Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2017 Jan;31(1):62–65. [Article in Chinese] doi: 10.7507/1002-1892.201609104

ISOBAR TTL 动态固定联合峡部植骨治疗腰椎峡部裂的临床疗效

Clinical outcome of ISOBAR TTL dynamic stabilization with pars bone grafting for treatment of lumbar spondylolysis

俊峰 曾 1, 浩 刘 1,*, 贝宇 王 1, 全 龚 1, 毅 杨 1, 华 陈 1, 纪刚 娄 1, 跃明 宋 1
PMCID: PMC9548037  PMID: 29798631

Abstract

目的

评价 ISOBAR TTL 动态固定联合峡部植骨治疗腰椎峡部裂的临床效果。

方法

2009 年 9 月—2014 年 3 月,采用 ISOBAR TTL 动态固定联合峡部植骨治疗单纯腰椎峡部裂或伴 MeyerdingⅠ 度滑脱患者 26 例。其中男 14 例,女 12 例;年龄 19~47 岁,平均 31 岁。病程 9~60 个月,平均 16 个月。术前均行腰椎正侧位 X 线片、CT 三维重建及 MRI 明确峡部裂部位,峡部裂位于 L4 9 例,L5 17 例。其中单纯腰椎峡部裂 10 例,伴 MeyerdingⅠ 度滑脱者 16 例。分别于术前及术后 1 周、3 个月、6 个月、末次随访时行疼痛视觉模拟评分(VAS)、Oswestry 功能障碍指数(ODI)评分评价临床疗效;根据术后 6 个月 CT 三维重建结果评价峡部植骨融合情况;术前及末次随访时采用加州大学洛杉矶分校(UCLA)系统评价邻近节段退变情况。

结果

术后切口均Ⅰ期愈合,无感染、脑脊液漏、取髂骨区疼痛不适等手术并发症发生。26 例患者术后均获随访,随访时间 2~5 年,平均 36.5 个月。随访期间未出现椎体继发性滑脱及内固定物松动、断裂现象。术后各时间点 VAS 及 ODI 评分均较术前显著改善,且术后 3、6 个月及末次随访时评分优于术后 1 周,差异均有统计学意义(P<0.05);术后 3、6 个月及末次随访间比较差异均无统计学意义(P>0.05)。术后 6 个月,CT 三维重建结果提示 23 例(88.5%)峡部断端骨性融合;3 例未融合患者中,1 例术后 1 年达骨性融合,2 例末次随访时仍未融合,但症状较术前明显缓解。末次随访时根据 UCLA 系统评价为Ⅰ级 20 例,Ⅱ 级 6 例,与术前相同,未发现邻近节段退变情况。

结论

采用 ISOBAR TTL 动态固定联合峡部植骨治疗单纯腰椎峡部裂或伴 MeyerdingⅠ 度滑脱安全有效,峡部植骨融合率满意,并可能延缓腰椎融合术后邻近节段的退变。

Keywords: 腰椎峡部裂, ISOBAR TTL 动态固定, 峡部修复


腰椎峡部裂是椎弓峡部在腰椎反复屈伸和旋转运动的应力作用下发生疲劳性断裂[1],其发病率为 6%~8%[2]。腰椎峡部裂是引起人们下腰痛的常见原因之一。有症状的腰椎峡部裂患者经过限制活动、休息、佩戴支具、理疗等保守治疗[3-4],半年以上症状无缓解可选择手术治疗。手术方式大致分为两类:一是腰椎融合术,能维持椎间隙高度,融合率高,但可能导致手术邻近节段退行性改变[5-6];二是峡部修复术,能恢复腰椎解剖结构,峡部融合率相对较低[7-8]。2009 年 9 月—2014 年 3 月,我们采用 ISOBAR TTL 动态固定联合峡部植骨术治疗单纯腰椎峡部裂或伴 MeyerdingⅠ 度滑脱患者 26 例,均取得较好效果。报告如下。

1. 临床资料

1.1. 患者选择标准

纳入标准:① 单节段单纯腰椎峡部裂或 Meyerding 分度[9]Ⅰ 度患者;② 腰痛症状经半年以上保守治疗无缓解。排除标准:① 多节段腰椎峡部裂;② 既往有腰椎手术史;③ 合并严重骨质疏松、肿瘤、结核、脊柱侧弯、代谢性骨病患者;④ 根据加州大学洛杉矶分校(UCLA)系统分级[10]邻近节段退变大于 Ⅱ 级的患者。

1.1. 一般资料

本组男 14 例,女 12 例;年龄 19~47 岁,平均 31 岁。病程 9~60 个月,平均 16 个月。术前均行腰椎正侧位 X 线片、CT 三维重建及 MRI 检查明确峡部裂部位,峡部裂位于 L4 9 例,L5 17 例;均为双侧峡部裂。其中单纯腰椎峡部裂 10 例,伴 MeyerdingⅠ 度滑脱者 16 例。26 例患者均存在下腰痛,其中 2 例伴下肢神经根性痛,1 例伴轻度间歇性跛行。

1.2. 手术方法

本组采用法国 SCIENT’X 公司的 ISOBAR TTL 系统。患者于全麻后取俯卧位,调整腰桥减小腰前弓。行后正中切口,切开皮肤、皮下组织及腰背筋膜,剥离两侧骶棘肌,显露并保护好手术节段上下椎体双侧关节突关节,分别植入椎弓根螺钉,透视见椎弓根螺钉位置良好。测量合适长度后,植入 2 根带有微动关节的 ISOBAR TTL 棒并固定于螺钉尾部,螺帽锁死稳定。手术节段的关节突关节及椎板间隙采用明胶海绵铺垫,保留并显露节段内峡部断裂处及周围椎板,去除峡部裂断端增生的纤维软骨组织,磨钻打磨峡部裂断端硬化骨直至可见新鲜骨面。打磨后断端间隙约 3 mm。再用磨钻或骨刀去皮质化准备峡部裂周围皮质骨板植骨床,以 10~15 g 自体髂骨颗粒平铺于植骨床及峡部裂断端间隙内。逐层缝合伤口,放置引流管。

1.3. 术后处理

术后 24 h 内常规预防性应用抗生素,并使用激素、脱水剂及神经营养药物,术后 24~48 h 拔除引流管。术后 2 d 行直腿抬高锻炼,术后 1 周床上行腰背肌锻炼,术后 2 周佩戴支具下地活动,出院后戴腰围保护 3 个月,术后半年内避免剧烈活动。

1.4. 疗效评价

分别于术前及术后 1 周、3个月、6个月、末次随访时行疼痛视觉模拟评分(VAS)、Oswestry 功能障碍指数(ODI)评分评估临床效果,并行腰椎 X 线片及 CT 检查。术后 6 个月根据腰椎 CT 三维重建结果评价峡部植骨融合情况,定义骨小梁连续穿过峡部断端为骨性融合。术前及末次随访时采用 UCLA 系统评价邻近节段退变情况。

1.5. 统计学方法

采用 SPSS22.0 统计软件进行分析。数据以均数±标准差表示,手术前后各时间点间比较采用单因素方差分析,两两比较采用 SNK 检验;检验水准 α=0.05。

2. 结果

本组手术时间 90~170 min,平均 120 min;术中出血量 70~200 mL,平均 150 mL。术后切口均Ⅰ期愈合,无感染、脑脊液漏、取髂骨区疼痛不适等手术并发症发生。26 例患者术后均获随访,随访时间 2~5 年,平均 36.5 个月。随访期间未出现椎体继发性滑脱及内固定物松动、断裂现象。术前及术后 1 周、3 个月、6 个月、末次随访时 VAS 评分分别为(5.81±1.20)、(2.62±0.85)、(1.77±0.71)、(1.58±0.70)、(1.46±0.71)分,ODI 评分分别为(61.46±10.59)、(23.85±5.03)、(19.92±3.98)、(19.46±3.86)、(19.08±4.05)分,术后各时间点均较术前显著改善,且术后 3、6 个月及末次随访时评分优于术后 1 周,差异均有统计学意义(P<0.05);术后 6 个月及末次随访时评分与术后 3 个月比较差异无统计学意义(P>0.05)。术后 6 个月,CT 三维重建结果提示 23 例(88.5%)峡部断端骨性融合;3 例未融合患者中,1 例术后 1 年达骨性融合,2 例末次随访时仍未融合,但症状较术前明显缓解。末次随访时根据 UCLA 系统评价为 Ⅰ 级 20 例,Ⅱ 级 6 例,与术前相同,未发现邻近节段退变情况。见图 1

图 1.

图 1

A 28-year-old male patient with bilateral lumbar spondylolysis at L5 a. Preoperative lateral X-ray film; b. Preoperative CT three-dimensional reconstruction, showing bilateral lumbar spondylolysis at L5 and bone sclerosis at the pars broken ends; c. CT three-dimensional reconstruction at 3 months postoperatively, showing newborn bone filling left pars defect and vague fracture line in right pars defect; d. Anteroposterior and lateral X-ray films at 6 months postoperatively; e. CT three-dimensional reconstruction at 6 months postoperatively, showing continuous bone trabecula and bony union at the bilateral pars

患者,男,28 岁,L5椎体双侧峡部裂 a. 术前侧位 X 线片;b. 术前 CT 三维重建示 L5椎体双侧峡部裂,缺损断端骨硬化;c. 术后 3 个月 CT 三维重建示左侧峡部缺损处可见新生骨穿过,右侧峡部缺损处骨折线较术前模糊;d. 术后 6 个月正侧位 X 线片;e. 术后 6 个月 CT 三维重建示双侧峡部断端骨小梁连续,双侧峡部骨性融合

3. 讨论

腰椎融合术是治疗腰椎峡部裂传统有效的手术方式,其属于节段间融合,但腰椎融合术后其邻近节段应力增加,可能面临手术邻近节段退变问题[5-6]。Mihara 等[11]对腰椎峡部裂手术方式进行了动物模型研究,实验分为完整脊柱组、L4双侧峡部裂组、峡部裂 Buck 螺钉直接修复组及椎弓根螺钉与连接棒刚性固定组 4 组,并行生物力学试验。结果发现, Buck 螺钉直接修复组并未增加 L3、4活动度,椎弓根螺钉与连接棒刚性固定组 L3、4活动度相对于完整脊柱组增加至 119.2%。该生物力学试验提示刚性固定融合手术可能增加腰椎邻近节段退变的风险。

峡部修复术属于节段内修复,首先由日本学者 Kimura[12]于 1968 年提出,其采用峡部断端植骨及石膏支具外固定技术治疗腰椎峡部裂,但术后假关节发生率高,且需长期卧床及佩戴石膏支具。此后,许多学者在此基础上采用峡部植骨联合内固定技术来限制术后手术节段椎板活动。目前报道较多的峡部修复术包括 Buck 螺钉技术[13]、Scott 横突-棘突钢丝捆扎技术[14]、Moscher 椎板钩技术[15]等,但手术操作难度较大,适应证要求较高,同时其仅对后柱附件或椎板进行固定,固定方式强度有限,手术节段运动可能过大,植骨融合率相对较低[7-8]

ISOBAR TTL 是目前临床应用广泛的腰椎后路动态固定系统,并在治疗腰椎退变性疾病上取得良好的临床效果[16-18]。本研究采用 ISOBAR TTL 动态固定联合峡部植骨手术方式,获得满意疗效,峡部植骨融合率高,同时末次随访时未发现邻近节段退变情况。分析本手术方式其优势如下:① 节段内峡部植骨直接修复峡部裂,可恢复腰椎峡部解剖结构完整性;节段间 ISOBAR TTL 动态固定,能保持腰椎术后即刻稳定性,为峡部裂区植骨融合提供稳定的大环境。② 动态固定手术节段存在一定微动,保证了较好的峡部裂区植骨融合率,同时可延缓邻近节段退变。③ 手术适应证相对广泛,因节段固定不依赖椎板及横突,合并隐性脊柱裂及横突细小患者均适用。④ 手术方式为传统的后正中入路椎弓根螺钉内固定术联合峡部植骨术,操作简便,学习曲线平坦。术中操作注意事项:① 腰椎峡部裂断端往往为增生硬化的骨质,属于硬化型骨不连,术中应充分去除峡部断端填充的纤维软骨及瘢痕组织,凿除硬化骨,修整峡部,并在新鲜的骨面峡部断端及后外侧植骨,提高峡部融合率。② 术中注意小心保护上下小关节关节囊,避免破坏小关节稳定性及引发慢性疼痛。

综上述,ISOBAR TTL 动态固定联合峡部植骨术通过节段内植骨修复,节段间动态固定,能建立腰椎即刻稳定性,保留节段内植骨区的微动,提高峡部裂区植骨融合率,重建峡部裂区解剖结构稳定性。动态固定能保持节段间隙高度,保留一定活动度,在消除异常活动所致症状的同时,尽可能减少节段间及邻近节段的退变。由此可见,ISOBAR TTL 动态固定联合峡部植骨是治疗腰椎峡部裂或伴 Ⅰ 度滑脱的一种可选择的手术方式。但本研究为回顾性研究,样本量小,未设置对照组,且随访时间较短,远期疗效及能否延缓邻近节段退变尚需多中心、大样本、长期随访及设立随机对照试验验证。

References

  • 1.WiltseLL, WidellEH JR, JacksonDW Fatigue fracture: the basic lesion is inthmic spondylolisthesis. J Bone Joint Surg (Am) 1975;57(1):17–22. [PubMed] [Google Scholar]
  • 2.FredricksonBE, BAKERD, McholickWJ The natural history of spondylolysis and spondylolisthesis. J Bone Joint Surg (Am) 1984;66(5):699–707. [PubMed] [Google Scholar]
  • 3.Mora-deSambricio A, Garrido-StratenwerthE Spondylolysis and spondylolisthesis in children and adolescents. Rev Esp Cir Ortop Traumatol. 2014;58(6):395–406. doi: 10.1016/j.recot.2014.05.009. [DOI] [PubMed] [Google Scholar]
  • 4.BourasT, KorovessisP Management of spondylolysis and low-grade spondylolisthesis in fine athletes A comprehensive review. Eur J Orthop Surg Traumatol. 2015;25(Suppl 1):S167–175. doi: 10.1007/s00590-014-1560-7. [DOI] [PubMed] [Google Scholar]
  • 5.KarakasliA, CecenB, ErduranM Rigid fixation of the lumbar spine alters the motion and mechanical stability at the adjacent segment level. Eklem Hastalik Cerrahisi. 2014;25(1):42–46. doi: 10.5606/ehc.2014.09. [DOI] [PubMed] [Google Scholar]
  • 6.SearsWR, SergidesIG, KazemiN Incidence and prevalence of surgery at segments adjacent to a previous posterior lumbar arthrodesis. Spine J. 2011;11(1):11–20. doi: 10.1016/j.spinee.2010.09.026. [DOI] [PubMed] [Google Scholar]
  • 7.LeeGW, LeeSM, SuhBG Direct repair surgery with screw fixation for young patients with lumbar spondylolysis: patient-reported outcomes and fusion rate in a prospective interventional study. Spine (Phila Pa 1976) 2015;40(4):E234–241. doi: 10.1097/BRS.0000000000000714. [DOI] [PubMed] [Google Scholar]
  • 8.Kim YT, Lee H, Lee CS, et al. Direct Repair of the Pars Interarticularis Defect in Spondylolysis. J Spinal Disord Tech, 2012.[Epub ahead of print]
  • 9.MeyerdingHW Spondylolisthesis. J Bone Joint Surg. 1931;13(1):39–48. [Google Scholar]
  • 10.EkmanP, MöllerH, ShalabiA A prospective randomised study on the long-term effect of lumbar fusion on adjacent disc degeneration. Eur Spine J. 2009;18(8):1175–1186. doi: 10.1007/s00586-009-0947-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.MiharaH, OnariK, ChengBC The biomechanical effects of spondylolysis and its treatment. Spine (Phila Pa 1976) 2003;28(3):235–238. doi: 10.1097/01.BRS.0000042226.59713.0E. [DOI] [PubMed] [Google Scholar]
  • 12.KimuraM My method of filing the lesion with spongy bone in spondylolysis and spondylolisthesis. Seikei Geka. 1968;19(4):285–296. [PubMed] [Google Scholar]
  • 13.BuckJE Direct repair of the defect in spondylolisthesis. Preliminary report. J Bone Joint Surg (Br) 1970;52(3):432–437. [PubMed] [Google Scholar]
  • 14.JohnsonGV, ThompsonAG The Scott wiring technique for direct repair of lumbar spondylolysis. J Bone Joint Surg (Br) 1992;74(3):426–430. doi: 10.1302/0301-620X.74B3.1587895. [DOI] [PubMed] [Google Scholar]
  • 15.MorscherE, GerberB, FaselJ Surgical treatment of spondylolisthesis by bone grafting and direct stabilization of spondylolysis by means of a hook screw. Arch Orthop Trauma Surg. 1984;103(3):175–178. doi: 10.1007/BF00435550. [DOI] [PubMed] [Google Scholar]
  • 16.BarreyC, PerrinG, ChampainS Pedicle-Screw-Based Dynamic Systems and Degenerative Lumbar Diseases: Biomechanical and Clinical Experiences of Dynamic Fusion with Isobar TTL. ISRN Orthop. 2013;2013:183702. doi: 10.1155/2013/183702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.HrabálekL, WanekT, AdamusM Treatment of degenerative spondylolisthesis of the lumbosacral spine by decompression and dynamic transpedicular stabilization. Acta Chir Orthop Traumatol Cech. 2011;78(5):431–436. [PubMed] [Google Scholar]
  • 18.LiZ, LiF, YuS Two-year follow-up results of the Isobar TTL Semi-Rigid Rod System for the treatment of lumbar degenerative disease. J Clin Neurosci. 2013;20(3):394–399. doi: 10.1016/j.jocn.2012.02.043. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES