Skip to main content
Wiley Open Access Collection logoLink to Wiley Open Access Collection
. 2022 Apr 28;188(9):2527–2535. doi: 10.1002/ajmg.a.62767

Hepatoblastoma in molecularly defined, congenital diseases

Gunther Nussbaumer 1,, Martin Benesch 1
PMCID: PMC9545988  PMID: 35478319

Abstract

Beckwith–Wiedemann spectrum, Simpson–Golabi–Behmel syndrome, familial adenomatous polyposis and trisomy 18 are the most common congenital conditions associated with an increased incidence of hepatoblastoma (HB). In patients with these genetic disorders, screening protocols for HB are proposed that include periodic abdominal ultrasound and measurement of alpha‐fetoprotein levels. Surveillance in these children may contribute to the early detection of HB and possibly improve their chances of overall survival. Therefore, physicians must be aware of the high HB incidence in children with certain predisposing genetic diseases.

Keywords: cancer predisposition, congenital diseases, hepatoblastoma, screening, surveillance

1. INTRODUCTION

With an estimated incidence of about 1–2 per million children younger than 15 years, hepatoblastoma (HB) is the most common childhood liver malignancy (Feng et al., 2019). The etiology of HB is unknown, and only a few predisposing factors have been defined so far. While the influence of certain factors (e.g., maternal tobacco use during pregnancy or infertility treatment) has been controversially debated (Johnson et al., 2013; McLaughlin et al., 2006; Puumala et al., 2012), low birth weight (especially less 1500 g) is widely acknowledged as an independent risk factor for HB development (Heck et al., 2013; Tanimura et al., 1998). In addition, certain congenital conditions are known to be associated with an increased incidence of HB. This review was carried out to raise awareness regarding HB in children with specific genetic disorders, placing a specific focus on their genetic background and screening recommendations.

2. METHODS

A systematic, two‐step literature review was performed in PubMed/MEDLINE. In the first step, the following search term combinations were used to search the database: “(hepatoblastoma) AND (syndrome)” or “(hepatoblastoma) AND (congenital).” Case reports, clinical studies and reviews on hepatoblastoma in children with congenital diseases that were written in the English language and were published before October 31, 2021, were included. Only cases with molecularly confirmed alterations in disease‐causing genes were considered. Cases that reported undetermined molecular findings, hepatic tumors other than HB, or failed to reference a histopathological work‐up of the tumor were excluded. In the second step, the database was searched for additional reports and screening recommendations in English regarding HB in included genetic conditions.

3. RESULTS

3.1. Overgrowth syndromes: Beckwith–Wiedemann spectrum and Simpson–Golabi–Behmel syndrome

The Beckwith–Wiedemann spectrum (BWSp) encompasses the conventional Beckwith–Wiedemann syndrome (BWS; OMIM #130650) with or without (epi‐)genetic changes as well as more subtle phenotypes, including isolated lateralized overgrowth (ILO; OMIM #235000), with a confirmed molecular abnormality at chromosome region 11p15.5 (Brioude et al., 2018; Kalish, Biesecker, et al., 2017). Genes at this locus comprising CDKN1C, IGF2, and H19 are involved in growth control and cell‐cycle progression. These genes are physiologically expressed in a parent‐of‐origin specific, so‐called imprinted manner due to the epigenetic status at their corresponding imprinting control region (ICR). In BWS, alterations at 11p15.5 are detectable in up to 80% of affected individuals (Weksberg et al., 2010). The most frequent pathogenetic anomalies include (epi‐)genetic changes at ICR‐1 (controls H19 and IGF2; 5% prevalence) or ICR‐2 (controls CDKN1C; 50% prevalence), paternal uniparental isodisomy (pUPD; 20% prevalence) and pathogenic variants in CDKN1C (5% prevalence) (Choufani et al., 2013). During their infancy and early childhood, affected individuals are predisposed to develop embryonal tumors, especially Wilms' tumor and HB, and, consequently, screening is recommended (Cohen, 2005). The risk of tumor development correlates significantly with the molecular subgroup, as children with the pUPD subtype, which is also frequently present in ILO, have the highest risk to develop HB (Cöktü et al., 2020; Mussa, Russo, et al., 2016; Shuman et al., 2006). Therefore, recent screening recommendations for BWSp include HB surveillance strategies that have been adapted according to the underlying molecular subgroup, whereas the exact risk stratification as well as diagnostic modalities are still under discussion. Specific recommendations based on each molecular subtype are summarized in Table 1. In contrast, the American Association for Cancer Research has continued to recommend uniform screening in BWSp until more clarity is available regarding HB incidence in the particular genetic subtype (Kalish, Doros, et al., 2017). However, individuals at risk of HB undergo hepatic ultrasound at least every 3 months in the first years of life. The significance of periodically measuring the serum AFP levels is controversial considering the elevated AFP values in children with BWSp and their variable decrease in the first 2 years of life (Duffy et al., 2019), although several case reports have indicated that serial AFP level measurements and tumor screening in children with BWSp are beneficial (Clericuzio et al., 2003; Kim et al., 2017; Mussa et al., 2011; Zarate et al., 2009). When hepatic surveillance can be discontinued is also still unclear. A recent study confirmed that HB rarely occurs in children with BWSp older than 30 months of age; therefore, these children are significantly younger when diagnosed as compared with unselected cases (Mussa, Duffy, Carli, Ferrero, & Kalish, 2019).

TABLE 1.

Risk‐stratified surveillance recommendations for HB in BWSp based on molecular subgroups.

HB screening Hepatic ultrasound a and duration AFP screening
(Brioude et al., 2018)
  • BWS w/o molecular evidence

No No No
  • ICR‐1

No No No
  • ICR‐2

No No No
  • 11p15 pUPD

Yes Every 3 months till 7 yrs No
  • CDKN1C‐mutation

No No No
(Maas et al., 2016)
  • BWS w/o molecular evidence

Yes Every 3 months till 4 yrs No
  • ICR‐1

No No No
  • ICR‐2

No No No
  • 11p15 pUPD

Yes Every 3 months till 4 yrs No
  • CDKN1C‐mutation

facultative Every 3 months till 4 yrs No
(Mussa, Molinatto, et al., 2016)
  • BWS w/o molecular evidence

Not mentioned Not mentioned Not mentioned
  • ICR‐1

No No No
  • ICR‐2

No No No
  • 11p15 pUPD

Yes Every 3 months till 5 yrs Yes
  • CDKN1C‐mutation

No No No

Abbreviations: w/o, without; yrs, years of age.

a

Explicit ultrasound imaging of the liver for detection of HB.

Differential diagnoses of BWS include the Simpson–Golabi–Behmel syndrome (SGBS; OMIM #312870), a rare overgrowth syndrome caused by alterations in the gene for glypican‐3 (GPC3) at chromosome band Xq26 (Pilia et al., 1996). Due to its phenotypical similarities with BWS, molecular investigations of the GPC3 gene may be considered, if 11p15.5 alterations in male individuals with overgrowth syndrome are not detectable (Knopp et al., 2015). SGBS is associated with an increased risk of embryonal tumors: In addition to reports of Wilms' tumors, several case reports of HB in molecular‐verified SGBS have been published (Buonuomo et al., 2005; Kosaki et al., 2014; Li et al., 2001; Mateos et al., 2013; Shimojima et al., 2016). Notably, all cases occurred in children younger than 19 months of age, but no genotype–phenotype correlation has been established yet due to the rarity of HB in SGBS. Respective surveillance recommendations in SGBS resemble screening protocols for children with BWSp, including abdominal ultrasound and serum AFP screening every 3 months till at least the 4th year of age (Brioude et al., 2019; Kalish, Doros, et al., 2017; Lapunzina, 2005).

3.2. Familial adenomatous polyposis

Familial adenomatous polyposis (FAP; OMIM #175100) is an autosomal‐dominant cancer predisposition syndrome caused by an inactivating germline mutation in the adenomatous polyposis coli (APC) tumor suppressor gene. This mutation leads to the development of innumerable colorectal adenomatous polyps and, subsequently, intestinal carcinomas. Various extraintestinal manifestations, such as neoplasms of soft and hard tissue or the central nervous system, have been associated with FAP (Groen et al., 2008). In addition, several case reports have confirmed that children with pathogenic germline APC variants have a significant risk of developing HB (Alkhouri et al., 2010; Augustyn & Wallerstein, 2009; Cetta et al., 1997; Evers et al., 2012; Rosina et al., 2021; Sanders & Furman, 2006; Thomas et al., 2003). The main clinical characteristics as well as the prognosis of individuals with HB and FAP does not seem to differ from those of patients with sporadic HB (Trobaugh‐Lotrario et al., 2018). Still, no generally accepted consensus exists regarding screening for FAP in patients with HB or vice versa (Achatz et al., 2017). In up to 14% of children with presumptively sporadic HB, however, an APC germline mutation is present (Aretz et al., 2006; Yang et al., 2018). Since an HB diagnosis may precede an FAP diagnosis by many years, genetic testing may provide an opportunity to initiate colorectal carcinoma surveillance in a timely manner. Therefore, several authors have recommended screening for APC gene mutations in all patients with HB, even if they do not have a strong family history or other stigmata of FAP (e.g., hypertrophy of the retinal pigment epithelium) (Lazzareschi et al., 2009; Trobaugh‐Lotrario et al., 2018; Yang et al., 2018). In contrast, approximately 2.5% of individuals with a pathogenic germline APC variants develop HB. Genotype–phenotype correlations have so far failed to identify specific APC mutations that predispose individuals with FAP toward developing HB (Giardiello et al., 1996; Hirschman et al., 2005). The surveillance of affected children includes periodically conducting abdominal sonography and measuring the serum AFP until they are 5 years of age (Aretz et al., 2006; Kennedy et al., 2014).

3.3. Trisomy 18

Trisomy 18 (T18) is the second most common autosomal trisomy syndrome after trisomy 21. Although the phenotype varies in individuals, the constitutional presence of an additional chromosome 18 results in various malformations, including congenital heart defects. These malformations contribute markedly to morbidity and mortality in these children (Cereda & Carey, 2012). Consequently, infant mortality is high, and only 8–13% of affected children survive the first year of life according to published cohorts (Nelson et al., 2016; Wu et al., 2013). Intensive care, including sophisticated surgery, has improved the prognosis and life expectancy of selected individuals significantly (Kosiv et al., 2017). However, a growing body of evidence indicates that these children are at risk of developing HB. To date, about 50 cases of HB in T18 have been reported, representing the most frequent malignancy in these infants (Farmakis et al., 2019; Satgé et al., 2016). The female gender seems to confer a survival advantage in T18, and females are markedly predominant among children with T18 and HB. (Meyer et al., 2016; Nelson et al., 2016; Satgé et al., 2016). As liveborn children may be at risk of developing HB, authors of a recent review proposed that abdominal ultrasounds and serial AFP level measurements should be performed every 3 months up until at least the 4th year of age, taking into consideration the lack of validated, age‐correlated AFP levels in children with T18 (Farmakis et al., 2019).

3.4. Single case reports

In addition to previously mentioned genetic conditions, which are characterized by an increased incidence of HB, several case reports have been published on HB in individuals with various congenital diseases (Table 2). The significance of the association between HB and these conditions is still undetermined.

TABLE 2.

Additional case reports of hepatoblastoma in molecularly confirmed genetic disorders.

Genetic condition Affected chromosome locus/gene Sex Weight at birth Age at diagnosis of HB AFP at presentation a HB histology
ARPKD (Kummerfeld et al., 2010) PKHD1 M 830 G 18 months 1702 kU/l Mixed epithelial type
ARPKD (Luoto et al., 2014) PKHD1 M N/A 5 years 6553 N/A
ARPKD (Kadakia et al., 2017) PKHD1 F N/A 18 months 800 Pure fetal epithelial type
Cardio‐facio‐cutaneous syndrome (Al‐Rahawan et al., 2007) MEK1 M “10th percentile” 35 months 2966 Mixed epithelial type
DiGeorge syndrome (Scattone et al., 2003) 22q11.2 M 3700 G “perinatal” 460.347 Mixed epithelial type
DiGeorge syndrome (McDonald‐McGinn et al., 2006) 22q11.2 M N/A 3 months N/A Mixed type b
DiGeorge syndrome (McDonald‐McGinn et al., 2006) 22q11.2 M N/A 15 months N/A Mixed epithelial + mesenchymal type
DiGeorge syndrome c (Rosina et al., 2021) 22q11.21 M 2600 G N/A 266.4 Fetal epithelial type
Fanconi anemia (Kopic et al., 2011) FANCD1/BRCA2 + gain chr. 3q F 1900 G 4¼ years 103,512 Mixed epithelial + mesenchymal type
Fragile–X syndrome (Wirojanan et al., 2008) FMR1 M 4167 G 2 years N/A N/A
Kagami–Ogata syndrome (Kagami et al., 2015) pUPD(14) N/A N/A 13 months N/A Mixed epithelial type
Kagami–Ogata syndrome (Horii et al., 2012) pUPD(14) F 2558 G 7 months 43,963 “well‐differentiated”
Li–Fraumeni syndrome (Toguchida et al., 1992) p53 F N/A 3 months N/A N/A
McCune–‐Albright syndrome (Johansen et al., 2019) GNAS M N/A 5 years 5700 kU/l Embryonal type
MECP2 duplication syndrome (Trobaugh‐Lotrario et al., 2016) MECP2 M 1194 G 2 years 12,199 Mixed epithelial type
Noonan syndrome (Yoshida et al., 2008) PTPN11 M N/A 1 month 142,000 Mixed epithelial type
Osteopathia striata with cranial sclerosis (Fujita et al., 2014) WTX F 3138 G 32 months 557 N/A
Prader–Willi syndrome (Hashizume et al., 1991) Chr. 15 M 1856 G 17 months 23,564 “poorly differentiated HB”
Rubinstein–Taybi syndrome (Milani et al., 2016) CREBBP F 2885 G 11 months N/A Mixed epithelial type
Sotos syndrome (Kato et al., 2009) NSD1 M 2876 G 21 months 84,000 N/A
Trisomy 9p (partial) (Schnater et al., 2005) Chr. 9p M 3550 G 3 months 338,520 Epithelial type
Trisomy 13 (Shah et al., 2014) Chr. 13 F 2990 G 15 months 55,300 Mixed epithelial + mesenchymal type
Wolf–Hirschhorn syndrome (Bayhan et al., 2017) Chr. 4 F 1220 G 2½ years 53,997 Epithelial type

Abbreviations: ARPKD, Autosomal recessive polycystic kidney disease; Chr, chromosome; F, female; G, gram; M, male; N/A, not available.

a

ng/ml if not other specified.

b

No specification.

c

This patient had a mutation of the APC gene additionally.

4. DISCUSSION

Only a few molecularly defined diseases have been associated with a high risk of developing HB, but the contribution of these underlying genetic alterations to tumorigenesis is still incompletely understood. In unselected HB, aberrant Wnt/beta‐catenin signaling is commonly present and a hallmark of this entity (Eichenmüller et al., 2014). The nuclear level of beta‐catenin, which is encoded by the CTNNB1 gene, is regulated precisely by several feedback mechanisms controlling proliferation and differentiation in embryogenesis and hepatic development. Genetic alterations that affect this pathway can cause either the enhancement of beta‐catenin activation or its restrained inhibition. This, in turn, results in an imbalance in signaling, which may direct the cell state toward malignant proliferation (Armengol et al., 2011). Somatic mutations in the CTNNB1 gene are common in unselected HB (Jeng et al., 2000; Koch et al., 1999). Interestingly, the APC protein is part of the beta‐catenin degradation complex and, consequently, acts as a negative regulator. Mutations in the tumor suppressor gene APC, as in FAP, may disinhibit the canonical Wnt signaling pathway and contribute to tumorigenesis of HB (Stamos and Weis, 2013). Furthermore, altered gene expression in the chromosomal region 11p15.5 has been observed in the development of sporadic HB as genetic and epigenetic changes in H19 and IGF2 are present in unselected HB resembling constitutional genetic findings in BWSp (Albrecht et al., 1994; Fukuzawa et al., 1999; Gray et al., 2000; Honda et al., 2008; Rumbajan et al., 2013). Likewise, Carrillo‐Reixach et al. (2020) identified epigenetic modifications of the 14q32.2‐32 locus as a new hallmark in a subgroup of HB. Accordingly, an increased HB incidence is assumed in Kagami–Ogata syndrome, a very rare imprinting disorder of the 14q32.2 region (Horii et al., 2012; Kagami et al., 2015). In addition, the GPC3 protein, which has been assumed to interact with the Wnt/beta‐catenin pathway (Capurro et al., 2014; Song et al., 2005) and with IGF2 (Pilia et al., 1996; Xu et al., 1998), is also overexpressed in unselected HB (Toretsky et al., 2001; Zynger et al., 2008). However, the molecular mechanism by which GPC3 alterations contribute to the tumorigenesis of HB has not been fully elucidated.

Since the sex ratio is inverted in children with T18 and HB, an alternative molecular pathway in these cases might promote tumorigenesis. In cytogenetic analysis of unselected HB, trisomy, or at least gain of chromosome 18, are rarely seen (Tomlinson et al., 2005). Thus, it is still a matter of debate whether trisomy 18 contributes independently to the development of HB through the numeric aberration per se. In this regard, Pereira et al. (2012) reported HB in a girl with mosaic T18, but her tumor cells did not harbor a third chromosome 18.

In general, the reported molecular similarities suggest the existence of a common genetic background between HB in unselected patients and in children with congenital diseases. It is interesting to note that children with overgrowth syndromes seem to be significantly younger when diagnosed with HB as compared with patients that lack this genetic predisposition, indicating that tumorigenesis has an inherent molecular “head start” in these patients. However, as HB only occurs in exceptional cases of patients with genetic conditions, additional somatic driver mutations may be required for its manifestation. Some of the case reports may have overestimated the contribution of the underlying genetic aberration to the development of HB, and additional promoting factors must be reconsidered. As, for example, low birth weight is recognized as an independent risk factor for HB, it is difficult to evaluate the isolated impact of the genotype separately, especially in single case studies.

Moreover, co‐morbidities affect the treatment of HB in children with underlying congenital diseases, and this has to be taken into account. In particular, children with congenital diseases and HB might experience unexpected and more severe side effects to cytotoxic therapy, requiring reductions in the doses of cytotoxic drugs and individual treatment planning. In patients with certain conditions (e.g., T18), the prognosis depends heavily on the morbidity caused by the constitutive chromosomal aberration. Treatment strategies range from providing comfort care to curative, multimodal treatment, including liver transplantation (Fernandez et al., 2011; Inoue et al., 2018; Kitanovski et al., 2009).

Surveillance might contribute to the early detection of HB in children with the previously described congenital conditions, but the recommendations differ somewhat (e.g., in terms of the duration or relevance of periodic AFP measurement). Despite these differences, they all include regular abdominal screening in the first years of life. In general, early‐stage disease recognition in HB may result in less invasive surgical approaches being taken and less toxic treatment modalities being used, as well as resulting in improved survival rates (Allan et al., 2013; Czauderna et al., 2016). Data on Wilms' tumors in BWSp disorders clearly indicate that tumors detected by surveillance are more likely to be localized (Mussa, Duffy, Carli, Griff, et al., 2019). Likewise, Trobaugh‐Lotrario et al. (2014) observed superior overall survival in BWS patients and higher frequency of low‐stage HB identified by surveillance as compared with children who were not enrolled in any screening. Although this study was retrospective and only included a small number of patients, these findings underscore the benefit of HB screening in congenital diseases.

5. CONCLUSION

In conclusion, HB in the context of congenital conditions is a rare and life‐threatening condition. Therefore, screening protocols are recommended in patients with the most common genetic conditions, as these are assumed to increase the chance of early diagnosis, when the tumor is still focal and has not yet been systemically disseminated. Since embryonal tumors tend to develop rapidly, short screening intervals are crucial, but these require a high level of compliance from affected families. Physicians need to be familiar with the increased incidence of HB and the surveillance strategies that can be applied in predisposing genetic diseases, including overgrowth syndromes, FAP and T18.

CONFLICT OF INTEREST

The authors declare that they have nothing to disclose in connection with the submission of this article. This study was supported by the Styrian Childhood Cancer Foundation (Steirische Kinderkrebshilfe).

Abbreviations

APC

adenomatous polyposis coli

AFP

alpha‐fetoprotein

BWSp/BWS

Beckwith–Wiedemann spectrum/Beckwith–Wiedemann syndrome

FAP

familial adenomatous polyposis

GPC3

glypican‐3

HB

hepatoblastoma

ICR

imprinting control region

ILO

isolated lateralized overgrowth

pUPD

paternal uniparental isodisomy

SGBS

Simpson–Golabi–Behmel syndrome

T18

trisomy 18

ACKNOWLEDGMENT

The authors thank Mrs. Sara Crockett for careful proofreading the manuscript.

Nussbaumer, G. , & Benesch, M. (2022). Hepatoblastoma in molecularly defined, congenital diseases. American Journal of Medical Genetics Part A, 188A:2527–2535. 10.1002/ajmg.a.62767

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

REFERENCES

  1. Achatz, M. I. , Porter, C. C. , Brugières, L. , Druker, H. , Frebourg, T. , Foulkes, W. D. , … Plon, S. E. (2017). Cancer screening recommendations and clinical management of inherited gastrointestinal cancer syndromes in childhood. Clincal Cancer Res, 23, e107–e114. 10.1158/1078-0432.CCR-17-0790 [DOI] [PubMed] [Google Scholar]
  2. Albrecht, S. , von Schweinitz, D. , Waha, A. , Kraus, J. A. , von Deimling, A. , & Pietsch, T. (1994). Loss of maternal alleles on chromosome arm 11p in hepatoblastoma. Cancer Research, 54, 5041–5044. [PubMed] [Google Scholar]
  3. Alkhouri, N. , Franciosi, J. P. , & Mamula, P. (2010). Familial adenomatous polyposis in children and adolescents. Journal of Pediatric Gastroenterology and Nutrition, 51, 727–732. 10.1097/MPG.0b013e3181e1a224 [DOI] [PubMed] [Google Scholar]
  4. Allan, B. J. , Parikh, P. P. , Diaz, S. , Perez, E. A. , Neville, H. L. , & Sola, J. E. (2013). Predictors of survival and incidence of hepatoblastoma in the paediatric population. The Official Journal of the International Hepato Pancreato Biliary Association, 15, 741–746. 10.1111/hpb.12112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Al‐Rahawan, M. M. , Chute, D. J. , Sol‐Church, K. , Gripp, K. W. , Stabley, D. L. , McDaniel, N. L. , … Waldron, P. E. (2007). Hepatoblastoma and heart transplantation in a patient with cardio‐facio‐cutaneous syndrome. American Journal of Medical Genetics Part A, 143, 1481–1488. 10.1002/ajmg.a.31819 [DOI] [PubMed] [Google Scholar]
  6. Aretz, S. , Koch, A. , Uhlhaas, S. , Friedl, W. , Propping, P. , von Schweinitz, D. , & Pietsch, T. (2006). Should children at risk for familial adenomatous polyposis be screened for hepatoblastoma and children with apparently sporadic hepatoblastoma be screened for APC germline mutations? Pediatric Blood & Cancer, 47, 811–818. 10.1002/pbc.20698 [DOI] [PubMed] [Google Scholar]
  7. Armengol, C. , Cairo, S. , Fabre, M. , & Buendia, M. A. (2011). Wnt signaling and hepatocarcinogenesis: The hepatoblastoma model. The International Journal of Biochemistry & Cell Biology, 43, 265–270. 10.1016/j.biocel.2009.07.012 [DOI] [PubMed] [Google Scholar]
  8. Augustyn, A. M. , & Wallerstein, R. (2009). The role of pediatricians in families with a history of familial adenomatous polyposis. Clinical Pediatrics, 48, 623. 10.1177/0009922809332681 [DOI] [PubMed] [Google Scholar]
  9. Bayhan, T. , Aydin, B. , Yalcin, B. , Orhan, D. , & Akyuz, C. (2017). Hepatoblastoma and Wolf–Hirschhorn syndrome: Coincidence or a new feature of a rare disease? Pediatrics International, 59, 1028–1029. 10.1111/ped.13345 [DOI] [PubMed] [Google Scholar]
  10. Brioude, F. , Kalish, J. M. , Mussa, A. , Foster, A. C. , Bliek, J. , Ferrero, G. B. , … Maher, E. R. (2018). Clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: An international consensus statement. Nature Reviews Endocrinology, 14, 229–249. 10.1038/nrendo.2017.166 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brioude, F. , Toutain, A. , Giabicani, E. , Cottereau, E. , Cormier‐Daire, V. , & Netchine, I. (2019). Overgrowth syndromes: Clinical and molecular aspects and tumour risk. Nature Reviews Endocrinology, 15, 299–311. 10.1038/s41574-019-0180-z [DOI] [PubMed] [Google Scholar]
  12. Buonuomo, P. S. , Ruggiero, A. , Vasta, I. , Attinà, G. , Riccardi, R. , & Zampino, G. (2005). Second case of hepatoblastoma in a young patient with Simpson–Golabi–Behmel syndrome. Pediatric Hematology and Oncology, 22, 623–628. 10.1080/08880010500198988 [DOI] [PubMed] [Google Scholar]
  13. Capurro, M. , Martin, T. , Shi, W. , & Filmus, J. (2014). Glypican‐3 binds to frizzled and plays a direct role in the stimulation of canonical Wnt signaling. Journal of Cell Science, 127, 1565–1575. 10.1242/jcs.140871 [DOI] [PubMed] [Google Scholar]
  14. Carrillo‐Reixach, J. , Torrens, L. , Simon‐Coma, M. , Royo, L. , Domingo‐Sàbat, M. , Abril‐Fornaguera, J. , … Armengol, C. (2020). Epigenetic footprint enables molecular risk stratification of hepatoblastoma with clinical implications. Journal of Hepatology, 73, 328–341. 10.1016/j.jhep.2020.03.025 [DOI] [PubMed] [Google Scholar]
  15. Cereda, A. , & Carey, J. C. (2012). The trisomy 18 syndrome. Orphanet Journal of Rare Diseases, 7, 81. 10.1186/1750-1172-7-81 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cetta, F. , Montalto, G. , & Petracci, M. (1997). Hepatoblastoma and APC gene mutation in familial adenomatous polyposis. Gut, 41, 417–420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Choufani, S. , Shuman, C. , & Weksberg, R. (2013). Molecular findings in Beckwith–Wiedemann syndrome. American Journal of Medical Genetics. Part C, 163, 131–140. 10.1002/ajmg.c.31363 [DOI] [PubMed] [Google Scholar]
  18. Clericuzio, C. L. , Chen, E. , McNeil, D. E. , O'Connor, T. , Zackai, E. H. , Medne, L. , Tomlinson, G. , & DeBaun, M. (2003). Serum α‐fetoprotein screening for hepatoblastoma in children with Beckwith–Wiedemann syndrome or isolated hemihyperplasia. The Journal of Pediatrics, 143, 270–272. 10.1067/S0022-3476(03)00306-8 [DOI] [PubMed] [Google Scholar]
  19. Cohen, M. M. (2005). Beckwith–Wiedemann syndrome: Historical, clinicopathological, and etiopathogenetic perspectives. Pediatric and Developmental Pathology, 8, 287–304. 10.1007/s10024-005-1154-9 [DOI] [PubMed] [Google Scholar]
  20. Cöktü, S. , Spix, C. , Kaiser, M. , Beygo, J. , Kleinle, S. , Bachmann, N. , … Kratz, C. P. (2020). Cancer incidence and spectrum among children with genetically confirmed Beckwith–Wiedemann spectrum in Germany: A retrospective cohort study. British Journal of Cancer, 123, 619–623. 10.1038/s41416-020-0911-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Czauderna, P. , Haeberle, B. , Hiyama, E. , Rangaswami, A. , Krailo, M. , Maibach, R. , … Meyers, R. (2016). The Children's Hepatic tumors International Collaboration (CHIC): Novel global rare tumor database yields new prognostic factors in hepatoblastoma and becomes a research model. European Journal of Cancer, 52, 92–101. 10.1016/j.ejca.2015.09.023 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Duffy, K. A. , Cohen, J. L. , Elci, O. U. , & Kalish, J. M. (2019). Development of the serum α‐fetoprotein reference range in patients Beckwith–Wiedemann Spectrum. The Journal of Pediatrics, 212, 195–200. 10.1016/j.jpeds.2019.05.051 [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Eichenmüller, M. , Trippel, F. , Kreuder, M. , Beck, A. , Schwarzmayr, T. , Häberle, B. , Cairo, S. , Leuschner, I. , Schweinitz, D. , Strom, T. M. , & Kappler, R. (2014). The genomic landscape of hepatoblastoma and their progenies with HCC‐like features. Journal of Hepatology, 61, 1312–1320. 10.1016/j.jhep.2014.08.009 [DOI] [PubMed] [Google Scholar]
  24. Evers, C. , Gaspar, H. , Kloor, M. , Bozukova, G. , Kadmon, M. , Keller, M. , Sutter, C. , & Moog, U. (2012). Hepatoblastoma in two siblings and familial adenomatous polyposis: Causal nexus or coincidence? Familial Cancer, 11, 529–533. 10.1007/s10689-012-9538-2 [DOI] [PubMed] [Google Scholar]
  25. Farmakis, S. G. , Barnes, A. M. , Carey, J. C. , & Braddock, S. R. (2019). Solid tumor screening recommendations in trisomy 18. American Journal of Medical Genetics Part A, 179, 455–466. 10.1002/ajmg.a.61029 [DOI] [PubMed] [Google Scholar]
  26. Feng, J. , Polychronidis, G. , Heger, U. , Frongia, G. , Mehrabi, A. , & Hoffmann, K. (2019). Incidence trends and survival prediction of hepatoblastoma in children: A population‐based study. Cancer Communications, 39, 62. 10.1186/s40880-019-0411-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Fernandez, K. S. , Baum, R. , Fung, B. , Yeager, N. , Leonis, M. A. , Wagner, L. M. , Tiao, G. , & Ross, M. E. (2011). Chemoresistant hepatoblastoma in a patient with mosaic trisomy 18 treated with orthotopic liver transplantation. Pediatric Blood & Cancer, 56, 498–500. 10.1002/pbc.22768 [DOI] [PubMed] [Google Scholar]
  28. Fujita, A. , Ochi, N. , Fujimaki, H. , Muramatsu, H. , Takahashi, Y. , Natsume, J. , … Miyake, N. (2014). A novel WTX mutation in a female patient with osteopathia striata with cranial sclerosis and hepatoblastoma. American Journal of Medical Genetics Part A, 164, 998–1002. 10.1002/ajmg.a.36369 [DOI] [PubMed] [Google Scholar]
  29. Fukuzawa, R. , Umezawa, A. , Ochi, K. , Urano, F. , Ikeda, H. , & Hata, J. (1999). High frequency of inactivation of the imprinted H19 gene in “sporadic” hepatoblastoma. International Journal of Cancer, 82(4), 490–497. [DOI] [PubMed] [Google Scholar]
  30. Giardiello, F. M. , Petersen, G. M. , Brensinger, J. D. , Luce, M. C. , Cayouette, M. C. , Bacon, J. , Booker, S. V. , & Hamilton, S. R. (1996). Hepatoblastoma and APC gene mutation in familial adenomatous polyposis. Gut, 39, 867–869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gray, S. G. , Eriksson, T. , Ekström, C. , Holm, S. , Schweinitz, D. , Kogner, P. , … Ekstöm, T. J. (2000). Altered expression of members of the IGF‐axis in hepatoblastomas. British Journal of Cancer, 82, 1561–1567. 10.1054/bjoc.1999.1179 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Groen, E. J. , Roos, A. , Muntinghe, F. L. , Enting, R. H. , de Vries, J. , Kleibeuker, J. H. , … van Beek, A. P. (2008). Extra‐intestinal manifestations of familial adenomatous polyposis. Annals of Surgical Oncology, 15, 2439–2450. 10.1245/s10434-008-9981-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hashizume, K. , Nakajo, T. , Kawarasaki, H. , Iwanaka, T. , Kanamori, Y. , Tanaka, K. , Utuki, T. , Mishina, J. , & Watanabe, T. (1991). Prader–Willi syndrome with del(15)(q11,q13) associated with hepatoblastoma. Acta Paediatrica Japonica, 33, 718–722. 10.1111/j.1442-200x.1991.tb02597.x [DOI] [PubMed] [Google Scholar]
  34. Heck, J. E. , Meyers, T. J. , Lombardi, C. , Park, A. S. , Cockburn, M. , Reynolds, P. , & Ritz, B. (2013). Case‐control study of birth characteristics and the risk of hepatoblastoma. Cancer Epidemiology, 37, 390–395. 10.1016/j.canep.2013.03.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Hirschman, B. A. , Pollock, B. H. , & Tomlinson, G. E. (2005). The spectrum of APC mutations in children with hepatoblastoma from familial adenomatous polyposis kindreds. The Journal of Pediatrics, 147, 263–266. 10.1016/j.jpeds.2005.04.019 [DOI] [PubMed] [Google Scholar]
  36. Honda, S. , Arai, Y. , Haruta, M. , Sasaki, F. , Ohira, M. , Yamaoka, H. , … Kaneko, Y. (2008). Loss of imprinting of IGF2 correlates with hypermethylation of the H19 differentially methylated region in hepatoblastoma. British Journal of Cancer, 99, 1891–1899. 10.1038/sj.bjc.6604754 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Horii, M. , Horiuchi, H. , Momoeda, M. , Nakagawa, M. , Hirata, M. , Kusakawa, I. , & Yamanaka, M. (2012). Hepatoblastoma in an infant with paternal uniparental disomy 14. Congenital Anomalies, 52, 219–220. 10.1111/j.1741-4520.2012.00364.x [DOI] [PubMed] [Google Scholar]
  38. Inoue, A. , Suzuki, R. , Urabe, K. , Kawamura, Y. , Masuda, M. , Kishi, K. , … Tamai, H. (2018). Therapeutic experience with hepatoblastoma associated with trisomy 18. Pediatric Blood & Cancer, 65, e27093. 10.1002/pbc.27093 [DOI] [PubMed] [Google Scholar]
  39. Jeng, Y.‐M. , Wu, M.‐Z. , Mao, T.‐L. , Chang, M.‐H. , & Hsu, H.‐C. (2000). Somatic mutations of β‐catenin play a crucial role in the tumorigenesis of sporadic hepatoblastoma. Cancer Letters, 152, 45–51. 10.1016/S0304-3835(99)00433-4 [DOI] [PubMed] [Google Scholar]
  40. Johansen, L. , Haller, W. , Thyagarajan, M. , Kelly, D. , & McKiernan, P. (2019). Hepatic lesions associated with McCune Albright syndrome. Journal of Pediatric Gastroenterology and Nutrition, 68, e54–e57. [DOI] [PubMed] [Google Scholar]
  41. Johnson, K. J. , Williams, K. S. , Ross, J. A. , Krailo, M. D. , Tomlinson, G. E. , Malogolowkin, M. H. , Feusner, J. H. , & Spector, L. G. (2013). Parental tobacco and alcohol use and risk of hepatoblastoma in offspring: A report from the Children's Oncology Group. Cancer Epidemiology, Biomarkers & Prevention, 22, 1837–1843. 10.1158/1055-9965.EPI-13-0432 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Kadakia, N. , Lobritto, S. J. , Ovchinsky, N. , Remotti, H. E. , Yamashiro, D. J. , Emond, J. C. , & Martinez, M. (2017). A challenging case of hepatoblastoma concomitant with autosomal recessive polycystic kidney disease and Caroli syndrome: Review of the literature. Frontiers in Pediatrics, 5, 114. 10.3389/fped.2017.00114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kagami, M. , Kurosawa, K. , Miyazaki, O. , Ishino, F. , Matsuoka, K. , & Ogata, T. (2015). Comprehensive clinical studies in 34 patients with molecularly defined UPD(14)pat and related conditions (Kagami–Ogata syndrome). European Journal of Human Genetics, 23, 1488–1498. 10.1038/ejhg.2015.13 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kalish, J. M. , Biesecker, L. G. , Brioude, F. , Deardorff, M. A. , di Cesare‐Merlone, A. , Druley, T. , … Hennekam, R. C. (2017). Nomenclature and definition in asymmetric regional body overgrowth. American Journal of Medical Genetics. Part A, 173, 1735–1738. 10.1002/ajmg.a.38266 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Kalish, J. M. , Doros, L. , Helman, L. J. , Hennekam, R. C. , Kuiper, R. P. , Maas, S. M. , & Druley, T. E. (2017). Surveillance recommendations for children with overgrowth syndromes and predisposition to Wilms tumors and hepatoblastoma. Clinical Cancer Research, 23, e115–e122. 10.1158/1078-0432.CCR-17-0710 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Kato, M. , Takita, J. , Takahashi, K. , Mimaki, M. , Chen, Y. , Koh, K. , Ida, K. , Oka, A. , Mizuguchi, M. , Ogawa, S. , & Igarashi, T. (2009). Hepatoblastoma in a patient with Sotos syndrome. The Journal of Pediatrics, 155, 937–939. 10.1016/j.jpeds.2009.06.039 [DOI] [PubMed] [Google Scholar]
  47. Kennedy, R. D. , Potter, D. D. , Moir, C. R. , & El‐Youssef, M. (2014). The natural history of familial adenomatous polyposis syndrome: A 24 year review of a single center experience in screening, diagnosis, and outcomes. Journal of Pediatric Surgery, 49, 82–86. 10.1177/1747493018778713 [DOI] [PubMed] [Google Scholar]
  48. Kim, S. Y. , Jung, S.‐H. , Kim, M. S. , Han, M.‐R. , Park, H.‐C. , Jung, E. S. , Lee, S. H. , Lee, S. H. , & Chung, Y.‐J. (2017). Genomic profiles of a hepatoblastoma from a patient with Beckwith–Wiedemann syndrome with uniparental disomy on chromosome 11p15 and germline mutation of APC and PALB2. Oncotarget, 8, 91950–91957. 10.18632/oncotarget.20515 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Kitanovski, L. , Ovcak, Z. , & Jazbec, J. (2009). Multifocal hepatoblastoma in a 6‐month‐old girl with trisomy 18: A case report. Journal of Medical Case Reports, 3, 8319. 10.4076/1752-1947-3-8319 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Knopp, C. , Rudnik‐Schöneborn, S. , Zerres, K. , Gencik, M. , Spengler, S. , & Eggermann, T. (2015). Twenty‐one years to the right diagnosis: clinical overlap of Simpson–Golabi–Behmel and Beckwith–Wiedemann syndrome. American Journal of Medical Genetics Part A, 167, 151–155. 10.1002/ajmg.a.36825 [DOI] [PubMed] [Google Scholar]
  51. Koch, A. , Denkhaus, D. , Albrecht, S. , Leuschner, I. , Schweinitz, D. , & Pietsch, T. (1999). Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the β‐catenin gene. Cancer Research, 59, 269–273. [PubMed] [Google Scholar]
  52. Kopic, S. , Eirich, K. , Schuster, B. , Hanenberg, H. , Varon‐Mateeva, R. , Rittinger, O. , … Jones, N. (2011). Hepatoblastoma in a 4‐year‐old girl with Fanconi anaemia. Acta Paediatrica, 100, 780–783. 10.1111/j.1651-2227.2010.02116.x [DOI] [PubMed] [Google Scholar]
  53. Kosaki, R. , Takenouchi, T. , Takeda, N. , Kagami, M. , Nakabayashi, K. , Hata, K. , & Kosaki, K. (2014). Somatic CTNNB1 mutation in hepatoblastoma from a patient with Simpson–Golabi–Behmel syndrome and germline GPC3 mutation. American Journal of Medical Genetics Part A, 164, 993–997. 10.1002/ajmg.a.36364 [DOI] [PubMed] [Google Scholar]
  54. Kosiv, K. A. , Gossett, J. M. , Bai, S. , & Collins, R. T. (2017). Congenital heart surgery on in‐hospital mortality in trisomy 13 and 18. Pediatrics, 140, e20170772. 10.1542/peds.2017-0772 [DOI] [PubMed] [Google Scholar]
  55. Kummerfeld, M. , Klaunick, G. , Drückler, E. , Classen, C.‐F. , Hauenstein, C. , & Stuhldreier, G. (2010). Hepatoblastoma in association with bilateral polycystic kidneys. Journal of Pediatric Surgery, 45, e23–e25. 10.1016/j.jpedsurg.2010.07.018 [DOI] [PubMed] [Google Scholar]
  56. Lapunzina, P. (2005). Risk of tumorigenesis in overgrowth syndromes: A comprehensive review. American Journal of Medical Genetics. Part C, 137, 53–71. 10.1002/ajmg.c.30064 [DOI] [PubMed] [Google Scholar]
  57. Lazzareschi, I. , Barone, G. , Mastrangelo, S. , Furfaro, I. F. , Rando, G. , & Riccardi, R. (2009). Could APC gene screening be useful in children with hepatoblastoma? Early onset of adenocarcinoma in a child with familial adenomatous polyposis and hepatoblastoma. Tumori, 95, 819–822. [DOI] [PubMed] [Google Scholar]
  58. Li, M. , Shuman, C. , Fei, Y. L. , Cutiongco, E. , Bender, H. A. , Stevens, C. , Wilkins‐Haug, L. , Day‐Salvatore, D. , Yong, S. L. , Geraghty, M. T. , Squire, J. , & Weksberg, R. (2001). GPC3 mutation analysis in a spectrum of patients with overgrowth expands the phenotype of Simpson–Golabi–Behmel syndrome. American Journal of Medical Genetics, 102, 161–168. [DOI] [PubMed] [Google Scholar]
  59. Luoto, T. T. , Pakarinen, M. P. , Jahnukainen, T. , & Jalanko, H. (2014). Liver disease in autosomal recessive polycystic kidney disease: Clinical characteristics and management in relation to renal failure. Journal of Pediatric Gastroenterology and Nutrition, 59, 190–196. 10.1097/MPG.0000000000000422 [DOI] [PubMed] [Google Scholar]
  60. Maas, S. , Vansenne, F. , Kadouch, D. , Ibrahim, A. , Bliek, J. , Hopman, S. M. J. , Mannens, M. , Merks, J. , Maher, E. , & Hennekam, R. (2016). Phenotype, cancer risk, and surveillance in Beckwith–Wiedemann syndrome depending on molecular genetic subgroups. American Journal of Medical Genetics. Part A, 170, 2248–2260. 10.1002/ajmg.a.37801 [DOI] [PubMed] [Google Scholar]
  61. Mateos, M. E. , Beyer, K. , López‐Laso, E. , Siles, J. L. , Pérez‐Navero, J. L. , Peña, M. J. , Guzmán, J. , & Matas, J. (2013). Simpson–Golabi–Behmel syndrome type 1 and Hepatoblastoma in a patient with a novel exon 2–4 duplication of the GPC3 gene. American Journal of Medical Genetics Part A, 161, 1091–1095. 10.1002/ajmg.a.35738 [DOI] [PubMed] [Google Scholar]
  62. McDonald‐McGinn, D. M. , Reilly, A. , Wallgren‐Pettersson, C. , Hoyme, H. E. , Yang, S. P. , Adam, M. P. , Zackai, E. H. , & Sullivan, K. E. (2006). Malignancy in chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). American Journal of Medical Genetics Part A, 140, 906–909. 10.1002/ajmg.a.31199 [DOI] [PubMed] [Google Scholar]
  63. McLaughlin, C. C. , Baptiste, M. S. , Schymura, M. J. , Nasca, P. C. , & Zdeb, M. S. (2006). Maternal and infant birth characteristics and hepatoblastoma. American Journal of Epidemiology, 163(9), 818–828. 10.1093/aje/kwj104 [DOI] [PubMed] [Google Scholar]
  64. Meyer, R. E. , Liu, G. , Gilboa, S. M. , Ethen, M. K. , Aylsworth, A. S. , Powell, C. M. , Flood, T. J. , Mai, C. T. , Wang, Y. , & Canfield, M. A. (2016). Survival of children with trisomy 13 and trisomy 18: A multi‐state population‐based study. American Journal of Medical Genetics. Part A, 170, 825–837. 10.1002/ajmg.a.37495 [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Milani, D. , Bonarrigo, F. A. , Menni, F. , Spaccini, L. , Gervasini, C. , & Esposito, S. (2016). Hepatoblastoma in Rubinstein–Taybi syndrome: A case report. Pediatric Blood & Cancer, 63, 572–573. 10.1002/pbc.25806 [DOI] [PubMed] [Google Scholar]
  66. Mussa, A. , Duffy, K. A. , Carli, D. , Ferrero, G. B. , & Kalish, J. M. (2019). Defining an optimal time window to screen for hepatoblastoma in children with Beckwith–Wiedemann syndrome. Pediatric Blood & Cancer, 66, e27492. 10.1002/pbc.27492 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Mussa, A. , Duffy, K. A. , Carli, D. , Griff, J. R. , Fagiano, R. , Kupa, J. , Brodeur, G. M. , Ferrero, G. B. , & Kalish, J. M. (2019). The effectiveness of Wilms tumor screening in Beckwith–Wiedemann spectrum. Journal of Cancer Research and Clinical Oncology, 145, 3115. 10.1007/s00432-019-03038-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Mussa, A. , Ferrero, G. B. , Ceoloni, B. , Basso, E. , Chiesa, N. , Crescenzo, A. D. , Pepe, E. , Silengo, M. , & Sanctis, L. (2011). Neonatal hepatoblastoma in a newborn with severe phenotype of Beckwith–Wiedemann syndrome. European Journal of Pediatrics, 170, 1407–1411. 10.1007/s00431-011-1455-0 [DOI] [PubMed] [Google Scholar]
  69. Mussa, A. , Molinatto, C. , Baldassarre, G. , Riberi, E. , Russo, S. , Larizza, L. , Riccio, A. , & Ferrero, G. B. (2016). Cancer risk in Beckwith–Wiedemann syndrome: A systematic review and meta‐analysis outlining a novel (Epi)genotype specific Histotype targeted screening protocol. The Journal of Pediatrics, 176, 142–149. 10.1016/j.jpeds.2016.05.038 [DOI] [PubMed] [Google Scholar]
  70. Mussa, A. , Russo, S. , de Crescenzo, A. , Freschi, A. , Calzari, L. , Maitz, S. , … Ferrero, G. B. (2016). (Epi)genotype–phenotype correlations in Beckwith–Wiedemann syndrome. European Journal of Human Genetics, 24, 183–190. 10.1038/ejhg.2015.88 [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Nelson, K. E. , Rosella, L. C. , Mahant, S. , & Guttmann, A. (2016). Survival and surgical interventions for children with trisomy 13 and 18. JAMA, 316, 420–428. 10.1001/jama.2016.9819 [DOI] [PubMed] [Google Scholar]
  72. Pereira, E. M. , Marion, R. , Ramesh, K. H. , Kim, J. S. , Ewart, M. , & Ricafort, R. (2012). Hepatoblastoma in a mosaic trisomy 18 patient. Journal of Pediatric Hematology/Oncology, 34, 145–148. 10.1097/MPH.0b013e3182459ee8 [DOI] [PubMed] [Google Scholar]
  73. Pilia, G. , Hughes‐Benzie, R. M. , MacKenzie, A. , Baybayan, P. , Chen, E. Y. , Huber, R. , … Schlessinger, D. (1996). Mutations in GPC3, a glypican gene, cause the Simpson–Golabi–Behmel overgrowth syndrome. Nature Genetics, 12(3), 241–247. 10.1038/ng0396-241 [DOI] [PubMed] [Google Scholar]
  74. Puumala, S. E. , Ross, J. A. , Feusner, J. H. , Tomlinson, G. E. , Malogolowkin, M. H. , Krailo, M. D. , & Spector, L. G. (2012). Parental infertility, infertility treatment and hepatoblastoma: A report from the Children's Oncology Group. Human Reproduction, 27, 1649–1656. 10.1093/humrep/des109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Rosina, E. , Rinaldi, B. , Silipigni, R. , Bergamaschi, L. , Gattuso, G. , Signoroni, S. , Guerneri, S. , Carnevali, A. , Marchisio, P. G. , & Milani, D. (2021). Incidental finding of APC deletion in a child: Double trouble or double chance?—A case report. Italian Journal of Pediatrics, 47, 31–37. 10.1186/s13052-021-00969-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Rumbajan, J. M. , Maeda, T. , Souzaki, R. , Mitsui, K. , Higashimoto, K. , Nakabayashi, K. , … Joh, K. (2013). Comprehensive analyses of imprinted differentially methylated regions reveal epigenetic and genetic characteristics in hepatoblastoma. BMC Cancer, 13, 608. 10.1186/1471-2407-13-608 [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Sanders, R. P. , & Furman, W. L. (2006). Familial adenomatous polyposis in two brothers with hepatoblastoma: Implications for diagnosis and screening. Pediatric Blood & Cancer, 47, 851–854. 10.1002/pbc.20556 [DOI] [PubMed] [Google Scholar]
  78. Satgé, D. , Nishi, M. , Sirvent, N. , & Vekemans, M. (2016). A tumor profile in Edwards syndrome (trisomy 18). American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 172(3), 296–306. 10.1002/ajmg.c.31511 [DOI] [PubMed] [Google Scholar]
  79. Scattone, A. , Caruso, G. , Marzullo, A. , Piscitelli, D. , Gentile, M. , Bonadonna, L. , … Serio, G. (2003). Neoplastic disease and deletion 22q11.2: A multicentric study and report of two cases. Pediatric Pathology & Molecular Medicine, 22, 323–341. 10.1080/pdp.22.4.323.341 [DOI] [PubMed] [Google Scholar]
  80. Schnater, J. M. , Schouten‐van Meeteren, A. Y. , Heins, Y. M. , & Aronson, D. C. (2005). Hepatoblastoma in a patient with a partial trisomy 9p syndrome: A case report. Cancer Genetics and Cytogenetics, 156, 77–79. 10.1016/j.cancergencyto.2004.04.011 [DOI] [PubMed] [Google Scholar]
  81. Shah, R. , Tran, H. C. , Randolph, L. , Mascarenhas, L. , & Venkatramani, R. (2014). Hepatoblastoma in a 15‐month‐old female with trisomy 13. American Journal of Medical Genetics. Part A, 164, 472–475. 10.1002/ajmg.a.36271 [DOI] [PubMed] [Google Scholar]
  82. Shimojima, K. , Ondo, Y. , Nishi, E. , Mizuno, S. , Ito, M. , Ioi, A. , … Yamamoto, T. (2016). Loss‐of‐function mutations and global rearrangements in GPC3 in patients with Simpson–Golabi–Behmel syndrome. Human Genome Variation, 3, 16033. 10.1038/hgv.2016.33 [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Shuman, C. , Smith, A. C. , Steele, L. , Ray, P. N. , Clericuzio, C. , Zackai, E. , … Weksberg, R. (2006). Constitutional UPD for chromosome 11p15 in individuals with isolated hemihyperplasia is associated with high tumor risk and occurs following assisted reproductive technologies. American Journal of Medical Genetics. Part A, 140, 1497–1503. 10.1002/ajmg.a.31323 [DOI] [PubMed] [Google Scholar]
  84. Song, H. H. , Shi, W. , Xiang, Y.‐Y. , & Filmus, J. (2005). The loss of Glypican‐3 induces alterations in Wnt signaling. Journal of Biological Chemistry, 280, 2116–2125. 10.1074/jbc.M410090200 [DOI] [PubMed] [Google Scholar]
  85. Stamos, J. L. , & Weis, W. I. (2013). The β‐catenin destruction complex. Cold Spring Harbor Perspectives in Biology, 5, a007898. 10.1101/cshperspect.a007898 [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Tanimura, M. , Matsui, I. , Abe, J. , Ikeda, H. , Kobayashi, N. , Ohira, M. , Yokoyama, M. , & Kaneko, M. (1998). Increased risk of hepatoblastoma among immature children with a lower birth weight. Cancer Research, 58, 3032–3035. [PubMed] [Google Scholar]
  87. Thomas, D. , Pritchard, J. , Davidson, R. , McKiernan, P. , Grundy, R. G. , & Goyet, J. V. (2003). Familial Hepatoblastoma and APC gene mutations: Renewed call for molecular research. European Journal of Cancer, 39, 2200–2204. 10.1016/S0959-8049(03)00618-X [DOI] [PubMed] [Google Scholar]
  88. Toguchida, J. , Yamaguchi, T. , Dayton, S. H. , Beaughamp, R. L. , Herrera, G. E. , Ishizaki, K. , … Yandell, D. W. (1992). Prevalence and Spectrum of germline mutations of the p53 gene among patients with sarcoma. New England Journal of Medicine, 326, 1301–1308. 10.1056/NEJM199205143262001 [DOI] [PubMed] [Google Scholar]
  89. Tomlinson, G. E. , Douglass, E. C. , Pollock, B. H. , Finegold, M. J. , & Schneider, N. R. (2005). Cytogenetic evaluation of a large series of hepatoblastomas: Numerical abnormalities with recurring aberrations involving 1q12‐q21. Genes, Chromosomes & Cancer, 44, 177–184. 10.1002/gcc.20227 [DOI] [PubMed] [Google Scholar]
  90. Toretsky, J. A. , Zitomersky, N. L. , Eskenazi, A. E. , Voigt, R. W. , Strauch, E. D. , Sun, C. C. , Huber, R. , Meltzer, S. J. , & Schlessinger, D. (2001). Glypican‐3 expression in Wilms tumor and hepatoblastoma. Journal of Pediatric Hematology/Oncology, 23, 496–499. [DOI] [PubMed] [Google Scholar]
  91. Trobaugh‐Lotrario, A. , Martin, J. , & López‐Terrada, D. (2016). Hepatoblastoma in a male with MECP2 duplication syndrome. American Journal of Medical Genetics Part A, 170, 790–791. 10.1002/ajmg.a.37474 [DOI] [PubMed] [Google Scholar]
  92. Trobaugh‐Lotrario, A. D. , López‐Terrada, D. , Li, P. , & Feusner, J. H. (2018). Hepatoblastoma in patients with molecularly proven familial adenomatous polyposis: Clinical characteristics and rationale for surveillance screening. Pediatric Blood & Cancer, 65, e27103. 10.1002/pbc.27103 [DOI] [PubMed] [Google Scholar]
  93. Trobaugh‐Lotrario, A. D. , Venkatramani, R. , & Feusner, J. H. (2014). Hepatoblastoma in children with Beckwith–Wiedemann syndrome: Does it warrant different treatment? Journal of Pediatric Hematology/Oncology, 36, 369–373. 10.1097/MPH.0000000000000129 [DOI] [PubMed] [Google Scholar]
  94. Weksberg, R. , Shuman, C. , & Beckwith, J. B. (2010). Beckwith–Wiedemann syndrome. European Journal of Human Genetics, 18, 8–14. 10.1038/ejhg.2009.106 [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Wirojanan, J. , Kraff, J. , Hawkins, D. S. , Laird, C. , Gane, L. W. , Angkustsiri, K. , Tassone, F. , & Hagerman, R. J. (2008). Two boys with fragile X syndrome and hepatic tumors. Journal of Pediatric Hematology/Oncology, 30, 239–241. [DOI] [PubMed] [Google Scholar]
  96. Wu, J. , Springett, A. , & Morris, J. K. (2013). Survival of trisomy 18 (Edwards syndrome) and trisomy 13 (Patau syndrome) in England and Wales: 2004–2011. American Journal of Medical Genetics Part A, 161, 2512–2518. 10.1002/ajmg.a.36127 [DOI] [PubMed] [Google Scholar]
  97. Xu, Y. , Papageorgiou, A. , & Polychronakos, C. (1998). Developmental regulation of the soluble form of insulin‐like growth factor‐II/mannose 6‐phosphate receptor in human serum and amniotic fluid. The Journal of Clinical Endocrinology and Metabolism, 83, 437–442. 10.1210/jcem.83.2.4537 [DOI] [PubMed] [Google Scholar]
  98. Yang, A. , Sisson, R. , Gupta, A. , Tiao, G. , & Geller, J. I. (2018). Germline APC mutations in hepatoblastoma. Pediatric Blood & Cancer, 65, e26892. 10.1002/pbc.26892 [DOI] [PubMed] [Google Scholar]
  99. Yoshida, R. , Ogata, T. , Masawa, N. , & Nagai, T. (2008). Hepatoblastoma in a Noonan syndrome patient with a PTPN11 mutation. Pediatric Blood & Cancer, 50, 1274–1276. 10.1002/pbc.21509 [DOI] [PubMed] [Google Scholar]
  100. Zarate, Y. A. , Mena, R. , Martin, L. J. , Steele, P. , Tinkle, B. T. , & Hopkin, R. J. (2009). Experience with hemihyperplasia and Beckwith–Wiedemann syndrome surveillance protocol. American Journal of Medical Genetics. Part A, 149, 1691–1697. 10.1002/ajmg.a.32966 [DOI] [PubMed] [Google Scholar]
  101. Zynger, D. L. , Gupta, A. , Luan, C. , Chou, P. M. , Yang, G.‐Y. , & Yang, X. J. (2008). Expression of glypican 3 in hepatoblastoma: An immunohistochemical study of 65 cases. Human Pathology, 39, 224–230. 10.1016/j.humpath.2007.06.006 [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.


Articles from American Journal of Medical Genetics. Part a are provided here courtesy of Wiley

RESOURCES