3 −0.049429 0.242504 −0.170299 0.065*
C4 0.0702 (2) 0.1589 (6) −0.1552 (2) 0.0497 (10)
C5 0.1338 (2) 0.1273 (6) −0.0996 (2) 0.0527 (10)
H5 0.185817 0.087533 −0.113626 0.063*
C6 0.1236 (2) 0.1522 (6) −0.0237 (2) 0.0510 (10)
H6 0.167989 0.125624 0.013392 0.061*
C7 0.0823 (3) 0.1340 (7) −0.2379 (2) 0.0659 (13)
H7A 0.029618 0.098181 −0.265425 0.079*
H7B 0.124086 0.042428 −0.243164 0.079*
H7C 0.100868 0.245290 −0.258874 0.079*
C8 0.0345 (2) 0.2349 (6) 0.0806 (2) 0.0482 (10)
H8A −0.012131 0.317425 0.085443 0.058*
H8B 0.019711 0.119154 0.101448 0.058*
C9 0.1080 (2) 0.3143 (6) 0.1992 (2) 0.0461 (9)
C10 0.1767 (2) 0.3941 (6) 0.2365 (2) 0.0558 (11)
H10 0.219776 0.438259 0.208893 0.067*
C11 0.1824 (2) 0.4095 (6) 0.3143 (2) 0.0578 (11)
H11 0.229986 0.463783 0.339851 0.069*
C12 0.1200 (2) 0.3471 (6) 0.3559 (2) 0.0498 (10)
C13 0.0515 (2) 0.2667 (5) 0.3178 (2) 0.0497 (10)
H13 0.008507 0.222475 0.345492 0.060*
C14 0.0448 (2) 0.2498 (5) 0.2392 (2) 0.0487 (10)
H14 −0.002383 0.194827 0.213432 0.058*
C15 0.1293 (2) 0.3687 (7) 0.4396 (2) 0.0584 (12)
C16 0.0629 (3) 0.3580 (9) 0.5529 (2) 0.0770 (15)
H16A 0.079550 0.481406 0.564682 0.092*
H16B 0.103932 0.278330 0.580244 0.092*
C17 −0.0198 (3) 0.3242 (9) 0.5765 (3) 0.0857 (16)
H17A −0.059461 0.407351 0.551013 0.103*
H17B −0.018733 0.339427 0.631386 0.103*
H17C −0.036552 0.203129 0.562945 0.103*
C18 0.3073 (2) 0.8300 (5) 1.1705 (2) 0.0478 (10)
C19 0.3626 (2) 0.7371 (6) 1.2195 (2) 0.0524 (10)
H19 0.406274 0.672221 1.200302 0.063*
C20 0.3545 (2) 0.7383 (6) 1.2969 (2) 0.0583 (11)
H20 0.393475 0.675592 1.330204 0.070*
C21 0.2907 (3) 0.8295 (6) 1.3260 (2) 0.0594 (11)
C22 0.2347 (3) 0.9185 (6) 1.2765 (3) 0.0628 (12)
H22 0.189626 0.979302 1.295321 0.075*
C23 0.2433 (2) 0.9204 (6) 1.1995 (2) 0.0572 (11)
H23 0.204792 0.984611 1.166346 0.069*
C24 0.2827 (3) 0.8334 (8) 1.4110 (2) 0.0822 (16)
H24A 0.336608 0.806262 1.438416 0.099*
H24B 0.241827 0.745422 1.423610 0.099*
H24C 0.264674 0.951011 1.425594 0.099*
C25 0.3159 (2) 0.8310 (6) 1.0874 (2) 0.0523 (10)
H25A 0.312822 0.953494 1.067897 0.063*
H25B 0.370048 0.780204 1.077218 0.063*
C26 0.2446 (2) 0.7150 (5) 0.9736 (2) 0.0432 (9)
C27 0.1790 (2) 0.6128 (5) 0.9411 (2) 0.0470 (10)
H27 0.142358 0.556082 0.972200 0.056*
C28 0.1676 (2) 0.5945 (5) 0.8635 (2) 0.0489 (10)
H28 0.122810 0.525418 0.841335 0.059*
C29 0.2212 (2) 0.6763 (5) 0.8173 (2) 0.0457 (9)
C30 0.2876 (2) 0.7729 (5) 0.8507 (2) 0.0476 (10)
H30 0.325151 0.826994 0.819724 0.057*
C31 0.3002 (2) 0.7918 (5) 0.9286 (2) 0.0476 (10)
H31 0.346440 0.856677 0.950938 0.057*
C32 0.2039 (2) 0.6608 (6) 0.7346 (2) 0.0517 (10)
C33 0.2436 (3) 0.7472 (8) 0.6140 (2) 0.0743 (15)
H33A 0.220428 0.632046 0.596184 0.089*
H33B 0.296151 0.766405 0.590866 0.089*
C34 0.1840 (3) 0.8902 (10) 0.5902 (3) 0.0973 (19)
H34A 0.174983 0.892892 0.534905 0.117*
H34B 0.206633 1.003831 0.608704 0.117*
H34C 0.131214 0.868111 0.611367 0.117*
C35 0.4655 (2) 0.2889 (5) 1.3101 (2) 0.0491 (10)
C36 0.5264 (2) 0.3902 (6) 1.3491 (2) 0.0564 (11)
H36 0.574469 0.421203 1.325178 0.068*
C37 0.5190 (3) 0.4475 (6) 1.4222 (3) 0.0598 (11)
H37 0.562457 0.514344 1.448032 0.072*
C38 0.4486 (3) 0.4081 (6) 1.4581 (2) 0.0572 (11)
C39 0.3864 (3) 0.3103 (6) 1.4183 (2) 0.0602 (11)
H39 0.337265 0.283573 1.441409 0.072*
C40 0.3948 (2) 0.2508 (6) 1.3455 (2) 0.0579 (11)
H40 0.351576 0.183268 1.319594 0.070*
C41 0.4391 (3) 0.4632 (7) 1.5379 (2) 0.0780 (14)
H41A 0.380484 0.456245 1.547340 0.094*
H41B 0.458706 0.584850 1.545643 0.094*
H41C 0.471799 0.384621 1.572923 0.094*
C42 0.4754 (2) 0.2209 (6) 1.2318 (2) 0.0536 (10)
H42A 0.529913 0.257174 1.216028 0.064*
H42B 0.472692 0.090338 1.231359 0.064*
C43 0.4135 (2) 0.2591 (5) 1.1059 (2) 0.0462 (10)
C44 0.3508 (2) 0.3376 (5) 1.0580 (2) 0.0493 (10)
H44 0.308706 0.404410 1.078743 0.059*
C45 0.3497 (2) 0.3187 (5) 0.9804 (2) 0.0531 (10)
H45 0.307418 0.374312 0.948115 0.064*
C46 0.4106 (2) 0.2179 (5) 0.9493 (2) 0.0476 (10)
C47 0.4712 (2) 0.1361 (5) 0.9978 (2) 0.0482 (10)
H47 0.511533 0.064016 0.977267 0.058*
C48 0.4739 (2) 0.1577 (5) 1.0761 (2) 0.0464 (9)
H48 0.516601 0.103709 1.108483 0.056*
C49 0.4124 (2) 0.1963 (6) 0.8672 (3) 0.0584 (11)
O9 0.3807 (3) 0.3384 (6) 0.8254 (2) 0.0544 (16) 0.735 (9)
C50 0.3807 (5) 0.3379 (13) 0.7433 (6) 0.064 (2) 0.735 (9)
H50A 0.432423 0.282505 0.729022 0.077* 0.735 (9)
H50B 0.378868 0.460869 0.724260 0.077* 0.735 (9)
C51 0.3068 (4) 0.2372 (9) 0.7079 (4) 0.067 (2) 0.735 (9)
H51A 0.307393 0.237694 0.652755 0.101* 0.735 (9)
H51B 0.309176 0.115223 0.726315 0.101* 0.735 (9)
H51C 0.255724 0.293246 0.721562 0.101* 0.735 (9)
O9B 0.3346 (8) 0.2613 (17) 0.8386 (6) 0.056 (4)* 0.265 (9)
C50B 0.3182 (13) 0.228 (3) 0.7576 (11) 0.078 (6)* 0.265 (9)
H50C 0.260686 0.263008 0.740216 0.093* 0.265 (9)
H50D 0.324382 0.100218 0.747293 0.093* 0.265 (9)
C51B 0.377 (2) 0.330 (5) 0.7170 (19) 0.081 (12)* 0.265 (9)
H51D 0.366615 0.307989 0.662536 0.122* 0.265 (9)
H51E 0.370481 0.455896 0.727113 0.122* 0.265 (9)
H51F 0.433994 0.293573 0.734169 0.122* 0.265 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0389 (14) 0.0603 (19) 0.0572 (17) −0.0066 (13) 0.0069 (11) −0.0051 (15)
O2 0.0544 (19) 0.136 (4) 0.069 (2) −0.016 (2) 0.0050 (15) −0.028 (2)
O3 0.0547 (17) 0.085 (2) 0.0546 (17) −0.0051 (17) 0.0072 (13) −0.0107 (17)
O4 0.0407 (14) 0.0462 (16) 0.0617 (18) −0.0072 (13) 0.0043 (12) 0.0012 (14)
O5 0.0518 (17) 0.072 (2) 0.0698 (19) −0.0104 (17) 0.0028 (14) −0.0147 (17)
O6 0.0508 (16) 0.079 (2) 0.0583 (18) −0.0110 (16) 0.0111 (13) −0.0097 (16)
O7 0.0411 (14) 0.0503 (17) 0.0619 (18) 0.0051 (13) 0.0060 (12) 0.0001 (15)
O8 0.0538 (16) 0.0573 (19) 0.0695 (19) 0.0051 (15) 0.0096 (13) −0.0054 (16)
C1 0.039 (2) 0.036 (2) 0.058 (2) −0.0038 (18) 0.0085 (17) −0.0015 (19)
C2 0.040 (2) 0.045 (2) 0.063 (3) −0.0003 (18) 0.0106 (18) 0.002 (2)
C3 0.046 (2) 0.056 (3) 0.060 (3) −0.007 (2) −0.0004 (18) 0.007 (2)
C4 0.051 (2) 0.043 (2) 0.056 (2) −0.0052 (19) 0.0115 (19) 0.002 (2)
C5 0.042 (2) 0.052 (3) 0.066 (3) 0.0035 (19) 0.0130 (19) −0.002 (2)
C6 0.041 (2) 0.052 (2) 0.061 (3) 0.0001 (19) 0.0054 (18) 0.003 (2)
C7 0.078 (3) 0.063 (3) 0.058 (3) −0.016 (3) 0.014 (2) −0.004 (2)
C8 0.040 (2) 0.050 (2) 0.055 (2) −0.0056 (19) 0.0085 (17) −0.002 (2)
C9 0.040 (2) 0.047 (2) 0.052 (2) 0.0026 (19) 0.0081 (16) −0.004 (2)
C10 0.044 (2) 0.060 (3) 0.066 (3) −0.008 (2) 0.0137 (19) −0.008 (2)
C11 0.044 (2) 0.059 (3) 0.071 (3) −0.009 (2) 0.0030 (19) −0.012 (2)
C12 0.041 (2) 0.052 (3) 0.056 (2) 0.003 (2) 0.0038 (17) −0.006 (2)
C13 0.040 (2) 0.050 (3) 0.059 (3) −0.0032 (19) 0.0079 (17) −0.003 (2)
C14 0.037 (2) 0.052 (3) 0.056 (3) −0.0034 (19) 0.0025 (17) −0.008 (2)
C15 0.045 (2) 0.069 (3) 0.061 (3) 0.003 (2) 0.003 (2) −0.012 (2)
C16 0.072 (3) 0.112 (4) 0.048 (3) 0.004 (3) 0.005 (2) −0.010 (3)
C17 0.086 (4) 0.111 (5) 0.061 (3) −0.012 (3) 0.012 (2) −0.002 (3)
C18 0.041 (2) 0.039 (2) 0.063 (3) −0.0033 (19) 0.0035 (18) 0.001 (2)
C19 0.042 (2) 0.049 (3) 0.066 (3) 0.004 (2) 0.0088 (18) 0.000 (2)
C20 0.049 (2) 0.058 (3) 0.067 (3) 0.000 (2) −0.0007 (19) 0.011 (2)
C21 0.063 (3) 0.053 (3) 0.063 (3) −0.011 (2) 0.011 (2) −0.001 (2)
C22 0.055 (3) 0.058 (3) 0.077 (3) 0.008 (2) 0.014 (2) −0.009 (3)
C23 0.051 (2) 0.053 (3) 0.067 (3) 0.006 (2) 0.001 (2) −0.004 (2)
C24 0.093 (4) 0.088 (4) 0.067 (3) −0.011 (3) 0.019 (3) −0.003 (3)
C25 0.040 (2) 0.055 (3) 0.062 (3) −0.007 (2) 0.0046 (17) −0.007 (2)
C26 0.0363 (19) 0.038 (2) 0.056 (2) 0.0034 (18) 0.0050 (16) −0.0020 (19)
C27 0.033 (2) 0.040 (2) 0.069 (3) 0.0010 (17) 0.0104 (18) 0.000 (2)
C28 0.0320 (19) 0.041 (2) 0.073 (3) 0.0008 (18) 0.0020 (18) −0.005 (2)
C29 0.0339 (19) 0.043 (2) 0.060 (3) 0.0045 (17) 0.0030 (17) −0.005 (2)
C30 0.039 (2) 0.043 (2) 0.062 (3) −0.0006 (18) 0.0115 (17) −0.003 (2)
C31 0.036 (2) 0.044 (2) 0.062 (3) −0.0045 (17) 0.0033 (17) −0.004 (2)
C32 0.039 (2) 0.051 (3) 0.065 (3) 0.000 (2) 0.0068 (19) −0.013 (2)
C33 0.064 (3) 0.105 (4) 0.056 (3) −0.018 (3) 0.018 (2) −0.022 (3)
C34 0.084 (4) 0.141 (6) 0.067 (3) 0.000 (4) 0.006 (3) 0.009 (4)
C35 0.041 (2) 0.043 (2) 0.064 (3) 0.0045 (18) 0.0064 (18) 0.006 (2)
C36 0.043 (2) 0.050 (3) 0.076 (3) −0.003 (2) 0.006 (2) 0.007 (2)
C37 0.051 (2) 0.050 (3) 0.077 (3) −0.007 (2) −0.003 (2) 0.000 (2)
C38 0.060 (3) 0.048 (3) 0.063 (3) 0.000 (2) 0.001 (2) 0.000 (2)
C39 0.050 (2) 0.063 (3) 0.070 (3) −0.005 (2) 0.018 (2) 0.000 (2)
C40 0.042 (2) 0.057 (3) 0.075 (3) −0.009 (2) 0.0052 (19) −0.001 (2)
C41 0.093 (4) 0.068 (3) 0.073 (3) 0.001 (3) 0.009 (3) −0.008 (3)
C42 0.039 (2) 0.057 (3) 0.065 (3) 0.004 (2) 0.0051 (18) 0.006 (2)
C43 0.0341 (19) 0.040 (2) 0.066 (3) −0.0026 (18) 0.0103 (17) −0.003 (2)
C44 0.036 (2) 0.042 (2) 0.070 (3) 0.0046 (18) 0.0045 (18) −0.005 (2)
C45 0.040 (2) 0.042 (2) 0.075 (3) 0.0058 (19) −0.0065 (18) −0.006 (2)
C46 0.039 (2) 0.041 (2) 0.061 (3) −0.0001 (19) −0.0004 (17) −0.006 (2)
C47 0.037 (2) 0.036 (2) 0.073 (3) 0.0008 (18) 0.0074 (18) −0.002 (2)
C48 0.0339 (19) 0.042 (2) 0.063 (3) −0.0001 (18) 0.0018 (17) 0.003 (2)
C49 0.049 (2) 0.052 (3) 0.072 (3) 0.009 (2) −0.005 (2) −0.011 (2)
O9 0.061 (3) 0.046 (3) 0.056 (3) 0.008 (2) 0.0020 (18) 0.001 (2)
C50 0.058 (4) 0.062 (5) 0.074 (7) −0.006 (3) 0.012 (4) −0.005 (5)
C51 0.052 (4) 0.064 (4) 0.084 (6) −0.003 (3) −0.002 (3) 0.000 (4)

Geometric parameters (Å, º)

O1—C9 1.377 (4) C25—H25B 0.9900
O1—C8 1.432 (4) C26—C31 1.387 (5)
O2—C15 1.201 (5) C26—C27 1.395 (5)
O3—C15 1.335 (5) C27—C28 1.380 (5)
O3—C16 1.459 (4) C27—H27 0.9500
O4—C26 1.371 (4) C28—C29 1.393 (5)
O4—C25 1.438 (4) C28—H28 0.9500
O5—C32 1.222 (4) C29—C30 1.387 (5)
O6—C32 1.341 (5) C29—C32 1.475 (5)
O6—C33 1.463 (5) C30—C31 1.387 (5)
O7—C43 1.355 (4) C30—H30 0.9500
O7—C42 1.438 (4) C31—H31 0.9500
O8—C49 1.207 (5) C33—C34 1.485 (8)
C1—C6 1.383 (5) C33—H33A 0.9900
C1—C2 1.393 (5) C33—H33B 0.9900
C1—C8 1.505 (5) C34—H34A 0.9800
C2—C3 1.390 (5) C34—H34B 0.9800
C2—H2 0.9500 C34—H34C 0.9800
C3—C4 1.387 (5) C35—C36 1.384 (5)
C3—H3 0.9500 C35—C40 1.387 (5)
C4—C5 1.379 (5) C35—C42 1.505 (5)
C4—C7 1.512 (5) C36—C37 1.384 (6)
C5—C6 1.386 (5) C36—H36 0.9500
C5—H5 0.9500 C37—C38 1.389 (6)
C6—H6 0.9500 C37—H37 0.9500
C7—H7A 0.9800 C38—C39 1.389 (6)
C7—H7B 0.9800 C38—C41 1.500 (6)
C7—H7C 0.9800 C39—C40 1.388 (6)
C8—H8A 0.9900 C39—H39 0.9500
C8—H8B 0.9900 C40—H40 0.9500
C9—C10 1.380 (5) C41—H41A 0.9800
C9—C14 1.388 (5) C41—H41B 0.9800
C10—C11 1.380 (5) C41—H41C 0.9800
C10—H10 0.9500 C42—H42A 0.9900
C11—C12 1.389 (5) C42—H42B 0.9900
C11—H11 0.9500 C43—C48 1.387 (5)
C12—C13 1.386 (5) C43—C44 1.395 (5)
C12—C15 1.488 (5) C44—C45 1.384 (5)
C13—C14 1.395 (5) C44—H44 0.9500
C13—H13 0.9500 C45—C46 1.401 (5)
C14—H14 0.9500 C45—H45 0.9500
C16—C17 1.463 (6) C46—C47 1.389 (5)
C16—H16A 0.9900 C46—C49 1.471 (6)
C16—H16B 0.9900 C47—C48 1.397 (5)
C17—H17A 0.9800 C47—H47 0.9500
C17—H17B 0.9800 C48—H48 0.9500
C17—H17C 0.9800 C49—O9 1.379 (6)
C18—C23 1.381 (5) C49—O9B 1.403 (12)
C18—C19 1.382 (5) O9—C50 1.458 (11)
C18—C25 1.495 (5) C50—C51 1.507 (10)
C19—C20 1.394 (5) C50—H50A 0.9900
C19—H19 0.9500 C50—H50B 0.9900
C20—C21 1.383 (6) C51—H51A 0.9800
C20—H20 0.9500 C51—H51B 0.9800
C21—C22 1.379 (6) C51—H51C 0.9800
C21—C24 1.527 (5) O9B—C50B 1.459 (19)
C22—C23 1.388 (5) C50B—C51B 1.47 (2)
C22—H22 0.9500 C50B—H50C 0.9900
C23—H23 0.9500 C50B—H50D 0.9900
C24—H24A 0.9800 C51B—H51D 0.9800
C24—H24B 0.9800 C51B—H51E 0.9800
C24—H24C 0.9800 C51B—H51F 0.9800
C25—H25A 0.9900
C9—O1—C8 117.1 (3) C27—C28—H28 119.6
C15—O3—C16 115.9 (3) C29—C28—H28 119.6
C26—O4—C25 117.3 (3) C30—C29—C28 118.9 (4)
C32—O6—C33 116.3 (3) C30—C29—C32 122.4 (3)
C43—O7—C42 117.0 (3) C28—C29—C32 118.7 (3)
C6—C1—C2 117.9 (4) C31—C30—C29 121.1 (3)
C6—C1—C8 122.3 (3) C31—C30—H30 119.4
C2—C1—C8 119.6 (3) C29—C30—H30 119.4
C3—C2—C1 120.9 (3) C26—C31—C30 119.2 (4)
C3—C2—H2 119.5 C26—C31—H31 120.4
C1—C2—H2 119.5 C30—C31—H31 120.4
C4—C3—C2 120.8 (4) O5—C32—O6 123.0 (4)
C4—C3—H3 119.6 O5—C32—C29 124.0 (4)
C2—C3—H3 119.6 O6—C32—C29 113.0 (3)
C5—C4—C3 117.9 (4) O6—C33—C34 110.4 (4)
C5—C4—C7 121.3 (4) O6—C33—H33A 109.6
C3—C4—C7 120.8 (4) C34—C33—H33A 109.6
C4—C5—C6 121.6 (4) O6—C33—H33B 109.6
C4—C5—H5 119.2 C34—C33—H33B 109.6
C6—C5—H5 119.2 H33A—C33—H33B 108.1
C1—C6—C5 120.7 (4) C33—C34—H34A 109.5
C1—C6—H6 119.6 C33—C34—H34B 109.5
C5—C6—H6 119.6 H34A—C34—H34B 109.5
C4—C7—H7A 109.5 C33—C34—H34C 109.5
C4—C7—H7B 109.5 H34A—C34—H34C 109.5
H7A—C7—H7B 109.5 H34B—C34—H34C 109.5
C4—C7—H7C 109.5 C36—C35—C40 118.0 (4)
H7A—C7—H7C 109.5 C36—C35—C42 121.3 (3)
H7B—C7—H7C 109.5 C40—C35—C42 120.7 (4)
O1—C8—C1 109.1 (3) C35—C36—C37 121.5 (4)
O1—C8—H8A 109.9 C35—C36—H36 119.2
C1—C8—H8A 109.9 C37—C36—H36 119.2
O1—C8—H8B 109.9 C36—C37—C38 120.7 (4)
C1—C8—H8B 109.9 C36—C37—H37 119.7
H8A—C8—H8B 108.3 C38—C37—H37 119.7
O1—C9—C10 115.7 (3) C37—C38—C39 118.0 (4)
O1—C9—C14 123.8 (3) C37—C38—C41 122.4 (4)
C10—C9—C14 120.5 (4) C39—C38—C41 119.6 (4)
C9—C10—C11 119.6 (4) C40—C39—C38 121.1 (4)
C9—C10—H10 120.2 C40—C39—H39 119.4
C11—C10—H10 120.2 C38—C39—H39 119.4
C10—C11—C12 121.3 (4) C35—C40—C39 120.8 (4)
C10—C11—H11 119.3 C35—C40—H40 119.6
C12—C11—H11 119.3 C39—C40—H40 119.6
C13—C12—C11 118.6 (4) C38—C41—H41A 109.5
C13—C12—C15 122.5 (4) C38—C41—H41B 109.5
C11—C12—C15 118.9 (4) H41A—C41—H41B 109.5
C12—C13—C14 120.8 (4) C38—C41—H41C 109.5
C12—C13—H13 119.6 H41A—C41—H41C 109.5
C14—C13—H13 119.6 H41B—C41—H41C 109.5
C9—C14—C13 119.2 (3) O7—C42—C35 108.7 (3)
C9—C14—H14 120.4 O7—C42—H42A 109.9
C13—C14—H14 120.4 C35—C42—H42A 109.9
O2—C15—O3 122.7 (4) O7—C42—H42B 109.9
O2—C15—C12 124.3 (4) C35—C42—H42B 109.9
O3—C15—C12 112.9 (3) H42A—C42—H42B 108.3
O3—C16—C17 108.4 (4) O7—C43—C48 124.9 (4)
O3—C16—H16A 110.0 O7—C43—C44 114.9 (3)
C17—C16—H16A 110.0 C48—C43—C44 120.2 (4)
O3—C16—H16B 110.0 C45—C44—C43 120.2 (4)
C17—C16—H16B 110.0 C45—C44—H44 119.9
H16A—C16—H16B 108.4 C43—C44—H44 119.9
C16—C17—H17A 109.5 C44—C45—C46 120.4 (4)
C16—C17—H17B 109.5 C44—C45—H45 119.8
H17A—C17—H17B 109.5 C46—C45—H45 119.8
C16—C17—H17C 109.5 C47—C46—C45 118.7 (4)
H17A—C17—H17C 109.5 C47—C46—C49 119.1 (4)
H17B—C17—H17C 109.5 C45—C46—C49 122.2 (4)
C23—C18—C19 118.9 (4) C46—C47—C48 121.3 (3)
C23—C18—C25 120.5 (4) C46—C47—H47 119.3
C19—C18—C25 120.6 (3) C48—C47—H47 119.3
C18—C19—C20 120.2 (4) C43—C48—C47 119.1 (4)
C18—C19—H19 119.9 C43—C48—H48 120.4
C20—C19—H19 119.9 C47—C48—H48 120.4
C21—C20—C19 120.9 (4) O8—C49—O9 120.3 (4)
C21—C20—H20 119.5 O8—C49—O9B 122.3 (6)
C19—C20—H20 119.5 O8—C49—C46 125.2 (4)
C22—C21—C20 118.4 (4) O9—C49—C46 113.9 (4)
C22—C21—C24 120.7 (4) O9B—C49—C46 102.7 (5)
C20—C21—C24 120.9 (4) C49—O9—C50 120.1 (5)
C21—C22—C23 120.9 (4) O9—C50—C51 110.1 (7)
C21—C22—H22 119.5 O9—C50—H50A 109.6
C23—C22—H22 119.5 C51—C50—H50A 109.6
C18—C23—C22 120.7 (4) O9—C50—H50B 109.6
C18—C23—H23 119.7 C51—C50—H50B 109.6
C22—C23—H23 119.7 H50A—C50—H50B 108.2
C21—C24—H24A 109.5 C50—C51—H51A 109.5
C21—C24—H24B 109.5 C50—C51—H51B 109.5
H24A—C24—H24B 109.5 H51A—C51—H51B 109.5
C21—C24—H24C 109.5 C50—C51—H51C 109.5
H24A—C24—H24C 109.5 H51A—C51—H51C 109.5
H24B—C24—H24C 109.5 H51B—C51—H51C 109.5
O4—C25—C18 107.9 (3) C49—O9B—C50B 111.7 (11)
O4—C25—H25A 110.1 O9B—C50B—C51B 109 (2)
C18—C25—H25A 110.1 O9B—C50B—H50C 109.9
O4—C25—H25B 110.1 C51B—C50B—H50C 109.9
C18—C25—H25B 110.1 O9B—C50B—H50D 109.9
H25A—C25—H25B 108.4 C51B—C50B—H50D 109.9
O4—C26—C31 124.7 (3) H50C—C50B—H50D 108.3
O4—C26—C27 114.9 (3) C50B—C51B—H51D 109.5
C31—C26—C27 120.3 (4) C50B—C51B—H51E 109.5
C28—C27—C26 119.6 (3) H51D—C51B—H51E 109.5
C28—C27—H27 120.2 C50B—C51B—H51F 109.5
C26—C27—H27 120.2 H51D—C51B—H51F 109.5
C27—C28—C29 120.7 (4) H51E—C51B—H51F 109.5
C6—C1—C2—C3 0.4 (6) C27—C28—C29—C32 −176.7 (3)
C8—C1—C2—C3 −175.3 (4) C28—C29—C30—C31 −1.3 (5)
C1—C2—C3—C4 −1.1 (6) C32—C29—C30—C31 177.0 (4)
C2—C3—C4—C5 0.3 (6) O4—C26—C31—C30 −178.7 (3)
C2—C3—C4—C7 −177.6 (4) C27—C26—C31—C30 3.1 (6)
C3—C4—C5—C6 1.2 (6) C29—C30—C31—C26 −1.0 (6)
C7—C4—C5—C6 179.1 (4) C33—O6—C32—O5 4.1 (6)
C2—C1—C6—C5 1.2 (6) C33—O6—C32—C29 −175.2 (4)
C8—C1—C6—C5 176.7 (4) C30—C29—C32—O5 −177.3 (4)
C4—C5—C6—C1 −2.0 (6) C28—C29—C32—O5 1.0 (6)
C9—O1—C8—C1 −174.9 (3) C30—C29—C32—O6 2.0 (5)
C6—C1—C8—O1 40.1 (5) C28—C29—C32—O6 −179.6 (4)
C2—C1—C8—O1 −144.3 (4) C32—O6—C33—C34 81.8 (5)
C8—O1—C9—C10 −174.1 (4) C40—C35—C36—C37 2.2 (6)
C8—O1—C9—C14 7.1 (6) C42—C35—C36—C37 −177.5 (4)
O1—C9—C10—C11 −178.7 (4) C35—C36—C37—C38 −1.6 (7)
C14—C9—C10—C11 0.1 (6) C36—C37—C38—C39 −0.1 (7)
C9—C10—C11—C12 −0.4 (7) C36—C37—C38—C41 178.3 (4)
C10—C11—C12—C13 0.6 (7) C37—C38—C39—C40 1.1 (7)
C10—C11—C12—C15 −179.5 (4) C41—C38—C39—C40 −177.3 (4)
C11—C12—C13—C14 −0.5 (6) C36—C35—C40—C39 −1.1 (6)
C15—C12—C13—C14 179.6 (4) C42—C35—C40—C39 178.6 (4)
O1—C9—C14—C13 178.8 (4) C38—C39—C40—C35 −0.5 (7)
C10—C9—C14—C13 0.0 (6) C43—O7—C42—C35 173.7 (3)
C12—C13—C14—C9 0.2 (6) C36—C35—C42—O7 −118.9 (4)
C16—O3—C15—O2 1.5 (7) C40—C35—C42—O7 61.4 (5)
C16—O3—C15—C12 −175.5 (4) C42—O7—C43—C48 2.1 (5)
C13—C12—C15—O2 173.9 (5) C42—O7—C43—C44 −177.2 (3)
C11—C12—C15—O2 −6.0 (7) O7—C43—C44—C45 177.6 (3)
C13—C12—C15—O3 −9.3 (6) C48—C43—C44—C45 −1.6 (6)
C11—C12—C15—O3 170.9 (4) C43—C44—C45—C46 1.2 (6)
C15—O3—C16—C17 173.7 (5) C44—C45—C46—C47 0.8 (6)
C23—C18—C19—C20 −1.3 (6) C44—C45—C46—C49 −179.1 (4)
C25—C18—C19—C20 179.4 (4) C45—C46—C47—C48 −2.2 (6)
C18—C19—C20—C21 1.0 (7) C49—C46—C47—C48 177.6 (4)
C19—C20—C21—C22 0.4 (7) O7—C43—C48—C47 −179.0 (3)
C19—C20—C21—C24 −178.9 (4) C44—C43—C48—C47 0.2 (5)
C20—C21—C22—C23 −1.6 (7) C46—C47—C48—C43 1.8 (5)
C24—C21—C22—C23 177.7 (4) C47—C46—C49—O8 21.5 (6)
C19—C18—C23—C22 0.1 (6) C45—C46—C49—O8 −158.6 (4)
C25—C18—C23—C22 179.4 (4) C47—C46—C49—O9 −149.8 (4)
C21—C22—C23—C18 1.4 (7) C45—C46—C49—O9 30.1 (6)
C26—O4—C25—C18 178.3 (3) C47—C46—C49—O9B 167.6 (7)
C23—C18—C25—O4 −70.6 (5) C45—C46—C49—O9B −12.5 (8)
C19—C18—C25—O4 108.7 (4) O8—C49—O9—C50 6.4 (8)
C25—O4—C26—C31 1.6 (5) C46—C49—O9—C50 178.2 (5)
C25—O4—C26—C27 180.0 (3) C49—O9—C50—C51 82.8 (8)
O4—C26—C27—C28 178.8 (3) O8—C49—O9B—C50B −24.0 (16)
C31—C26—C27—C28 −2.7 (6) C46—C49—O9B—C50B −171.4 (12)
C26—C27—C28—C29 0.3 (6) C49—O9B—C50B—C51B −66 (2)
C27—C28—C29—C30 1.7 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C42—H42A···O8i 0.99 2.65 3.269 (5) 121
C44—H44···O4 0.95 2.66 3.374 (5) 133

Symmetry code: (i) −x+1, y+1/2, −z+2.

Funding Statement

Funding for this research was provided by: University Grants Commission Bangladesh.

References

  1. Abser, M. N., Bellwood, M., Holmes, M. C. & McCabe, R. W. (1993). J. Chem. Soc. Chem. Commun. pp. 1062–1063.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bats, J. W. & Canenbley, R. (1984). Acta Cryst. C40, 993–995.
  4. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Feng, Y., Liu, Z.-T., Liu, J., He, Y.-M., Zheng, Q.-Y. & Fan, Q.-H. (2009). J. Am. Chem. Soc. 131, 7950–7951. [DOI] [PubMed]
  7. Giordano, F., Bettini, R., Donini, C., Gazzaniga, A., Caira, M. R., Zhang, G. G. Z. & Grant, D. J. W. (1999). J. Pharm. Sci. 88, 1210–1216. [DOI] [PubMed]
  8. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  9. Jasinski, J. P., Butcher, R. J., Swamy, M. T., Yathirajan, H. S., Mohana, K. N. & Narayana, B. (2008). Anal. Sci. 24, x274.
  10. Lavis, L. D. (2008). Chem. Biol. 3, 203–206. [DOI] [PubMed]
  11. Moreno-Fuquen, R., Grande, C., Advincula, R. C., Tenorio, J. C. & Ellena, J. (2012). Acta Cryst. E68, o3247–o3248. [DOI] [PMC free article] [PubMed]
  12. Perumal, C. K. L., Arulchakkaravarthi, A., Santhanaraghavan, P. & Ramasamy, P. (2002). J. Cryst. Growth, 241, 200–205.
  13. Qin, Y.-M., Zou, X., Long, D., Ji, C. & Zhao, C.-S. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1295–1296.
  14. Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  18. Wang, K., Ju, C. F., Xiao, J. & Chen, Q. (2013). Acta Cryst. E69, o1562. [DOI] [PMC free article] [PubMed]
  19. Yang, H., Svärd, M., Zeglinski, J. & Rasmuson, C. (2014). Cryst. Growth Des. 14, 3890–3902.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022009380/wm5660sup1.cif

e-78-01077-sup1.cif (627.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022009380/wm5660Isup2.hkl

e-78-01077-Isup2.hkl (604.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022009380/wm5660Isup3.cml

CCDC reference: 2174691

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES