Skip to main content
Journal of Clinical Medicine logoLink to Journal of Clinical Medicine
. 2022 Sep 28;11(19):5759. doi: 10.3390/jcm11195759

Current Insights on Biomarkers in Lupus Nephritis: A Systematic Review of the Literature

Leonardo Palazzo 1,2, Julius Lindblom 1,2, Chandra Mohan 3, Ioannis Parodis 1,2,4,*
Editor: Roberta Fenoglio
PMCID: PMC9570701  PMID: 36233628

Abstract

Lupus nephritis (LN) is a major cause of morbidity and mortality among patients with systemic lupus erythematosus (SLE). However, promising emerging biomarkers pave the way toward an improved management of patients with LN. We have reviewed the literature over the past decade, and we herein summarise the most relevant biomarkers for diagnosis, monitoring, and prognosis in LN. An initial systematic search of Medline was conducted to identify pertinent articles. A total of 104 studies were selected to be included in this review. Several diagnostic biomarkers, including MCP-1, TWEAK, NGAL, and uric acid, exhibited good ability to differentiate LN patients from non-renal SLE patients. Several cytokines and chemokines, including IL-10, IL-17, MCP-1, and IP-10, hold promise for assessing LN disease activity, as do cell adhesion molecules (CAMs). Angiogenesis-related and haemostasis-related proteins have also displayed potential for monitoring disease activity. Biomarkers of responses to therapy include Axl, CD163, and BAFF, whereas VCAM-1, ALCAM, and ANCAs have been reported as prognostic markers, along with traditional markers. In addition, novel renal tissue biomarkers may prove to be a useful complement to histological evaluations. The overall heterogeneity of the inclusion criteria and outcome measures across different studies, along with a lack of validation in multi-centre cohorts, call for future collaborative efforts. Nevertheless, we foresee that several biomarkers hold promise toward optimisation of the management of LN, with the use of integrated omics and panels of less invasive biomarkers paving the way towards personalised medicine.

Keywords: systemic lupus erythematosus, lupus nephritis, biomarkers, diagnosis, monitoring, prognosis

1. Introduction

Kidney involvement in patients with systemic lupus erythematosus (SLE), termed lupus nephritis (LN), is a common and severe manifestation of the disease. The prevalence of LN varies depending on age, sex, and ethnicity, among other factors, and it is estimated to be 35–60% [1,2]. The clinical presentation is highly heterogneous, varying from silent disease to rapidly progressive nephropathy [3,4]. Despite advancements in the understanding of the pathophysiology of LN, as well as in the development of treatment strategies, only 50–70% of patients achieve remission, and LN is still a major cause of mortality and morbidity in patients with SLE [5].

A kidney biopsy is still the gold standard for the evaluation of LN for the confirmation of LN diagnosis and determination of the type and degree of kidney tissue injury and damage [6,7]. However, a kidney biopsy is an invasive procedure, and its utility in guiding therapeutic decisions is limited by the heterogeneity of the etiopathogenesis of renal disease in patients with SLE [5]. Fluid-based biomarkers, that are validated indicators of physiologic or pathologic processes or responsiveness to therapy [8], constitute promising complemental or alternative, less invasive modes for assessing renal SLE.

Traditional laboratory biomarkers include immune serology tests, such as anti-double-stranded (ds) DNA and complement levels, and kidney disease-related parameters, such as proteinuria estimated through 24-h urinary protein excretion or the urine protein-to-creatinine ratio (uPCR), urinary sediment, and glomerular filtration rate (GFR). These are well-established tools for the clinical evaluation of LN. However, they have shown the unsatisfactory ability to detect LN flare development early, as well as limited sensitivity and specificity to discriminate between active ongoing disease and chronic organ damage, which is crucial for treatment planning [9,10].

Recent technological advancements, including assays for broad proteomic and metabolomic analyses, have contributed to a growing body of evidence on new biomarkers, some of which have shown equal or even superior performances than traditional markers [11,12,13]. This review aims to summarise the literature of the last decade on the topic of biomarkers of potential utility for the diagnosis, monitoring, and prognosis of adult patients with LN.

2. Materials and Methods

An initial systematic literature search was performed to identify the relevant articles addressing the potential role of biomarkers in the evaluation of diagnosis, disease activity, organ damage, responsiveness to therapy, and prognosis over the long term in adult patients with LN (≥18 years of age). Details regarding the search are provided in the online Supplementary Materials (Figure S1 and Table S1), and the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 flow diagram presented in Figure S1 synthetises the key points of the selection process [14]. The search terms are detailed in Table S1. The search strategy was applied to the Medline database, and studies in English published between 1 January 2012 and 13 June 2022 were assessed for eligibility. The study designs deemed eligible comprised meta-analyses and randomised controlled trials (RCTs), including post hoc analyses of RCTs, quasi-experimental studies, cohort studies, and cross-sectional studies. Animal studies, preclinical studies, studies of qualitative design, case series, case reports, studies on paediatric LN, and studies focused on comorbidities were beyond the scope of this review. The assessment for eligibility was performed by two investigators (L.P. and J.L.). Ambiguities were discussed with a third investigator (I.P.) to arrive at a consensus.

Ninety-three reports met the inclusion criteria, and fourteen additional articles were selected based on an expert opinion (C.M. and I.P.), yielding a total of one hundred and seven studies included in this systematic review. To evaluate the risk of bias (RoB) within the included studies, the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Analytical Cross-Sectional Studies, the JBI Critical Appraisal Checklist for Systematic Reviews and Research Syntheses, and the JBI Critical Appraisal Checklist for Cohort Studies [15] were used (Supplementary Tables S2–S4). The ethnic characteristics of study populations for each one of the studies included in the review are provided in Supplementary Table S5.

3. Results

3.1. Diagnostic Biomarkers

Autoantibodies and immune complexes are hallmarks of SLE, hypothesised to be directly involved in the pathogenesis underlying organ injury in SLE, including LN [16]. Anti-dsDNA and anti-C1q constitute well-known autoantibodies that are widely used in clinical practice and recommended by guidelines as surveillance tools [6]. Additionally, new autoantibodies are emerging, among which anti-α-enolase (anti-ENO-1) antibodies deserve mention. Anti-ENO-1 form as a consequence of α-enolase externalisation during NETosis [17]. In a study by Huang et al., anti-ENO-1 displayed a good ability to predict the incidence of LN in SLE patients (area under the curve (AUC)= 0.81; p = 0.001) [18]. Interestingly, studies conducted by Bruschi et al. revealed a higher prevalence of the anti-ENO-1 IgG2 isotype in LN patients compared with subjects with other glomerulonephritides, as well as in patients with LN, compared with patients with non-renal SLE (AUC = 0.82; p = 0.02) [19,20,21].

Hyperuricemia, a marker of renal disfunction, has recently been hypothesised to be involved in LN pathogenesis [22]. Consistent results across different studies lend support to a diagnostic role of uric acid (UA) for distinguishing LN from SLE with no renal involvement (AUC = 0.80–0.86; p < 0.001 for all; sensitivity (sens.): 75–83%; specificity (spec.): 70–79%; positive predictive value (PPV): 70–87%; negative predictive value (NPV): 62–80%; cut-off values: 4.47–5.54 mg/dL) [22,23,24].

Tumour necrosis factor (TNF) weak inducer of apoptosis (TWEAK) is a cytokine member of the TNF superfamily involved in multiple cellular processes [25]. It is postulated that the main source of TWEAK in LN are innate immune cells, mainly monocytes and natural killer cells, which infiltrate the kidneys during inflammation. TWEAK exerts its action by interacting with its sole receptor, Fn14, and activates multiple intracellular pathways, which vary depending on the cell microenvironment [26,27]. TWEAK has been linked to LN pathogenesis and represents a possible target of renoprotective agents [28,29]. Pathological effects mediated by TWEAK/Fn14 signalling include the enhancement of apoptosis of parenchymal renal cells and induction of proinflammatory cytokines and chemokines, which, in turn, might serve as emerging biomarkers of kidney injury in LN [27,30]. Both serum and urinary TWEAK hold promise as useful diagnostic markers of LN, with the latter displaying outstanding overall metrics in most studies (see Table 1 for the detailed metrics) [26,27,30], although two studies reported the superiority of serum TWEAK over urinary TWEAK in the ability to differentiate between LN and non-renal SLE [31,32].

Table 1.

Performances of selected diagnostic biomarkers for LN.

Biomarker Sample Comparator Metrics References
Autoantibodies
Anti-C1q (+) Serum/Plasma Non-renal SLE AUC = 0.76; sens.: 74%; spec.: 55% Gomez-Puerta et al., 2018 [41]
Non-renal SLE OR = 4.4 Sjöwall et al., 2018 [50]
Non-renal SLE sens.: 63%; spec.: 71% Birmingham et al., 2016 [51]
Active non-renal SLE AUC = 0.64; sens.: 47%; spec.: 83% Pang et al., 2016 [52]
Anti-dsDNA (+) Serum/Plasma Non-renal SLE AUC = 0.65 Bruschi et al., 2021 [20]*
Healthy controls AUC = 0.94
Non-renal SLE OR = 2.1 Hardt et al., 2018 [53]
Non-renal SLE AUC = 0.72; sens.: 72%; spec.: 73%; HR = 5.8; HRadj = 2.7 Liu et al., 2021 [54]
Non-renal SLE AUC = 0.89; sens.: 100%; spec.: 71%; PPV:44%; NPV: 100%; HR = 1.1 Kwon et al., 2020 [55]
Active non-renal SLE; Inactive SLE sens.: 94%; spec.: 40%; PPV: 43%; NPV: 93% Mok et al., 2016 [56]
Non-renal SLE OR = 2.9 Sjöwall et al., 2018 [50]
Non-renal SLE OR = 3.3 Barnado et al., 2019 [57]
Anti-dsDNA-negative SLE OR = 4.6
Anti-ENO-1 (+) Serum/Plasma Non-renal SLE AUC = 0.81; sens.: 82%; spec.: 91% Huang et al., 2019 [18]
Non-renal SLE AUC = 0.82 Bruschi et al., 2021 [20] *
Healthy controls AUC = 0.94
PHACTR4 icx (+) Serum/Plasma Healthy controls AUC = 0.99 Tang et al., 2022 [58]
P3H1 icx (+) AUC = 0.82
RGS12 icx (+) AUC = 0.90
Complements
C3 (low) Serum/Plasma Non-renal SLE HR = 6.4 Liu et al., 2021 [54]
Non-renal SLE sens.: 78%; spec.: 92%; PPV: 97%; NPV: 58%; OR = 39 Ishizaki et al., 2015 [59]
Non-renal SLE sens.: 74%; spec.: 64%; PPV: 67%; NPV: 71%; OR = 5.0 Martin et al., 2020 [60]
Active non-renal SLE; Inactive SLE sens.: 97%; spec.: 32%; PPV: 41%; NPV: 95% Mok et al., 2016 [56]
C4 (low) Serum/Plasma Non-renal SLE sens.: 70%; spec.: 68%; PPV: 69%; NPV: 70%; OR = 5.1 Martin et al., 2020 [56]
Non-renal SLE HR = 5.0 Liu et al., 2021 [54]
Kidney disease-related markers
Albumin to globulin ratio (low) Urine Non-renal SLE AUC = 0.65; sens.: 84%; spec.: 52%; HR = 5.5; HRadj = 7.0 Liu et al., 2021 [54]
Creatinine () Serum/Plasma Non-renal SLE AUC = 0.83; sens.: 75%; spec.: 76%; PPV: 86%; NPV: 61% Yang et al., 2016 [23]
Proteinuria () (>500 mg/24 h) Urine Non-renal SLE AUC = 0.99 Jakiela et al., 2018 [61]
Urea () Serum/Plasma Non-renal SLE AUC = 0.82; sens.: 60%; spec.: 94%; PPV: 95%; NPV: 55% Yang et al., 2016 [23]
Uric acid () Serum/Plasma Non-renal SLE AUC = 0.86; sens.: 78%; spec.: 79%; PPV: 70%; NPV: 75% Calich et al., 2018 [22]
Non-renal SLE AUC = 0.80; sens.: 75%; spec.: 78%; PPV: 87%; NPV: 62% Yang et al., 2016 [23]
Non-renal SLE AUC = 0.81; sens.: 83%; spec.: 70%; PPV: 74%; NPV: 80% Hafez et al., 2021 [24]
Cytokines/chemokines
APRIL () Urine Active non-renal SLE AUC = 0.78 Phatak et al., 2017 [62]
Non-renal SLE sens.: 38%; spec.: 68% Vincent et al., 2018 [63]
BAFF () Urine Active non-renal SLE AUC = 0.83 Phatak et al., 2017 [62]
Non-renal SLE sens.: 20%; spec.: 91% Vincent et al., 2018 [63]
CXCL4 () Urine Active non-renal SLE AUC = 0.64; sens.: 63%; spec.: 61% Mok et al., 2018 [64]
MCP-1 () Urine Non-renal SLE AUC = 0.73; sens.: 76%; spec.: 58% Gómez-Puerta et al., 2018 [41]
Non-renal SLE AUC = 0.70 Barbado et al., 2012 [65]
Non-renal SLE AUC = 1.00; sens.: 95%; spec.: 93%; PPV: 94%; NPV: 95% Elsaid et al., 2021 [30]
Healthy controls AUC = 0.87 Singh et al., 2012 [66]
TWEAK () Serum/Plasma Non-renal SLE AUC = 0.65; sens.: 81%; spec.: 48%; accuracy: 63%; OR = 1.1 Choe et al., 2016 [32]
Active non-renal SLE AUC = 0.80; sens.: 80%; spec.: 80% Mirioglu et al., 2020 [31]
Urine Non-renal SLE AUC = 0.88; sens.:100%; spec.: 67% Salem et al., 2018 [26]
Non-renal SLE AUC = 0.87; sens.: 81%; spec.: 67% Reyes-Martínez et al., 2018 [27]
Non-renal SLE AUC = 1.00; sens.: 100%; spec.: 100%; PPV: 100%; NPV: 100% Elsaid et al., 2021 [30]
Cell adhesion molecules
ALCAM () Urine Active non-renal SLE AUC = 0.75–0.96 Chalmers et al., 2022 [67]
Healthy controls AUC = 0.82–0.96
Active non-renal SLE AUC = 0.84 Ding et al., 2020 [68]
Healthy controls AUC = 0.93
VCAM-1 () Urine Active non-renal SLE AUC = 0.73–0.92; sens.: 69%; spec.: 66% Mok et al., 2018 [64]
Healthy controls AUC = 0.92 Singh et al., 2012 [66]
Other proteins
Angiostatin () Urine Active non-renal SLE AUC = 0.87; sens.: 80%; spec.: 82% Mok et al., 2018 [64]
Healthy controls AUC = 0.95 Wu et al., 2013 [69]
Axl () Serum/Plasma Active non-renal SLE; Inactive SLE sens.: 68%; spec.: 77%; PPV: 55%; NPV: 86% Mok et al., 2016 [56]
HE4 () Serum/Plasma Non-renal SLE AUC = 0.88; sens.: 77%; spec.: 91% Yang et al., 2016 [23]
Non-renal SLE AUC = 0.71; sens.: 82%; spec.: 53%; HR = 16.8 Ren et al., 2018 [70]
IGFBP-2 () Serum/Plasma CKD not LN AUC = 0.65 Ding et al., 2016 [71]
Healthy controls AUC = 0.97
NGAL () Urine Active non-renal SLE; Inactive SLE sens.: 71%; spec.: 90%; PPV: 61%; NPV: 94% Mok et al., 2016 [56]
Non-renal SLE AUC = 0.99; sens.: 98%; spec.: 100% Li et al., 2019 [42]
Non-renal SLE AUC = 0.70; sens.: 67%; spec.: 63% Gómez-Puerta et al., 2018 [41]
sTNFRII () Serum/Plasma Active non-renal SLE; Inactive SLE sens.: 41%; spec.: 81%; PPV: 48%; NPV: 86% Mok et al., 2016 [56]
TF () Urine Non-renal SLE AUC = 0.81 Davies et al., 2021 [72]
Non-renal SLE AUC = 0.86 Urrego et al., 2020 [73]
β2-MG () Urine Non-renal SLE AUC = 0.85; sens.: 82%; spec.: 90% Huang et al., 2019 [18]
Non-renal SLE OR = 1.1 Choe et al., 2014 [74]
MicroRNAs
miRNA-21 () Serum/Plasma Non-renal SLE; Inactive LN AUC = 0.89; ORadj = 3.2 Khoshmirsafa et al., 2019 [45]
Healthy controls AUC = 0.91; sens.: 86%; spec.: 63%; PPV: 76%; NPV: 93% Nakhjavani et al., 2019 [46]
Microparticles
MP-CX3CR1+ () Urine Non-renal SLE AUC = 0.85; sens.: 63%; spec.: 86% Burbano et al. [48]
MP-HLADR+ () AUC = 0.97; sens.: 85%; spec.: 86%
MP-HMGB1+ () AUC = 0.99–1.00; sens.: 95–100%; spec.: 88%
Renal tissue markers
Mannose enriched N-glycan expression (GNA reactivity ≥ 50%) Kidney biopsy Healthy controls AUC = 0.83 Alves et al., 2021 [75]

Biomarkers are structured into subgroups (highlighted in bold) based on clinical/functional affinities. ALCAM: activated leukocyte cell adhesion molecule; Anti-dsDNA: anti-double-stranded DNA; Anti-ENO-1: anti-α-enolase 1; APRIL: a proliferation-inducing ligand; AUC: area under the curve; BAFF: B cell activating factor belonging to the TNF ligand superfamily; β2-MG: β2-microglobulin; CKD: chronic kidney disease; CXCL4: C-X-C motif chemokine ligand 4; CX3CR1: C-X3-C motif chemokine receptor 1; C3: complement component 3; C4: complement component 4; GNA: galantus nivalis agglutinin reaction; HE4: human epididymis protein 4; HMGB1: high mobility group box 1; HR: hazard ratio; HRadj: adjusted hazard ratio; icx: immune complexes; IGFBP-2: insulin-like growth factor binding protein 2; LN: lupus nephritis; MCP-1: monocyte chemoattractant protein 1; miRNA-21: microRNA-21; MP: microparticle; NGAL: neutrophil gelatinase associated lipocalin; NPV: negative predictive value; OR: odds ratio; PHACTR4: phosphatase and actin regulator 4; PPV: positive predictive value; P3H1: prolyl 3-hydroxylase 1; RGS12: regulator of G-protein signalling 12; sens.: sensitivity; SLE: systemic lupus erythematosus; spec.: specificity; sTNFRII: soluble tumour necrosis factor alpha receptor II; TF: transferrin; TWEAK: TNF-like weak inducer of apoptosis; VCAM-1: vascular cell adhesion molecule 1; (+): positivity; : elevated. * This study evaluated IgG2 subclass antibodies.

Neutrophil gelatinase-associated lipocalin (NGAL) is a small secreted glycoprotein whose expression is upregulated in several pathologic conditions, including inflammatory and renal diseases [33]. NGAL is functionally involved in the induction of apoptosis and iron sequestration, thus playing a critical role in innate immunity in the context of bacterial infections [34]. With regard to LN, NGAL is highly expressed by activated leukocytes and tubular epithelial cells in response to inflammation and kidney injury [35]. NGAL may act as a nephroprotective agent by modulating apoptosis in resident macrophages and tubular cells in the context of a renal insult, although a definitive mechanistic explanation for its function in LN has yet to be provided [34]. Urinary NGAL has proven to be a versatile biomarker in LN across multiple studies [35,36,37,38,39,40,41]. Of relevance to the diagnosis of LN, the urine levels of NGAL were found to be higher in patients with LN than in patients with non-renal SLE in two independent cohorts, exhibiting an overall good diagnostic ability (AUC = 0.70–0.99; sens.: 67–98%; spec.: 63–100%) [41,42].

A growing number of studies have investigated the role of microRNAs (miRNAs) as putative epigenetic biomarkers in LN. These short single-stranded RNA molecules have been implicated in multiple regulatory events of gene expression [43], and differential levels of different miRNAs, including miRNA-21, miRNA-146a, miRNA-150, miRNA-155, miRNA-181a, miRNA-223, and miRNA-423, have been linked to kidney involvement in patients with SLE [44,45,46,47]. In particular miRNA-21 displayed a satisfactory ability to distinguish between patients with active LN compared with a group of patients with either inactive LN or non-renal SLE (AUC = 0.89; p < 0.001) [45], as well as patients with LN from healthy controls (AUC = 0.91; sens.: 86%; spec.: 63%; PPV: 76%; NPV: 93%; p < 0.001) [46].

Recently, monocyte-derived urinary microparticles (MPs) have been shown to be promising diagnostic biomarkers for LN, serving as a remote biopsy to assess the retainment of inflammatory cells within renal parenchyma [48]. Burbano et al. found a significant increase of MP-HLADR+, MP-high mobility group box 1 (HMGB1)+, and MP-C-X3-C chemokine receptor 1 (CX3CR1)+ in patients with LN compared to patients with non-renal SLE (see Table 1 for the metrics). In addition, MP-HMGB1+ exhibited an adequate performance in differentiating patients with active LN from patients with inactive LN (AUC = 0.83; sens.: 55%; spec.: 93%; p < 0.001) [48]. Interestingly, the aforementioned molecules are mainly expressed by non-classic monocytes, lending support to the hypothesis that this specific cell subset constitutes one of the main drivers of kidney inflammation and injury in LN [48,49].

A summary of the diagnostic biomarkers of LN as derived from the systematic search of the literature conducted herein is presented in Table 1.

3.2. Biomarkers of Disease Activity and Organ Damage

Cytokines and chemokines play a critical role in the development of LN, e.g., in the process of recruiting leukocytes and orchestrating the inflammatory response [12,76]. Serum IL-10 and IL-17 have been shown to exhibit satisfactory performances in discriminating between patients with active LN and patients with inactive LN and displayed a strong correlation with the disease activity parameters (see Table 2 for the detailed metrics) [61,77]. Several studies have investigated the potential of cytokines and chemokines as urinary biomarkers [11,61,78,79,80]. Using an innovative electrochemiluminescence-based multiplex panel, Stanley et al. identified and validated five selected urinary proteins (IL-7, IL-12p40, IL-15, thymus- and activation-regulated chemokine (TARC), and interferon-γ (IFN-γ) inducible protein-10/C-X-C Motif Chemokine Ligand 10 (IP-10/CXCL10)), which displayed diagnostic potential and strong correlations with the renal domain of Systemic Lupus Erythematosus Disease Activity Index (rSLEDAI) (r = 0.67–0.74; p < 0.001 for all) [78]. Of these, IP-10 was also investigated in other studies, which overall corroborated its association with renal SLE [12,61]. IP-10 is a member of the T-helper 1 lymphocyte chemokines; it is secreted in response to IFN stimulation and has been shown to be involved in the lymphocyte trafficking into afflicted organs in murine lupus models and SLE patients [81].

Table 2.

Performances of selected biomarkers of clinical disease activity in LN.

Biomarker Sample Comparator Disease activity Metrics References
Autoantibodies
Anti-C1q (+) Serum/
Plasma
N/A SLEDAI; ECLAM r = 0.47 (SLEDAI);
r = 0.28 (ECLAM)
Bock et al., 2015 [104]
Inactive LN proteinuria; SLEDAI AUC = 0.76; sens.: 72%; spec.: 55%;
r = 0.28 (proteinuria);
r = 0.28 (SLEDAI)
Gómez-Puerta et al., 2018 [41]
Inactive LN proteinuria; active urinary sediment AUC = 0.73; sens.: 63%; spec.: 75%; PPV: 69%; NPV: 67%; OR = 5.1 Kianmehr et al., 2021 [105]
Inactive LN proteinuria; active urinary sediment OR = 8.4 Sjöwall et al., 2018 [50]
SLE with no renal flares renal flares sens.: 70%; spec.: 44% Birmingham et al., 2016 [51]
SLE with no renal flare renal flares sens.: 75%; spec.: 69%; PPV: 35%; NPV: 93%; HRadj = 1.1 Fatemi et al., 2016 [106]
Anti-dsDNA (+) Serum/
Plasma
Inactive LN proteinuria;
SLEDAI
AUC = 0.88; sens.: 71%; spec.: 88% Jakiela et al., 2018 [61]
Inactive LN proteinuria; active urinary sediment; SLEDAI AUC = 0.70; sens.: 71%; spec.: 63%; PPV: 63%; NPV: 71%; OR = 4.2
r = 0.23 (SLEDAI)
Kianmehr et al., 2021 [105]
Inactive LN proteinuria; active urinary sediment OR = 4.8 Sjöwall et al., 2018 [50]
SLE with no renal flares renal flares AUC = 0.85; sens.: 88%; spec.: 83%; PPV: 43%; NPV: 97%; HR = 21.7 Fasano et al., 2020 [107]
PTEC-binding IgG (+) Serum/Plasma Inactive LN renal flares AUC = 0.63; sens.: 46%; spec.: 80%; PPV: 44%; NPV: 81% Yap et al., 2016 [108]
Complements
C3 (low) Serum/
Plasma
Inactive LN proteinuria; SLEDAI AUC = 0.88; sens.: 100%; spec.: 65% Jakiela et al., 2018 [61]
N/A SLEDAI r = −0.99 (SLEDAI) Selvaraja et al., 2019 [109]
Active non-renal SLE renal flares sens.: 70%; spec.: 59%; OR = 2.5 Ruchakorn et al., 2019 [110]
SLE with no renal flares renal flares AUC = 0.76; sens.: 100%; spec.: 51%; PPV: 23%; NPV: 100%; HR = 6.0 Fasano et al., 2020 [107]
C4 (low) Serum/
Plasma
N/A SLEDAI r = −0.83 (SLEDAI) Selvaraja et al., 2019 [109]
Inactive LN proteinuria; SLEDAI AUC = 0.88; sens.: 81%; spec.: 88% Jakiela et al., 2018 [61]
SLE with no renal flares renal flares AUC = 0.82; sens.: 100%; spec.: 62%; PPV: 28%; NPV: 100%; HR = 5.5 Fasano et al., 2020 [107]
SLE with no renal flares renal flares ORadj = 5.6 Buyon et al., 2017 [111]
Kidney disease-related markers
Proteinuria () (>500 mg/24 h) Urine Inactive LN proteinuria; active urinary sediment AUC = 0.94 Dolff et al., 2013 [112]
Inactive LN proteinuria; SLEDAI AUC = 0.99; sens.: 88%; spec.: 100% Jakiela et al., 2018 [61]
SLE with no renal flares renal flares PPV: 43%; NPV: 85%; HRadj = 1.1 Fatemi et al., 2016 [106]
WBC () Urine Inactive LN proteinuria; SLEDAI AUC = 0.75; sens.: 71%; spec.: 73% Jakiela et al., 2018 [61]
RBC () Urine Inactive LN proteinuria; SLEDAI AUC = 0.92; sens.: 77%; spec.: 100% Jakiela et al., 2018 [61]
Granular casts (+) Urine Inactive LN proteinuria; SLEDAI AUC = 0.91; sens.: 82%; spec.: 91% Jakiela et al., 2018 [61]
Cytokines/chemokines
IL-10 () Serum/
Plasma
Inactive LN proteinuria; SLEDAI AUC = 0.87; sens.: 71%; spec.: 85% Jakiela et al., 2018 [61]
N/A SLEDAI r = 0.98 (SLEDAI) Selvaraja et al., 2019 [109]
IL-17 () Serum/
Plasma
Inactive LN SLEDAI AUC = 0.91;
r = 0.63 (SLEDAI)
Dedong et al., 2019 [77]
Inactive LN BILAG renal score AUC = 0.81; r = 0.26 (BILAG renal score) Nordin et al., 2019 [113]
IL-7 () Urine Inactive SLE rSLEDAI AUC = 0.92; sens.: 84%; spec.: 95%; PPV: 95%; NPV: 84%;
r = 0.70 (rSLEDAI)
Stanley et al., 2019 [78]
IL-12 p40 () AUC = 0.93; sens.: 87%; spec.: 100%; PPV: 100%; NPV: 88%;
r = 0.67 (rSLEDAI)
IL-15 () AUC = 0.91; sens.: 93%; spec.: 100%; PPV: 100%; NPV: 92%;
r = 0.67 (rSLEDAI)
MCP-1 () Urine Inactive LN; Non-renal SLE rSLEDAI AUC = 0.70;
r = 0.35 (rSLEDAI)
Liu et al., 2020 [87]
Inactive LN SLEDAI AUC = 0.76; sens.: 81%; spec.: 85% Bona et al., 2020 [86]
Inactive SLE rSLEDAI AUC = 0.79; sens.: 93%; spec.: 68%; PPV: 93%; NPV: 68% Stanley et al., 2020 [11]
Inactive LN proteinuria; rSLEDAI AUC = 1.00; sens.: 100%; spec.: 100%; PPV: 100%; NPV:100%;
r = 0.84 (proteinuria);
r = 0.92 (rSLEDAI)
Elsaid et al., 2021 [30]
Inactive LN SLEDAI-2K AUC = 0.81; sens.: 50%; spec.: 90%;
r = 0.39 (SLEDAI-2K)
Rosa et al., 2012 [84]
Inactive LN proteinuria; SLEDAI AUC = 0.71; sens.: 70%; spec.: 58%;
r = 0.47 (proteinuria); r = 0.33 (SLEDAI)
Gómez-Puerta et al., 2018 [41]
Inactive LN N/A AUC = 0.90; sens.: 89%; spec.: 63%; OR = 19.4 Xia et al., 2020 [91]
IP-10/CXCL10 () Urine Inactive SLE rSLEDAI AUC = 0.94; sens.: 87–88%; spec.: 81–100%; PPV: 100%; NPV: 88%; r = 0.67–0.74 (rSLEDAI) Stanley et al., 2019 [78]
Inactive LN proteinuria; SLEDAI AUC = 0.93; sens.: 88%; spec.: 81% Jakiela et al., 2018 [61]
Healthy controls N/A AUC = 0.92 Zhang et al., 2020 [12]
PF-4 () Urine Inactive SLE rSLEDAI AUC = 0.71–0.88; sens.: 54–93%; spec.: 79–96%; PPV: 82–94%; NPV: 77–88% Stanley et al., 2020 [11]
TARC () Urine Inactive SLE rSLEDAI AUC = 0.91; sens.: 78%; spec.: 92%, PPV: 91%; NPV: 80%;
r = 0.70 (rSLEDAI)
Stanley et al., 2019 [78]
TGFβ1 () Urine Active non-renal SLE proteinuria r = 0.51 (proteinuria) Fava et al., 2022 [79]
Active non-renal SLE rSLEDAI AUC = 0.78;
r = 0.37 (rSLEDAI)
Vanarsa et al., 2020 [80]
TWEAK () Urine N/A proteinuria r = 0.61 (proteinuria) Reyes-Martínez et al., 2018 [27]
Inactive LN proteinuria; rSLEDAI AUC = 1.00; sens.: 100%; spec.: 100%; PPV: 100%; NPV: 100%;
r = 0.84 (proteinuria);
r = 0.89 (rSLEDAI)
Elsaid et al., 2021 [30]
Angiogenesis-related molecules
Angptl4 () Urine Active non-renal SLE rSLEDAI AUC = 0.96; r = 0.66 Vanarsa et al., 2020 [80]
Healthy controls N/A AUC = 0.92 Zhang et al., 2020 [12]
Angiostatin () Serum/
Plasma
Inactive LN SLEDAI AUC = 0.83 Wu et al., 2016 [13]
Urine Inactive LN rSLEDAI AUC = 0.99; sens.: 83%; spec.: 100%;
r = 0.33 (rSLEDAI)
Soliman et al., 2017 [95]
Healthy controls N/A AUC = 0.97 Zhang et al., 2020 [12]
Inactive SLE rSLEDAI; SLEDAI; SLICC-RAS AUC = 0.83
r = 0.52 (rSLEDAI);
r = 0.36 (SLEDAI);
r = 0.68 (SLICC-RAS)
Wu et al., 2013 [69]
Haemostasis-related molecules
Plasmin () Urine Inactive LN rSLEDAI;
SLICC-RAS
AUC = 0.86; sens.: 100%; spec.: 70%; PPV: 96%; NPV: 50%;
r = 0.50 (rSLEDAI);
r = 0.58 (SLICC-RAS)
Qin et al., 2019
[97]
Tissue Factor () AUC = 0.74; sens.: 61%; spec.: 85%; PPV: 90%; NPV: 35%;
r = 0.33 (rSLEDAI);
r = 0.38 (SLICC-RAS)
TFPI () AUC = 0.77; sens.: 86%; spec.: 58%; PPV: 92%; NPV: 36%;
r = 0.40 (rSLEDAI);
r = 0.31 (SLICC-RAS)
Inactive SLE rSLEDAI AUC = 0.71–0.88; sens.: 57–80%; spec.: 84–89%; PPV: 73–89%; NPV: 73–82% Stanley et al., 2020 [11]
Cell adhesion molecules
ALCAM () Urine N/A rSLEDAI r = 0.35–0.41 (rSLEDAI) Chalmers et al., 2022 [67]
Inactive SLE rSLEDAI AUC = 0.84% sens.: 79–94%; spec.: 70–95%; PPV: 86–91%; NPV: 90–92% Stanley et al., 2020 [11]
N/A rSLEDAI; SLICC-RAS r = 0.55 (rSLEDAI);
r = 0.58 (SLICC-RAS)
Ding et al., 2020 [68]
ICAM-1 () Urine Inactive LN proteinuria; active urinary sediment AUC = 0.97; sens.: 93–98%; spec.: 81–86% Wang et al., 2018 [114]
SLE with no renal flares renal flares AUC = 0.75; sens.: 88%; spec.: 59%; PPV: 25%; NPV: 97%; HR = 8.5 Fasano et al., 2020 [107]
NCAM-1 () Urine Inactive LN proteinuria; active urinary sediment AUC = 0.88; sens.: 82%; spec.: 87% Wang et al., 2018 [114]
Healthy controls N/A AUC = 0.75 Zhang et al., 2020 [12]
VCAM-1 () Serum/
Plasma
Inactive LN rSLEDAI-2K; SLEDAI-2K AUC = 0.86; sens.: 69%; spec.: 90%;
r = 0.61 (rSLEDAI-2K);
r = 0.62 (SLEDAI-2K)
Yu et al., 2021 [115]
Urine N/A rSLAM-R r = 0.26 (rSLAM-R) Howe et al., 2012 [100]
Inactive SLE rSLEDAI AUC = 0.84–0.87; sens.:92–96%; spec.: 65–74%; PPV: 93–95%; NPV: 60–72% Stanley et al., 2020 [11]
N/A rSLEDAI r = 0.55 (rSLEDAI) Liu et al., 2020 [87]
SLE with no renal flares renal flares AUC = 0.76; sens.: 75%; spec.: 75%; PPV: 32%; NPV: 95%; HR = 7.5 Fasano et al., 2020 [107]
Inactive LN rSLEDAI;
SLEDAI
AUC = 0.98; sens.: 100%; spec.: 90%;
r = 0.32 (rSLEDAI);
r = 0.32 (SLEDAI)
Soliman et al., 2017 [95]
Other proteins
Axl () Serum/
Plasma
Inactive LN SLEDAI AUC = 0.87 Wu et al., 2016 [13]
Calpastatin () Urine Inactive SLE rSLEDAI AUC = 0.72–0.75; sens.: 50–66%; spec.: 78–100%; PPV: 75–82%; NPV: 70–100% Stanley et al., 2020 [11]
CD163 () Urine Inactive LN N/A AUC = 0.98–0.99; sens.: 97%; spec.: 94% Mejia-Vilet et al., 2020 [101]
Active non-renal SLE rSLEDAI AUC = 0.87–0.94;
r = 0.45–0.75 (rSLEDAI)
Zhang et al., 2020 [103]
N/A proteinuria r = 0.40 (proteinuria) Fava et al., 2022 [79]
Ferritin () Serum/
Plasma
Inactive LN SLEDAI AUC = 0.84 Wu et al., 2016 [13]
FOLR2 ()
Urine
Active non-renal SLE rSLEDAI AUC = 0.73;
r = 0.62 (rSLEDAI)
Vanarsa et al., 2020 [80]
Hemopexin () Urine Inactive SLE rSLEDAI AUC = 0.73–0.80; sens.: 85–100%; spec.: 56–99%; PPV: 79–100%; NPV: 57–70% Stanley et al., 2020 [11]
IGFBP-2 () Serum/
Plasma
N/A rSLEDAI r = 0.41 (rSLEDAI) Ding et al., 2016 [71]
L-selectin () Urine Active non-renal SLE rSLEDAI AUC = 0.86;
r = 0.73 (rSLEDAI)
Vanarsa et al., 2020 [80]
NGAL () Urine Inactive LN rSLEDAI-2K AUC = 0.83; sens.: 89%; spec.: 67% Alharazy et al., 2013 [116]
Inactive LN proteinuria; SLEDAI AUC = 0.67; sens.: 70%; spec.: 62%;
r = 0.40 (proteinuria); r = 0.30 (SLEDAI)
Gómez-Puerta et al., 2018 [41]
N/A rSLEDAI r = 0.42 (rSLEDAI) Liu et al., 2020 [87]
PDGFRβ () Urine Active non-renal SLE rSLEDAI AUC = 0.67 Vanarsa et al., 2020 [80]
Peroxiredoxin 6 () Urine Inactive SLE rSLEDAI AUC = 0.64–0.75; sens.: 50–56%; spec.: 79–91%; PPV: 68–87%; NPV: 64–68% Stanley et al., 2020 [11]
Progranulin () Serum/
Plasma
Stable LN
rSLEDAI;
SLEDAI
AUC = 0.88; sens.: 53%; spec.: 89%; PPV: 82%; NPV: 66% Wu et al., 2016
[117]
Non-LN renal disorder AUC = 0.67; sens.: 60%; spec.: 100%; PPV: 100%; NPV: 73%;
r = 0.57 (rSLEDAI);
r = 0.62 (SLEDAI)
Urine Inactive LN AUC = 0.90; sens.: 65%; spec.: 99%; PPV: 98%; NPV: 74%;
r = 0.59 (rSLEDAI);
r = 0.58 (SLEDAI)
Properdin () Urine Inactive SLE rSLEDAI AUC = 0.71–0.85; sens.: 62–86%; spec.: 84–90%; PPV: 79–90%; NPV: 68–86% Stanley et al., 2020 [11]
RBP4 () Urine SLE with no proteinuric flare proteinuric flares AUC = 0.67; sens.: 93%; spec.: 67%; HR = 9.5 Go et al., 2018 [118]
N/A rSLEDAI; SLEDAI; uPCR r = 0.31 (rSLEDAI);
r = 0.31 (SLEDAI);
r = 0.39 (uPCR)
Aggarwal et al., 2017 [119]
SDC-1 () Serum/
Plasma
Inactive LN proteinuria; rSLEDAI-2K; SLEDAI-2K AUC = 0.91; sens.: 85%; spec.: 86%;
r = 0.57 (proteinuria);
r = 0.68 (rSLEDAI-2K);
r = 0.54 (SLEDAI-2K)
Yu et al., 2021 [120]
N/A SLEDAI; uPCR r = 0.60 (SLEDAI);
r = 0.45 (uPCR)
Kim et al., 2015 [121]
sTNFRII () Serum/
Plasma
Non-renal SLE rSLEDAI; rLAI AUC = 0.77;
r = 0.30 (rSLEDAI);
r = 0.39 (rLAI)
Smith et al., 2019 [122]
Inactive LN N/A AUC = 0.81 Wu et al., 2016 [13]
TSP1 () Urine Active non-renal SLE rSLEDAI AUC = 0.72 Vanarsa et al., 2020 [80]
TTP1 () Urine Active non-renal SLE rSLEDAI AUC = 0.84 Vanarsa et al., 2020 [80]
Microparticles
MP-HMGB1+ () Urine Inactive LN N/A AUC = 0.83; sens.: 55%; spec.: 93% Burbano et al., 2019 [48]

Biomarkers are structured into subgroups (highlighted in bold) based on clinical/functional affinities. ALCAM: activated leukocyte cell adhesion molecule; Angptl4: angiopoietin-like protein 4; Anti-dsDNA: anti-double-stranded DNA; AUC: area under the curve; BILAG: British Isles Lupus Assessment Group; CCL: C-C motif chemokine ligand; Cr: creatinine; CXCL: C-X-C motif chemokine ligand; C3: complement component 3; C4: complement component 4; ECLAM: European Consensus Lupus Activity Measurement; FOLR2: folate receptor beta; HMGB1: high mobility group box 1; HR: hazard ratio; HRadj: adjusted hazard ratio; ICAM-1: intercellular cell adhesion molecule 1; IGFBP-2: insulin-like growth factor binding protein 2; IP-10/CXCL10: interferon gamma inducible protein-10/C-X-C motif chemokine ligand 10; LN: lupus nephritis; MCP-1: monocyte chemoattractant protein 1; MP: microparticle; N/A: not applicable; NCAM-1: neural cell adhesion molecule 1; NGAL: neutrophil gelatinase associated lipocalin; NPV: negative predictive value; OR: odds ratio; PDGFRβ: platelet-derived growth factor receptor beta; PF-4: platelet factor 4; PPV: positive predictive value; PTEC-binding IgG: proximal renal tubular epithelial cell-binding immunoglobulin G; r: correlation coefficient; RBC: red blood cells; RBP4: retinol binding protein 4; rLAI: renal Lupus Activity Index; rSLEDAI: renal SLEDAI; rSLEDAI-2K: renal SLEDAI 2000; SDC-1: syndecan 1; sens.: sensitivity; sIL-7R: soluble interleukin 7 receptor; SLAM-R: Systemic Lupus Activity Measure Revised; SLE: systemic lupus erythematosus; SLEDAI: Systemic Lupus Erythematosus Disease Activity Index; SLICC: Systemic Lupus International Collaborating Clinics; SLICC-RAS: Systemic Lupus International Collaborating Clinics Renal Activity Score; spec.: specificity; sTNFRII: soluble tumour necrosis factor alpha receptor II; TARC: thymus- and activation-regulated chemokine; TFPI: tissue factor pathway inhibitor; TGFβ1: transforming growth factor β1; TSP1: thrombospondin 1; TTP1: tripeptidyl-peptidase 1; TWEAK: TNF-like weak inducer of apoptosis; uPCR: urine protein to creatinine ratio; VCAM-1: vascular cell adhesion molecule 1; WBC: white blood cells; (+): positivity; : elevated.

MCP-1 is another low molecular weight CC chemokine implicated in the recruitment of leukocytes and a mediator of inflammation and injury in LN [30,82]. MCP-1 expression is upregulated by several proinflammatory cytokines, including those belonging to the TNF superfamily. It has been shown that the TNF𝛼/TNF receptor II (TNFRII) and TWEAK/Fn14 axes both induce the production of MCP-1, which, in turn, amplifies the inflammatory response [30,72,83]. This provides biological advocacy for a link between MCP-1 and other widely investigated biomarkers of LN, such as TWEAK and TNFRII [30,56,83]. MCP-1 was evaluated in several studies [11,30,41,65,84,85,86,87,88,89,90], and its value as a urinary marker of LN activity was further strengthened in a meta-analysis conducted by Xia et al., which reported a pooled sensitivity of 89% and pooled specificity of 63% (AUC = 0.90; pooled OR = 19.4) for distinguishing patients with active LN from patients with inactive LN [91]. Moreover, Urrego-Callejas et al. found that the urine levels of MCP-1 were significantly increased in patients with a National Institutes of Health (NIH) renal pathology chronicity index (CI) score ≥ 4, fibrous crescents, tubular atrophy, and interstitial fibrosis, underscoring the potential utility of this molecule as a less invasive, complementary biomarker of kidney damage in real-life clinical settings [92].

Angiogenesis-related proteins are emerging as a novel putative group of interest in LN. Large proteomic studies identified angiopoietin-like protein 4 (Angptl4) and angiostatin as useful urinary biomarkers for tracking renal disease activity and kidney pathology in patients with SLE [11,12,80]. Angptl4 is a cytokine implicated in multiple physiological and pathological vascular processes. Vanarsa et al. found that Angptl4 could differentiate between patients with active LN and active non-renal SLE, while it also strongly correlated with rSLEDAI (AUC = 0.96; r = 0.66; p < 0.001) [80]. Angiostatin is a 38-kDa peptide derived from the proteolytic cleavage of plasminogen and/or plasmin, with prominent inhibitory effects on angiogenesis and endothelial cell proliferation [93,94]. Several enzymes, including plasmin, plasminogen activators, and other proteinases, e.g., matrix metalloproteinase (MMP)-2, MMP3, MMP-7, and MMP-9, have been reported to mediate the production of angiostatin and angiostatin-like molecules [93]. Angiostatin demonstrated an excellent association with LN in different studies (AUC = 0.95–0.99; p < 0.001 for all) [12,69,95]. Moreover, angiostatin has been reported to correlate with several disease activity and organ damage measures, including rSLEDAI, SLEDAI, the NIH renal histology activity index (AI), and NIH renal pathology CI (r = 0.33–0.52, r = 0.36, r = 0.97, and r = 0.52, respectively; p < 0.001 for all), thus emerging as a promising versatile marker with potential value in LN surveillance [69,95].

LN has been associated with a hypercoagulability state as a result of the inflammatory response, and renal thrombotic angiopathy is a feature of severe kidney disease activity in patients with SLE [96]. Qin et al. conducted an exploratory study to evaluate the potential usefulness of haemostasis-related proteins as urinary markers of LN [97]. Among the proteins assessed, i.e., the d-dimer, tissue factor, tissue factor pathway inhibitor (TFPI), and plasmin and urinary plasmin outperformed the others, showing the strongest correlation with rSLEDAI and the Systemic Lupus International Collaborating Clinics Renal Activity Score (SLICC-RAS) (r = 0.50 and r = 0.58, respectively; p < 0.001), as well as the ability to distinguish active from inactive LN (AUC = 0.86; p < 0.001) [97]. Although it still is poorly understood whether urinary plasmin derives from serum plasmin or originates from kidney tissue, it has been demonstrated that the renal expression of its autocatalytic product, angiostatin, is increased in patients with LN [69,97]. In addition, macrophages are likely to contribute to chronic kidney damage and fibrous crescent formation by means of the expression of procoagulant factors [92,96], thus reinforcing the hypothesis of the renal origin of urinary plasmin.

Cell adhesion molecules (CAMs) are key mediators of the inflammatory process and play a critical role in leukocyte transmigration across the endothelium within affected tissues by interacting with integrins expressed on the surfaces of leukocytes [98]. Among them, urinary vascular cell adhesion molecule 1 (VCAM-1) and activated leukocyte cell adhesion molecule (ALCAM) are broadly validated LN biomarkers [11,66,67,68,87,95,99,100], both displaying a good ability to distinguish patients with active LN from patients with inactive LN or non-renal SLE, and correlate with markers of clinical renal disease activity (see Table 2 for the detailed metrics). Urinary VCAM-1 holds promise as a non-invasive predictor of underlying active renal disease; a strong association between urinary VCAM-1 and NIH renal histology AI was displayed in two separate studies (r = 0.42 and r = 0.97; p = 0.05 and p < 0.001, respectively) [66,95]. Moreover, the urine levels of VCAM-1 were found to correlate with NIH renal pathology CI and the chronic kidney disease (CKD) stages (r = 0.30 and r = 0.39–0.50; p < 0.05 for all), suggesting a role as a marker of organ damage [87,99]. Additionally, urinary ALCAM demonstrated a good ability to differentiate between proliferative and membranous LN (AUC = 0.81; p < 0.001), outperforming the ability of traditional markers, i.e., C3, C4, anti-dsDNA, and 24-h urinary protein excretion, in a recent study by Ding et al. [68].

CD163 is a scavenger receptor expressed on the surface of alternatively activated M2c macrophages [101]. Urinary soluble CD163 (sCD163) originates from the extracellular portion of its membrane-bound counterpart upon cleavage by MMPs during inflammation [102]. Soluble CD163 is considered a yardstick of glomerular infiltration of CD163+ M2 macrophages, which, in turn, is linked to LN histological and clinical renal activity [102,103]. While having a physiological function in wound healing and tissue repair, this subset of macrophages was also found to be increased in areas of glomerular and tubular injury and may be a major driver of crescent formation and interstitial fibrosis [101,103]. When evaluated in multiple independent cohorts [79,101,102,103], urinary sCD163 could discriminate between patients with active LN from patients with inactive LN or non-renal SLE, suggesting a potential use in monitoring LN disease activity (see Table 2 and Table 3 for the detailed metrics). In addition, in a study by Endo et al., urinary sCD163 was shown to be a reliable predictor of renal proliferative disease in patients with LN (AUC = 0.83–0.89; sens.: 83%; spec.: 86%) [102]. Similar results were obtained in another study where urinary sCD163 outperformed the conventional markers, i.e., anti-dsDNA, C3, C4, and uPCR, in distinguishing proliferative from non-proliferative LN (AUC = 0.89; p < 0.001) [103].

Table 3.

Performances of selected biomarkers of histological disease activity.

Biomarker Sample Comparator Disease activity Metrics References
Complement
C1q (low) Serum/
Plasma
N/A AI r = −0.33 (AI) Tan et al., 2013 [123]
C3 (low) Serum/
Plasma
membranous LN proliferative LN AUC = 0.77; sens.: 75%; spec.: 74%; PPV: 92%; NPV: 44% Ding et al., 2020 [68]
Kidney disease-related markers
Proteinuria () (>500 mg/24 h) Urine Inactive LN proliferative LN AUC = 0.91; sens.: 89%; spec.: 85% Enghard et al., 2014 [124]
Cytokines/chemokines
IL-17 () Serum/
Plasma
N/A AI r = 0.52 (AI) Dedong et al., 2019 [77]
IL-16 () Urine N/A AI r = 0.59–0.73 (AI) Fava et al., 2022 [79]
MCP-1 () Urine Non-proliferative LN proliferative LN AUC = 0.64–0.78 Endo et al., 2016 [102]
TGFβ1 () Urine N/A AI r = 0.65 (AI) Fava et al., 2022 [79]
Angiogenesis-related molecules
Angiostatin () Urine N/A AI r = 0.93 (AI) Soliman et al., 2017 [95]
Cell adhesion molecules
ALCAM () Urine Membranous LN proliferative LN AUC = 0.81; sens.: 78%; spec.: 81%; PPV: 94%; NPV: 52% Ding et al., 2020 [68]
VCAM-1 () Urine N/A AI r = 0.42 (AI) Singh et al., 2012 [66]
N/A AI r = 0.97 (AI) Soliman et al., 2017 [95]
Other proteins
CD163 () Urine N/A AI r = 0.48–0.59 (AI) Mejia-Vilet et al., 2020 [101]
Non-proliferative LN proliferative LN AUC = 0.83–0.89; sens.: 83%; spec.: 86% Endo et al., 2016 [102]
N/A AI r = 0.41 (AI)
Non-proliferative LN proliferative LN AUC = 0.89 Zhang et al., 2020 [103]
N/A AI r = 0.40 (AI)
N/A AI r = 0.67 (AI) Fava et al., 2022 [79]
SDC-1 () Serum/
Plasma
N/A AI r = 0.63; radj = 0.66 (AI) Kim et al., 2015 [121]
sTNFRII () Serum/
Plasma
N/A AI r = 0.40 (AI) Wu et al., 2016 [13]
Renal tissue markers
CSF-1 () Kidney biopsy Non-renal SLE AI r = 0.46 Menke et al., 2015 [125]

Biomarkers are structured into subgroups (highlighted in bold) based on clinical/functional affinities. AI: National Institutes of Health (NIH) renal histology activity index; ALCAM: activated leukocyte cell adhesion molecule; AUC: area under the curve; CSF-1: colony stimulating factor 1; C3: complement component 3; C1q: complement component 1q; LN: lupus nephritis; MCP-1: monocyte chemoattractant protein 1; N/A: not applicable; NPV: negative predictive value; PPV: positive predictive value; r: correlation coefficient; radj: adjusted correlation coefficient; SDC-1: syndecan 1; sens.: sensitivity; spec.: specificity; sTNFRII: soluble tumour necrosis factor alpha receptor II; TGFβ1: transforming growth factor β1; VCAM-1: vascular cell adhesion molecule 1; : elevated.

Furthermore, along with their diagnostic utility, the levels of TWEAK and NGAL were also found to resemble clinical disease activity in patients with LN, placing these molecules among the candidate biomarkers for LN surveillance (Table 2).

The metrics of the selected biomarkers of clinical disease activity, histological disease activity, and organ damage in LN, as determined from the present systematic literature review, are provided in Table 2, Table 3, and Table 4, respectively.

Table 4.

Performances of selected biomarkers of organ damage in LN.

Biomarker Sample Comparator Organ Damage Metrics References
Autoantibodies
Anti-dsDNA (+) Serum/Plasma Non-CKD SLE CKD stages ORadj = 2.0 Barnado et al., 2019 [57]
Kidney disease-related markers
Urea ()
(>10.25 mmol/L)
Serum/Plasma Non-CKD LN CKD stages AUC = 0.91; sens.: 85%; spec.: 83%; PPV: 82%; NPV: 86% Yang et al., 2016 [23]
Other proteins
Angiostatin () Urine N/A CI r = 0.52 Wu et al., 2013 [69]
IGFBP-2 () Serum/Plasma N/A CI r = 0.58 Ding et al., 2016 [71]
IGFBP-4 () Serum/Plasma N/A CI;
eGFR
r = 0.71;
r = −0.62
Wu et al., 2016 [126]
Resistin () Serum/Plasma N/A creatinine;
BUN
r = 0.45;
r = 0.54
Hutcheson et al., 2015 [127]
sTNFRII () Serum/Plasma N/A CI r = 0.34–0.43 Parodis et al., 2017 [83]
N/A CI;
eGFR
r = 0.57;
r = −0.50
Wu et al., 2016 [13]
VCAM-1 () Urine N/A CKD stages r = 0.39–0.50 Parodis et al., 2020 [99]
N/A CI r = 0.30 Liu et al., 2020 [87]
Renal tissue markers
Periostin () Kidney biopsy N/A CI;
creatinine;
BUN;
eGFR
r = 0.59;
r = 0.43;
r = 0.31;
r = −0.45
Wantanasiri et al., 2015 [128]

Biomarkers are structured into subgroups (highlighted in bold) based on clinical/functional affinities. Anti-dsDNA: anti-double-stranded DNA; AUC: area under the curve; BUN: blood urea nitrogen; CKD: chronic kidney disease; CI: NIH renal pathology chronicity index; eGFR: estimated glomerular filtration rate; IGFBP-2: insulin-like growth factor binding protein 2; IGFBP-4: insulin-like growth factor binding protein 4; LN: lupus nephritis; N/A: not applicable; NPV: negative predictive value; OR: odds ratio; ORadj: adjusted odds ratio; PPV: positive predictive value; r: correlation coefficient; sens.: sensitivity; SLE: systemic lupus erythematosus; spec.: specificity; sTNFRII: soluble tumour necrosis factor receptor II; VCAM-1: vascular cell adhesion molecule 1; (+): positivity; : elevated.

3.3. Biomarkers of Response to Therapy

Axl is a tyrosine kinase receptor, which has been suggested to be involved in LN by means of mediating mesangial proliferation through interaction with its ligand, Gas6 [129]. In addition, when bound to Gas6, Axl plays an important immunoregulatory role on innate immune cells and promotes the clearance of apoptotic bodies, a process that is well-known to be impaired in SLE [130]. A soluble form of Axl (sAxl) is obtained from the ectodomain of Axl, which is present on the surfaces of macrophages and B cells, through proteolytic cleavage [56]. The shedding of sAxl, enhanced by inflammation, may be instrumental in LN pathogenesis by dysregulating physiological Axl/Gas6 signalling. Specifically, sAxl may act as a decoy receptor and block Gas6-induced anti-inflammatory effects on immune cells [131]. There is evidence of a correlation between serum sAxl and SLE activity [132], and in a recent discovery study, sAxl could differentiate between active LN and non-renal SLE [13]. In a prospective cohort of biopsy-proven LN, lower post-treatment serum levels of sAxl were observed in clinical responders but not in clinical non-responders and predicted good long-term renal outcomes [131]. Additionally, in the same work, high baseline levels of sAxl were strongly associated with the histological response to therapy based on post-treatment repeat biopsies after adjustment for the confounding factors (ORadj = 9.3; p = 0.02) [131].

A B-cell-activating factor belonging to the TNF ligand superfamily (BAFF) is a cytokine member of the TNF family that is believed to have a key role in SLE pathogenesis and has also been suggested as a promising biomarker for LN [133]. The importance of BAFF in LN was recently corroborated with approval by the regulatory authorities of the BAFF inhibitor belimumab for the treatment of active LN in adults [134]. In a Swedish LN cohort, low baseline levels of serum BAFF were shown to be predictive of the clinical and histopathological responses to therapy, the latter based on per-protocol repeat biopsies, demonstrating a PPV of 92% for the clinical response in a subgroup of SLE patients with proliferative nephritis [135].

Among the aforementioned biomarkers, urinary MCP-1, NGAL, and CD163 deserve mention for their potential usefulness as indicators of response to therapy, as they have exhibited good predictive performances in multiple studies [35,72,79,87,101,136] (see Table 5 for the detailed metrics).

Table 5.

Performances of selected biomarkers of responses to therapy in LN.

Biomarker Sample Main Findings References
Autoantibodies
Anti-dsDNA (-) (disappearance at month 6) Serum/Plasma Sens.: 70%; spec.: 56%; PPV: 67%; NPV: 59% to predict a CRR by month 12 Mejia-Vilet et al., 2020 [101]
Complement
C3 ()
(normalization or 25% increase at month 6)
Serum/Plasma Sens.: 65–70%; spec.: 67–72%; PPV: 73–75%; NPV: 62–63% to predict CRR by month 12 Mejia-Vilet et al., 2020 [101]
Kidney disease-related markers
Proteinuria ()
(baseline levels 0.1–0.87 g/24 h)
Urine Low levels are predictive of CRR at 6 months (OR = 4.3) after immunosuppressive therapy Ichinose et al., 2018 [137]
uPCR ()
(<1.5 g/g at month 6)
Urine Sens.: 86%; spec.: 81%; PPV: 81%; NPV: 86% to predict CRR by month 12 Mejia-Vilet et al., 2020 [101]
Cytokines/chemokines
APRIL ()
(baseline levels >4 ng/mL)
Serum/Plasma Predictive of treatment failure after six months: AUC = 0.71; sens.: 65%; spec.: 87%; PPV: 93%; NPV: 54% Treamtrakanpon et al., 2012 [140]
BAFF ()
(baseline levels <1.5 ng/mL)
Serum/Plasma Predictive of clinical (PPV: 87%) and histopathological response (PPV: 83%) (mean follow up: 8.1 months) Parodis et al., 2015 [135]
IL-8 ()
(baseline levels)
Serum/Plasma Lower values predictive of treatment response after 1-year: AUC = 0.64 Wolf et al., 2016 [141]
IL-23 ()
(baseline levels)
Serum/Plasma Predictor for outcome of therapy of induction of remission of active LN: AUC = 0.87 Dedong et al., 2019 [77]
MCP-1 ()
(baseline levels)
Urine Predictive of response to treatment with rituximab at 6 (ORadj = 2.6) and 12 months (ORadj = 0.6) Davies et al., 2021 [72]
Other proteins
Axl ()
(baseline levels ≥36.6 ng/mL)
Serum/Plasma Predictive of histological response: OR = 5.5; ORadj = 9.3.
Decreased levels in responders compared with non-responders after induction therapy.
Parodis et al., 2019 [131]
CD163 ()
(<370 ng/mmol at month 6)
Urine Sens.: 90%; spec.: 87%; PPV: 87%; NPV: 90% to predict a CRR by month 12. Mejia-Vilet et al., 2020 [101]
CSF-1 ()
(decrease ≥25% after initiation of therapy)
Serum/Plasma Predictive of response to therapy and remission: PPV: 88%; NPV: 58% Menke et al., 2015 [125]
HNP1-3 ()
(baseline levels)
Serum/Plasma Predictive of proteinuria remission (mean follow up of 5.5 years): multivariate hazard = 0.2 Cheng et al., 2015 [142]
IL-2Rα ()
(baseline levels)
Serum/Plasma Low levels are predictive of treatment response after 1-year: AUC = 0.63 Wolf et al., 2016 [141]
NGAL ()
(baseline levels <1964.58 ng/mL)
(baseline levels <28.08 ng/mL)
Urine Predictive of renal response after 6-month induction therapy: AUC = 0.78; sens.: 81%; spec.: 83%; PPV: 56%; NPV: 95% Liu et al., 2020 [87]
Discrimination between complete/partial response and non-response after 6-month of induction therapy: AUC = 0.77; sens.: 73%; spec.: 68% Satirapoj et al., 2017 [35]
NRP-1 ()
(baseline levels >1143 ng/mg Cr)
Urine High baseline levels are predictive of clinical response; AUC = 0.84; sens.: 87%; spec.: 72%; PPV: 88%; NPV: 71% Torres-Salido et al., 2019 [143]
OPG ()
(baseline levels)
Serum/Plasma Low levels are predictive of treatment response after 1-year: AUC = 0.67 Wolf et al., 2016 [141]
RBP4 ()
(baseline leveles <800 ng/mgCr)
Urine Low levels are predictive of proteinuria remission within 12 months of immunosuppressive therapy in active LN patients: AUC = 0.81; sens.: 82%; spec.: 89% Go et al., 2018 [118]
sTNFRII ()
(baseline levels >8.6 ng/mL)
(baseline levels >9.0 ng/mL)
Serum/Plasma Predictive of clinical (AUC = 0.86; sens.: 86%; spec.: 80%) and histological response (AUC = 0.90; sens.: 83%; spec.: 80%) among patients with membranous LN (mean follow up: 7.7 months) Parodis et al., 2017 [83]
S100A8/A9 ()
(baseline levels)
Serum/Plasma Differences in disease activity (no response vs. “showing improvement”) in response after 6 months of rituximab: ORadj = 0.3 for both Davies et al., 2020 [144]
S100A12 ()
(baseline levels)
TF ()
(baseline levels)
Urine Predictive of response to treatment with rituximab at 12 months (ORadj = 1.4) Davies et al., 2021 [72]
Lymphocytes/immunoglobulins
IgM ()
(baseline levels 87.5–402 mg/dL)
Serum/Plasma High levels are predictive of CRR at 12 months (OR = 2.1) after immunosuppressive therapy Ichinose et al., 2018 [137]
Lymphocyte count ()
(baseline levels 1327–2683/μL)
Serum/Plasma High levels are predictive of CRR at 12 months (OR = 2.4) after immunosuppressive therapy Ichinose et al., 2018 [137]
MicroRNAs
miRNA-31-5p ()
(upregulated at flare time and at month 12)
Urine Significantly upregulated in responder group compared to non-responders:
flare time: AUC = 0.68;
12 months after treatment: AUC = 0.76
Garcia-Vives et al., 2020 [145]
miRNA-107 ()
(upregulated at flare time and at month 12)
Significantly upregulated in responder group compared to non-responders:
flare time: AUC = 0.73;
12 months after treatment: AUC = 0.73
miRNA-135b-5p ()
(upregulated at flare time and at month 12)
Significantly upregulated in responder group compared to non-responders:
flare time: AUC = 0.78; sens.: 78%; spec.: 71%;
12 months after treatment: AUC = 0.86; sens.: 81%; spec.: 79%
Renal tissue markers
C9 (+)
(positive staining at baseline)
Kidney biopsy Positive staining is predictive of poor response at 6 months: OR = 5.4; ORadj = 4.6 Wang et al., 2018 [138]
Podocyte foot process width ()
(baseline levels 498–897 nm)
Kidney biopsy Smaller width is predictive of CRR after induction therapy at 6 months (OR = 4.9) and 12 months (OR = 5.8) after immunosuppressive therapy Ichinose et al., 2018 [137]

Biomarkers are structured into subgroups (highlighted in bold) based on clinical/functional affinities. Anti-dsDNA: anti-double-stranded DNA; APRIL: a proliferation-inducing ligand; AUC: area under the curve; BAFF: B-cell-activating factor belonging to the TNF ligand superfamily; CRR: complete renal response; CSF-1: colony stimulating factor 1; C3: complement component 3; C9: complement component 9; HNP1-3: human neutrophil peptide 1-3; HR: hazard ratio; IgM: immunoglobulin M; IL-2Rα: interleukin 2 receptor alpha; LN: lupus nephritis; miRNA: microRNA; MCP-1: monocyte chemoattractant protein 1; NGAL: neutrophil gelatinase associated lipocalin; NPV: negative predictive value; NRP-1: neuropilin 1; OPG: osteoprotegerin; OR: odds ratio; PPV: positive predictive value; RBP4: retinol-binding protein 4; sens.: sensitivity; spec.: specificity; sTNFRII: soluble tumour necrosis factor receptor II; TF: transferrin; uPCR: urine protein to creatinine ratio; : increased; : decreased; (-): negativity; (+): positivity.

The identification of kidney tissue-based predictors of response could potentially improve the treatment selection processes and histological assessment of LN. In a retrospective analysis of Japanese patients, Ichinose et al. found that the podocyte foot process width (FPW) could be used to predict the complete renal response 6 and 12 months after the commencement of induction therapy, suggesting the use of FPW as an indicator of abnormality in LN [137].

Another study, albeit comprising a small cohort, demonstrated that glomerular C9 staining was an independent predictor of poor response to treatment 6 and 12 months after the initiation of therapy [138], lending support to the notion that a membrane attack complex (MAC)-mediated injury may be a major driver of tissue injury in LN [139].

Metrics of biomarkers of responses to therapy in LN, as derived from the present review, are summarised in Table 5.

3.4. Prognostic Biomarkers

Proteinuria is the current gold standard among clinical markers of LN surveillance [1], and the proteinuria levels post-treatment have been shown to be a robust predictor of long-term renal outcomes in LN in a series of recent studies [146,147,148,149]. Proteinuria has shown a satisfactory negative predictive value, yet a poorer positive predictive value in predicting renal flares (NPV: 85%) [106], and remission with regard to proteinuria (defined as a value of <0.3 g/g creatinine or dipstick test results of trace or lower in three consecutive urinary protein tests over a period of six months) was found to be an indicator of a good prognosis in patients with diffuse proliferative LN in a Korean cohort (risk ratio (RR) of a composite outcome of mortality and development of end-stage kidney disease (ESKD): 0.2; p < 0.05) [150]. This is in conformity with the aforementioned report series, where the proteinuria levels <0.7 to 0.8 g/day were found to be appropriate predictors of a favourable prognosis over a longer term in patients with LN [146,147,148].

Among the traditional immunological biomarkers, low levels of C3 have been shown to be a risk factor for renal failure within 20 years (RRadj = 2.0; p = 0.01) in a large cohort of SLE patients [4].

In a previous cohort study, high baseline levels of urinary VCAM-1 and ALCAM were predictive of renal function deterioration defined as a decline in eGFR by ≥25% at the 10-year follow-up, yielding a sensitivity of 91% and 73% and a specificity of 76% and 72%, respectively [99].

Anti-neutrophil cytoplasmic antibodies (ANCAs) comprise a family of antibodies directed against cytoplasmic antigens of neutrophils and are a key feature of specific forms of small-vessel vasculitides. Some of the ANCAs have been shown to be strongly associated with so-called “pauci-immune” glomerulonephritides due to the absence of deposits of immune complexes within the glomerular tuft [151,152]. In two retrospective studies of Chinese patients with LN, Wang et al. explored the clinical relevance of ANCAs in LN [153,154]. In these works, anti-myeloperoxidase (MPO) ANCA was demonstrated to be the most prevalent ANCA in ANCA-positive LN patients. An increased risk of mortality in ANCA-positive LN patients compared with ANCA-negative LN patients was observed both in the first (HRadj = 3.4; p = 0.03 [153]) and the second study (RRadj = 3.6; p = 0.016 [154]).

Novel kidney tissue-based biomarkers may prove to be promising prognostic tools, complementary to the traditional features assessed for the histopathological classification and characterisation of LN. Despite being rather neglected in the current classification schemes, tubulointerstitial lesions are well-known negative prognostic indicators [155,156,157,158] and have now been suggested for incorporation into the quantitative scoring system of the revised International Society of Nephrology/Renal Pathology Society (ISN/RPS) 2016 classification [159,160]. Vascular lesions have also been shown to have a possible role as predictors of unfavourable renal outcomes in LN [96,161,162,163], but a standardised approach and terminology in the evaluation of vasculopathy in SLE and LN are currently lacking [159]. In a retrospective analysis of 202 biopsy-proven LN patients, Leatherwood et al. demonstrated that interstitial fibrosis and tubular atrophy were strong predictors of ESKD (HRadj= 5.2; 95% confidence interval (CI): 2.5–10.6) and death (HRadj = 4.2; 95% CI: 1.3–13.9) at a follow-up of up to 25 years [164]. In the same study, vascular injury was also found to be associated with ESKD (HRadj = 2.1; 95% C.I.: 1.2–3.8), although a statistical significance was not reached after adjustment for the serum creatinine and ISN/RPS class [164].

Recently, two studies investigated how different pathways of complement activation may play a role in predicting long-term outcomes in LN [165,166]. Ding et al. showed that arteriolar C4d deposition and C4d and C3c co-deposition were independent risk factors for a poor renal prognosis, defined as ESKD or doubling of the serum creatinine (HRadj = 2.3 and HRadj = 3.7, respectively; p < 0.05 for both) [165]. Moreover, the authors of these works observed an association between arteriolar C4d deposition and renal microvascular lesions, which strengthens the notion of a role as a complement in LN pathogenesis [167,168]. Additionally, Kim et al. found that glomerular C3 deposition without C1q and C4 was predictive of kidney disease progression, arguing for key roles in the alternative complement pathway in LN pathogenesis [166].

A summary of the biomarkers of long-term outcomes in LN is detailed in Table 6.

Table 6.

Performances of selected prognostic biomarkers in LN.

Biomarker Sample Main Findings References
Autoantibodies
ANCAs (+) Serum/Plasma Predictive of increased mortality: RRadj = 3.6;
HR = 3.3; HRadj = 3.4
Wang et al., 2016 [153]; Wang et al., 2020 [154]
Anti-C1q * (+) Serum/Plasma Risk factor for composite outcome (death and doubling of serum creatinine or ESKD) after median follow up of 42 months: HR = 3.9; HRadj = 1.2 Pang et al., 2016 [52]
Complement
C3 (low) Serum/Plasma Predictive of renal failure within 20 years: RRadj = 2.0 Petri et al., 2021 [4]
Kidney disease-related markers
Creatinine () Serum/Plasma Higher baseline levels predictive of ESKD: HR = 2.1 Chen et al., 2019 [169]
Risk factor for composite outcome after median follow up of 42 months: HRadj = 4.7 Pang et al., 2016 [52]
Proteinuria ()
(>500 mg/24 h)
Urine Predictive of renal failure within 20 years: RRadj = 2.8 Petri et al., 2021 [4]
Proteinuric remission indicates good prognosis in patients with diffuse proliferative LN (mean follow up: 157.9 months). RR of composite outcome (sum of mortality and incidence of end stage renal disease) = 0.2 Koo et al., 2016 [150]
Cell adhesion molecules
ALCAM()
(ALCAM/Cr > 0.18 × 10−4)
(ALCAM/Cr > 0.17 × 10−4)
Urine High baseline values are predictive of renal function deterioration (decline in eGFR by ≥25%) at the 10-year follow up.
AUC = 0.74; sens.: 73%; spec.: 72%;
OR = 6.1
Parodis et al., 2020 [99]
VCAM-1 ()
(VCAM1/Cr > 0.32 × 10−4)
(VCAM1/Cr > 0.24 × 10−4)
Urine High baseline values are predictive of renal function deterioration (decline in eGFR by ≥25%) at the 10-year follow up.
AUC = 0.77; sens.: 91; spec.: 76%;
OR= 22.9
Parodis et al., 2020 [99]
Other proteins/soluble molecules
Axl ()
(>46.1 ng/mL)
Serum/Plasma High post treatment values predict good renal outcome (creatinine ≤88.4 μmol/L) over 10 years. AUC = 0.71; sens.: 42%; spec.: 91%; PPV: 80%; NPV: 65% Parodis et al., 2019 [131]
CD163 ()
(>370 ng/mmol)
Urine Increased risk for doubling of serum creatinine within 6 (HR = 2.8) and 12 (HR = 3.6) months Mejia-Vilet et al., 2020 [101]
EGF ()
(EGF/Cr <5.3 ng/mg at flare time)
Urine Predicts doubling serum creatinine within 2 years. AUC = 0.82; sens.: 81%; spec.: 77% Mejia-Vilet et al., 2021 [170]
sTNFRII ()
(>7.1 ng/mL)
Serum/Plasma Higher post treatment levels in CKD≥3 patients compared to CKD1-2 patients.
AUC = 0.73; sens.: 73%; spec.: 75%
Parodis et al., 2017 [83]
Renal tissue markers
Arteriolar C4d deposition (+) Kidney biopsy Risk factor for poor renal outcome (average follow up time: 55.8 months): HR = 2.1 Ding et al., 2021 [165]
Cellular crescents (+) Kidney biopsy
Kidney biopsy
Predictive of ESKD: HR = 4.4 (cellular crescents) and HR = 5.9 (fibrous crescents) Chen et al., 2019 [169]
Fibrous crescents (+)
Glomerular C3 deposition (+) Kidney biopsy Positive staining without C1q and C4 deposition (suggestive of alternative pathway-limited activation) is associated with progression of kidney disease (≥50% reduction in eGFR from baseline values or advancement to ESKD) after a mean follow-up of 5.4 years: HR = 4.8; HRadj = 3.5 Kim et al., 2020 [166]
IFTA (+)
(≥25% of the surface cortical area)
Kidney biopsy Moderate/severe IFTA is associated with ESKD (HRadj = 5.2) and death (HRadj = 4.2) Leatherwood et al., 2019 [164]
Mannose enriched N-glycan expression (GNA reactivity ≥50%) Kidney biopsy Increased risk of developing CKD after 1 year: AUC = 0.83; sens.: 67%; spec.: 94%; PPV: 80%; NPV: 87%; OR = 24.3 Alves et al., 2021 [75]
Vascular injury (+)
(≥25% subintimal narrowing of the lumen)
Kidney biopsy Moderate/severe vascular injury is associated with ESKD (HRadj = 2.1) Leatherwood et al., 2019 [164]

Biomarkers are structured into subgroups (highlighted in bold) based on clinical/functional affinities. ALCAM: activated leukocyte cell adhesion molecule; ANCA: anti-neutrophil cytoplasmic antibody; AUC: area under the curve; CKD: chronic kidney disease; Cr: creatinine; C1q: complement component 1q; C3: complement component 3; C4: complement component 4; C4d: complement component 4d; EGF: epidermal growth factor; eGFR: estimated glomerular filtration rate; ESKD: end stage kidney disease; GNA: galantus nivalis agglutinin reaction; HR: hazard ratio; IFTA: interstitial fibrosis and tubular atrophy; NPV: negative predictive value; OR: odds ratio; PPV: positive predictive value; RR: risk ratio; sens.: sensitivity; spec.: specificity; sTNFRII: soluble tumor necrosis factor alpha receptor II; VCAM-1: vascular cell adhesion molecule 1; (+): positivity; : increased; : decreased. * Antibodies against the epitope A08 of C1q.

4. Conclusions and Perspectives

The relevance of renal involvement in the global disease burden of SLE is reflected by the extensive research on drug development and novel biomarkers toward the improvement of clinical practice and optimisation of disease outcomes. Several new molecules have been investigated for their prospect as potential diagnostic, monitory, or prognostic biomarkers in LN over the last decade, with encouraging results for several of them. Among these, urinary MCP-1 and NGAL showed an adequate diagnostic ability, as well as the ability to reflect disease activity and predict response to therapy. Moreover, our search suggests that urinary VCAM-1, CD163, and ALCAM may hold promise as versatile biomarkers for LN, with potential implications for diagnostic, monitoring, and prognostic purposes, as their biomarker potential has been repeatedly validated across multiple independent cohorts and laboratories.

Given the complexity and the heterogeneity of LN, it is unlikely that one single biomarker is sufficient to capture its entire spectrum of features. Several studies highlighted the necessity of combining different molecules to improve disease evaluations [18,72,87,107]. The direction we foreshadow is the development of panels that integrate different biomarkers for different purposes, thus achieving the best possible accuracy and precision.

While a kidney biopsy remains the gold standard for the diagnosis and classification of LN [6], only a minority of studies investigated kidney tissue-based biomarkers. Research seems to lean toward fluid-based biomarkers, aiming to implement LN management through less invasive modes. In alignment with this aim, urine constitutes an attractive source for sampling, since it is easily obtainable, non-invasive, and theoretically more specific of kidney involvement than peripheral blood. However, it is important to underline the importance of the integration of tissue-based information in fluid-based biomarker research as a strategy to accurately determine the best peripheral molecular readouts for kidney-specific injury [171,172]. In this regard, studies for the identification of biomarkers that could be integrated into the current histopathological classification [159] for a more granular diagnostic and prognostic stratification of LN patients are needed and form an integral part of the future research agenda in this field.

Among the limitations of this systematic literature review, some aspects need to be underlined as possible sources of bias. Firstly, although not unexpectedly, the biomarker studies deemed eligible for data extraction were characterised by a high degree of heterogeneity in terms of design, patient populations, and definitions of outcomes, which, together with the inevitable inconsistency of laboratory testing across studies, introduces limitations into the generalisability of the findings and makes conclusions hard to draw. For instance, different approaches were followed for the determination of the cut-off values across studies investigating the same molecules, and the diagnosis of LN was not confirmed by a histological assessment with a kidney biopsy in all the studies. Secondly, descriptions of participant characteristics were not sufficiently explicit in all studies. Thirdly, important confounding factors were not always adequately accounted for in the investigations. Detailed information about such limiting factors is presented in Supplementary Tables S2–S4. The overall lack of validation studies in independent cohorts is a major limitation in biomarker research. Efforts should be made to prompt more concerted investigations following centralised approaches. In such efforts, the Lupus Nephritis Trials Network (http://lupusnephritis.org, accessed on 8 August 2022) and other similar initiatives could be instrumental.

Nevertheless, in view of the rapid technological advancements, we foresee a revolution toward the optimised and personalised management of patients with LN in the years to come using a battery of next-generation biomarkers.

Acknowledgments

We thank the librarians Love Strandberg and Narcisa Hannerz from the Karolinska Institutet library (KIB) for their assistance with the construction of the search strategy.

Supplementary Materials

The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/jcm11195759/s1: Figure S1: PRISMA flow diagram for systematic reviews that included searches of databases and registers only. Table S1. Search in Medline. Table S2. Risk of bias assessment of cross-sectional studies. Table S3. Risk of bias assessment of meta-analyses. Table S4. Risk of bias assessment of cohort studies. Table S5. Ethnicity and/or nationality of the populations in the included studies.

Author Contributions

Conceptualisation, L.P., J.L., C.M. and I.P.; methodology, L.P., J.L., C.M. and I.P.; investigation, L.P. and J.L.; writing—original draft preparation, L.P., J.L., C.M. and I.P.; writing—review and editing, J.L., C.M. and I.P.; supervision, I.P.; and funding acquisition, C.M. and I.P. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

L.P., J.L. and C.M. declare that they have no conflicts of interest. I.P. received research funding and/or honoraria from Amgen, AstraZeneca, Aurinia Pharmaceuticals, Elli Lilly and Company, Gilead Sciences, GlaxoSmithKline, Janssen Pharmaceuticals, Novartis, Otsuka Pharmaceutical, and F. Hoffmann-La Roche AG.

Funding Statement

C.M. research is supported by NIH R01 AR074096 and the Lupus Research Alliance. I.P. has received grants from the Swedish Rheumatism Association (R-941095), King Gustaf V’s 80-year Foundation (FAI-2020-0741), Professor Nanna Svartz Foundation (2020-00368), Ulla and Roland Gustafsson Foundation (2021–26), Region Stockholm (FoUI-955483), and Karolinska Institutet. This publication has also been supported with funding from the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant number 831434 for the 3TR project; JU received support from the EU Horizon 2020 research and innovation programme and EFPIA.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Anders H.-J., Saxena R., Zhao M.-H., Parodis I., Salmon J.E., Mohan C. Lupus nephritis. Nat. Rev. Dis. Prim. 2020;6:1–25. doi: 10.1038/s41572-019-0141-9. [DOI] [PubMed] [Google Scholar]
  • 2.Almaani S., Meara A., Rovin B.H. Update on Lupus Nephritis. Clin. J. Am. Soc. Nephrol. 2017;12:825–835. doi: 10.2215/CJN.05780616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Tektonidou M., Dasgupta A., Ward M.M. Risk of End-Stage Renal Disease in Patients With Lupus Nephritis, 1971-2015: A Systematic Review and Bayesian Meta-Analysis. Arthritis Rheumatol. 2016;68:1432–1441. doi: 10.1002/art.39594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Petri M., Barr E., Magder L.S. Risk of Renal Failure Within 10 or 20 Years of Systemic Lupus Erythematosus Diagnosis. J. Rheumatol. 2020;48:222–227. doi: 10.3899/jrheum.191094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Yu F., Haas M., Glassock R., Zhao M.-H. Redefining lupus nephritis: Clinical implications of pathophysiologic subtypes. Nat. Rev. Nephrol. 2017;13:483–495. doi: 10.1038/nrneph.2017.85. [DOI] [PubMed] [Google Scholar]
  • 6.Fanouriakis A., Kostopoulou M., Cheema K., Anders H.-J., Aringer M., Bajema I., Boletis J., Frangou E., A Houssiau F., Hollis J., et al. 2019 Update of the Joint European League Against Rheumatism and European Renal Association–European Dialysis and Transplant Association (EULAR/ERA–EDTA) recommendations for the management of lupus nephritis. Ann. Rheum. Dis. 2020;79:713–723. doi: 10.1136/annrheumdis-2020-216924. [DOI] [PubMed] [Google Scholar]
  • 7.Hahn B.H., McMahon M.A., Wilkinson A., Wallace W.D., Daikh D.I., FitzGerald J., Karpouzas G.A., Merrill J.T., Wallace D.J., Yazdany J., et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res. 2012;64:797–808. doi: 10.1002/acr.21664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Califf R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018;243:213–221. doi: 10.1177/1535370217750088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Mok C.C. Biomarkers for Lupus Nephritis: A Critical Appraisal. J. Biomed. Biotechnol. 2010;2010:638413. doi: 10.1155/2010/638413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Soliman S., Mohan C. Lupus nephritis biomarkers. Clin. Immunol. 2017;185:10–20. doi: 10.1016/j.clim.2016.08.001. [DOI] [PubMed] [Google Scholar]
  • 11.Stanley S., Vanarsa K., Soliman S., Habazi D., Pedroza C., Gidley G., Zhang T., Mohan S., Der E., Suryawanshi H., et al. Comprehensive aptamer-based screening identifies a spectrum of urinary biomarkers of lupus nephritis across ethnicities. Nat. Commun. 2020;11:2197. doi: 10.1038/s41467-020-15986-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Zhang T., Duran V., Vanarsa K., Mohan C. Targeted urine proteomics in lupus nephritis—A meta-analysis. Expert Rev. Proteom. 2020;17:767–776. doi: 10.1080/14789450.2020.1874356. [DOI] [PubMed] [Google Scholar]
  • 13.Wu T., Ding H., Han J., Arriens C., Wei C., Han W., Pedroza C., Jiang S., Anolik J., Petri M., et al. Antibody-Array-Based Proteomic Screening of Serum Markers in Systemic Lupus Erythematosus: A Discovery Study. J. Proteome Res. 2016;15:2102–2114. doi: 10.1021/acs.jproteome.5b00905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Joanna BrIggs Institute Checklist foriti Case Control AppraStudisal Tooles. [(accessed on 4 July 2022)]. Available online: https://jbi.global/critical-appraisal-tools.
  • 16.Bagavant H., Fu S.M. Pathogenesis of kidney disease in systemic lupus erythematosus. Curr. Opin. Rheumatol. 2009;21:489–494. doi: 10.1097/BOR.0b013e32832efff1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Bonanni A., Vaglio A., Bruschi M., Sinico R.A., Cavagna L., Moroni G., Franceschini F., Allegri L., Pratesi F., Migliorini P., et al. Multi-antibody composition in lupus nephritis: Isotype and antigen specificity make the difference. Autoimmun. Rev. 2015;14:692–702. doi: 10.1016/j.autrev.2015.04.004. [DOI] [PubMed] [Google Scholar]
  • 18.Huang Y., Chen L., Chen K., Huang F., Feng Y., Xu Z., Wang W. Anti–α-enolase antibody combined with β2 microglobulin evaluated the incidence of nephritis in systemic lupus erythematosus patients. Lupus. 2019;28:365–370. doi: 10.1177/0961203319828822. [DOI] [PubMed] [Google Scholar]
  • 19.Bruschi M., Sinico R.A., Moroni G., Pratesi F., Migliorini P., Galetti M., Murtas C., Tincani A., Madaio M., Radice A., et al. Glomerular autoimmune multicomponents of human lupus nephritis in vivo: Alpha-enolase and annexin AI. J. Am. Soc. Nephrol. JASN. 2014;25:2483–2498. doi: 10.1681/ASN.2013090987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Bruschi M., Moroni G., Sinico R.A., Franceschini F., Fredi M., Vaglio A., Cavagna L., Petretto A., Pratesi F., Migliorini P., et al. Serum IgG2 antibody multicomposition in systemic lupus erythematosus and lupus nephritis (Part 1): Cross-sectional analysis. Rheumatology. 2020;60:3176–3188. doi: 10.1093/rheumatology/keaa767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Bruschi M., Moroni G., Sinico R.A., Franceschini F., Fredi M., Vaglio A., Cavagna L., Petretto A., Pratesi F., Migliorini P., et al. Serum IgG2 antibody multi-composition in systemic lupus erythematosus and in lupus nephritis (Part 2): Prospective study. Rheumatology. 2020;60:3388–3397. doi: 10.1093/rheumatology/keaa793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Calich A.L., Borba E.F., Ugolini-Lopes M.R., da Rocha L.F., Bonfá E., Fuller R. Serum uric acid levels are associated with lupus nephritis in patients with normal renal function. Clin. Rheumatol. 2018;37:1223–1228. doi: 10.1007/s10067-018-3991-8. [DOI] [PubMed] [Google Scholar]
  • 23.Yang Z., Zhang Z., Qin B., Wu P., Zhong R., Zhou L., Liang Y. Human Epididymis Protein 4: A Novel Biomarker for Lupus Nephritis and Chronic Kidney Disease in Systemic Lupus Erythematosus. J. Clin. Lab. Anal. 2016;30:897–904. doi: 10.1002/jcla.21954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Hafez E.A., Hassan S.A.E.-M., Teama M.A.M., Badr F.M. Serum uric acid as a predictor for nephritis in Egyptian patients with systemic lupus erythematosus. Lupus. 2020;30:378–384. doi: 10.1177/0961203320979042. [DOI] [PubMed] [Google Scholar]
  • 25.Winkles J.A. The TWEAK–Fn14 cytokine–receptor axis: Discovery, biology and therapeutic targeting. Nat. Rev. Drug Discov. 2008;7:411–425. doi: 10.1038/nrd2488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Salem M.N., Taha H.A., Abd El-Fattah El-Feqi M., Eesa N.N., Mohamed R.A. Urinary TNF-like weak inducer of apoptosis (TWEAK) as a biomarker of lupus nephritis. Z Rheumatol. 2018;77:71–77. doi: 10.1007/s00393-016-0184-1. [DOI] [PubMed] [Google Scholar]
  • 27.Reyes-Martinez F., Perez-Navarro M., Rodriguez-Matias A., Soto-Abraham V., Gutierrez-Reyes G., Medina-Avila Z., Valdez-Ortiz R. Assessment of urinary TWEAK levels in Mexican patients with untreated lupus nephritis: An exploratory study. Nefrologia. 2018;38:152–160. doi: 10.1016/j.nefro.2017.04.005. [DOI] [PubMed] [Google Scholar]
  • 28.Michaelson J.S., Wisniacki N., Burkly L.C., Putterman C. Role of TWEAK in lupus nephritis: A bench-to-bedside review. J. Autoimmun. 2012;39:130–142. doi: 10.1016/j.jaut.2012.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Xia Y., Herlitz L.C., Gindea S., Wen J., Pawar R.D., Misharin A., Perlman H., Wu L., Wu P., Michaelson J.S., et al. Deficiency of Fibroblast Growth Factor-Inducible 14 (Fn14) Preserves the Filtration Barrier and Ameliorates Lupus Nephritis. J. Am. Soc. Nephrol. 2014;26:1053–1070. doi: 10.1681/ASN.2014030233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Elsaid D.S., Abdel Noor R.A., Shalaby K.A., Haroun R.A.-H. Urinary Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (uTWEAK) and Urinary Monocyte Chemo-attractant Protein-1 (uMCP-1): Promising Biomarkers of Lupus Nephritis Activity? Saudi J. Kidney Dis. Transplant. Off. Publ. Saudi Cent. Organ Transplant. Saudi Arab. 2021;32:19–29. doi: 10.4103/1319-2442.318522. [DOI] [PubMed] [Google Scholar]
  • 31.Mirioglu S., Cinar S., Yazici H., Ozluk Y., Kilicaslan I., Gul A., Ocal L., Inanc M., Artim-Esen B. Serum and urine TNF-like weak inducer of apoptosis, monocyte chemoattractant protein-1 and neutrophil gelatinase-associated lipocalin as biomarkers of disease activity in patients with systemic lupus erythematosus. Lupus. 2020;29:379–388. doi: 10.1177/0961203320904997. [DOI] [PubMed] [Google Scholar]
  • 32.Choe J.-Y., Kim S.-K. Serum TWEAK as a biomarker for disease activity of systemic lupus erythematosus. Inflamm Res. 2016;65:479–488. doi: 10.1007/s00011-016-0930-5. [DOI] [PubMed] [Google Scholar]
  • 33.Chakraborty S., Kaur S., Guha S., Batra S.K. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim. Biophys. Acta BBA Rev. Cancer. 2012;1826:129–169. doi: 10.1016/j.bbcan.2012.03.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Rubinstein T., Pitashny M., Putterman C. The novel role of neutrophil gelatinase-B associated lipocalin (NGAL)/Lipocalin-2 as a biomarker for lupus nephritis. Autoimmun. Rev. 2008;7:229–234. doi: 10.1016/j.autrev.2007.11.013. [DOI] [PubMed] [Google Scholar]
  • 35.Satirapoj B., Kitiyakara C., Leelahavanichkul A., Avihingsanon Y., Supasyndh O. Urine neutrophil gelatinase-associated lipocalin to predict renal response after induction therapy in active lupus nephritis. BMC Nephrol. 2017;18:263. doi: 10.1186/s12882-017-0678-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Fang Y.G., Chen N.N., Cheng Y.B., Sun S.J., Li H.X., Sun F., Xiang Y. Urinary neutrophil gelatinase-associated lipocalin for diagnosis and estimating activity in lupus nephritis: A meta-analysis. Lupus. 2015;24:1529–1539. doi: 10.1177/0961203315600244. [DOI] [PubMed] [Google Scholar]
  • 37.Brunner H.I., Bennett M.R., Mina R., Suzuki M., Petri M., Kiani A.N., Pendl J., Witte D., Ying J., Rovin B.H., et al. Association of noninvasively measured renal protein biomarkers with histologic features of lupus nephritis. Arthritis Care Res. 2012;64:2687–2697. doi: 10.1002/art.34426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Torres-Salido M.T., Cortes-Hernandez J., Vidal X., Pedrosa A., Vilardell-Tarres M., Ordi-Ros J. Neutrophil gelatinase-associated lipocalin as a biomarker for lupus nephritis. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2014;29:1740–1749. doi: 10.1093/ndt/gfu062. [DOI] [PubMed] [Google Scholar]
  • 39.El Shahawy M.S., Hemida M.H., Abdel-Hafez H.A., El-Baz T.Z., Lotfy A.-W.M., Emran T.M. Urinary neutrophil gelatinase-associated lipocalin as a marker for disease activity in lupus nephritis. Scand. J. Clin. Lab. Investig. 2018;78:264–268. doi: 10.1080/00365513.2018.1449242. [DOI] [PubMed] [Google Scholar]
  • 40.Gao Y., Wang B., Cao J., Feng S., Liu B. Elevated Urinary Neutrophil Gelatinase-Associated Lipocalin Is a Biomarker for Lupus Nephritis: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2020;2020:2768326. doi: 10.1155/2020/2768326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.A Gómez-Puerta J., Ortiz-Reyes B., Urrego T., Vanegas-García A.L., Muñoz C.H., A González L., Cervera R., Vásquez G. Urinary neutrophil gelatinase-associated lipocalin and monocyte chemoattractant protein 1 as biomarkers for lupus nephritis in Colombian SLE patients. Lupus. 2017;27:637–646. doi: 10.1177/0961203317738226. [DOI] [PubMed] [Google Scholar]
  • 42.Li Y.-J., Wu H.-H., Liu S.-H., Tu K.-H., Lee C.-C., Hsu H.-H., Chang M.-Y., Yu K.-H., Chen W., Tian Y.-C. Polyomavirus BK, BKV microRNA, and urinary neutrophil gelatinase-associated lipocalin can be used as potential biomarkers of lupus nephritis. PLoS ONE. 2019;14:e0210633. doi: 10.1371/journal.pone.0210633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Wu L., Belasco J.G. Let Me Count the Ways: Mechanisms of Gene Regulation by miRNAs and siRNAs. Mol. Cell. 2008;29:1–7. doi: 10.1016/j.molcel.2007.12.010. [DOI] [PubMed] [Google Scholar]
  • 44.Wang G., Tam L.-S., Kwan B.C.-H., Li E.K.-M., Chow K.-M., Luk C.C.-W., Li P.K.-T., Szeto C.-C. Expression of miR-146a and miR-155 in the urinary sediment of systemic lupus erythematosus. Clin. Rheumatol. 2011;31:435–440. doi: 10.1007/s10067-011-1857-4. [DOI] [PubMed] [Google Scholar]
  • 45.Khoshmirsafa M., Kianmehr N., Falak R., Mowla S.J., Seif F., Mirzaei B., Valizadeh M., Shekarabi M. Elevated expression of miR-21 and miR-155 in peripheral blood mononuclear cells as potential biomarkers for lupus nephritis. Int. J. Rheum. Dis. 2018;22:458–467. doi: 10.1111/1756-185X.13410. [DOI] [PubMed] [Google Scholar]
  • 46.Nakhjavani M., Etemadi J., Pourlak T., Mirhosaini Z., Vahed S.Z., Abediazar S. Plasma levels of miR-21, miR-150, miR-423 in patients with lupus nephritis. Iran. J. Kidney Dis. 2019;13:198–206. [PubMed] [Google Scholar]
  • 47.Abdul-Maksoud R.S., Rashad N.M., Elsayed W.S.H., Ali M.A., Kamal N.M., Zidan H.E. Circulating miR-181a and miR-223 expression with the potential value of biomarkers for the diagnosis of systemic lupus erythematosus and predicting lupus nephritis. J. Gene Med. 2021;23:e3326. doi: 10.1002/jgm.3326. [DOI] [PubMed] [Google Scholar]
  • 48.Burbano C., A Gómez-Puerta J., Muñoz-Vahos C., Vanegas-García A., Rojas M., Vásquez G., Castaño D. HMGB1 + microparticles present in urine are hallmarks of nephritis in patients with systemic lupus erythematosus. Eur. J. Immunol. 2018;49:323–335. doi: 10.1002/eji.201847747. [DOI] [PubMed] [Google Scholar]
  • 49.Yoshimoto S., Nakatani K., Iwano M., Asai O., Samejima K.-I., Sakan H., Terada M., Harada K., Akai Y., Shiiki H., et al. Elevated Levels of Fractalkine Expression and Accumulation of CD16+ Monocytes in Glomeruli of Active Lupus Nephritis. Am. J. Kidney Dis. 2007;50:47–58. doi: 10.1053/j.ajkd.2007.04.012. [DOI] [PubMed] [Google Scholar]
  • 50.Sjӧwall C., Bentow C., Aure M.A., Mahler M. Two-Parametric Immunological Score Development for Assessing Renal Involvement and Disease Activity in Systemic Lupus Erythematosus. J. Immunol. Res. 2018;2018:1294680. doi: 10.1155/2018/1294680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Birmingham D.J., Bitter J.E., Ndukwe E.G., Dials S., Gullo T.R., Conroy S., Nagaraja H.N., Rovin B.H., Hebert L.A. Relationship of Circulating Anti-C3b and Anti-C1q IgG to Lupus Nephritis and Its Flare. Clin. J. Am. Soc. Nephrol. 2015;11:47–53. doi: 10.2215/CJN.03990415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Pang Y., Tan Y., Li Y., Zhang J., Guo Y., Guo Z., Zhang C., Yu F., Zhao M.-H. Serum A08 C1q antibodies are associated with disease activity and prognosis in Chinese patients with lupus nephritis. Kidney Int. 2016;90:1357–1367. doi: 10.1016/j.kint.2016.08.010. [DOI] [PubMed] [Google Scholar]
  • 53.Hardt U., Larsson A., Gunnarsson I., Clancy R.M., Petri M., Buyon J.P., Silverman G.J., Svenungsson E., Grönwall C. Autoimmune reactivity to malondialdehyde adducts in systemic lupus erythematosus is associated with disease activity and nephritis. Arthritis Res. Ther. 2018;20:36. doi: 10.1186/s13075-018-1530-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Liu X.-R., Qi Y.-Y., Zhao Y.-F., Cui Y., Wang X.-Y., Zhao Z.-Z. Albumin-to-globulin ratio (AGR) as a potential marker of predicting lupus nephritis in Chinese patients with systemic lupus erythematosus. Lupus. 2021;30:412–420. doi: 10.1177/0961203320981139. [DOI] [PubMed] [Google Scholar]
  • 55.Kwon O.C., Lee E.-J., Oh J.S., Hong S., Lee C.-K., Yoo B., Park M.-C., Kim Y.-G. Plasma immunoglobulin binding protein 1 as a predictor of development of lupus nephritis. Lupus. 2020;29:547–553. doi: 10.1177/0961203320912336. [DOI] [PubMed] [Google Scholar]
  • 56.Mok C.C., Ding H.H., Kharboutli M., Mohan C. Axl, Ferritin, Insulin-Like Growth Factor Binding Protein 2, and Tumor Necrosis Factor Receptor Type II as Biomarkers in Systemic Lupus Erythematosus. Arthr. Care Res. 2016;68:1303–1309. doi: 10.1002/acr.22835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Barnado A., Carroll R., Casey C., Wheless L., Denny J., Crofford L. Phenome-wide association study identifies dsDNA as a driver of major organ involvement in systemic lupus erythematosus. Lupus. 2018;28:66–76. doi: 10.1177/0961203318815577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Tang C., Fang M., Tan G., Zhang S., Yang B., Li Y., Zhang T., Saxena R., Mohan C., Wu T. Discovery of Novel Circulating Immune Complexes in Lupus Nephritis Using Immunoproteomics. Front. Immunol. 2022;13:850015. doi: 10.3389/fimmu.2022.850015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Ishizaki J., Saito K., Nawata M., Mizuno Y., Tokunaga M., Sawamukai N., Tamura M., Hirata S., Yamaoka K., Hasegawa H., et al. Low complements and high titre of anti-Sm antibody as predictors of histopathologically proven silent lupus nephritis without abnormal urinalysis in patients with systemic lupus erythematosus. Rheumatology. 2014;54:405–412. doi: 10.1093/rheumatology/keu343. [DOI] [PubMed] [Google Scholar]
  • 60.Martin M., Trattner R., Nilsson S.C., Björk A., Zickert A., Blom A.M., Gunnarsson I. Plasma C4d Correlates With C4d Deposition in Kidneys and With Treatment Response in Lupus Nephritis Patients. Front. Immunol. 2020;11:582737. doi: 10.3389/fimmu.2020.582737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Jakiela B., Kosalka-Wegiel J., Plutecka H., Węgrzyn A.S., Bazan-Socha S., Sanak M., Musiał J. Urinary cytokines and mRNA expression as biomarkers of disease activity in lupus nephritis. Lupus. 2018;27:1259–1270. doi: 10.1177/0961203318770006. [DOI] [PubMed] [Google Scholar]
  • 62.Phatak S., Chaurasia S., Mishra S.K., Gupta R., Agrawal V., Aggarwal A., Misra R. Urinary B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL): Potential biomarkers of active lupus nephritis. Clin. Exp. Immunol. 2016;187:376–382. doi: 10.1111/cei.12894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Vincent F.B., Kandane-Rathnayake R., Hoi A.Y., Slavin L., Godsell J.D., Kitching A.R., Harris J., Nelson C.L., Jenkins A.J., Chrysostomou A., et al. Urinary B-cell-activating factor of the tumour necrosis factor family (BAFF) in systemic lupus erythematosus. Lupus. 2018;27:2029–2040. doi: 10.1177/0961203318804885. [DOI] [PubMed] [Google Scholar]
  • 64.Mok C.C., Soliman S., Ho L.Y., Mohamed F.A., Mohamed F.I., Mohan C. Urinary angiostatin, CXCL4 and VCAM-1 as biomarkers of lupus nephritis. Arthritis Res. Ther. 2018;20:6. doi: 10.1186/s13075-017-1498-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Barbado J., Martin D., Vega L., Almansa R., Gonçalves L., Nocito M., Jimeno A., de Lejarazu R.O., Bermejo-Martin J.F. MCP-1 in urine as biomarker of disease activity in Systemic Lupus Erythematosus. Cytokine. 2012;60:583–586. doi: 10.1016/j.cyto.2012.07.009. [DOI] [PubMed] [Google Scholar]
  • 66.Singh S., Wu T., Xie C., Vanarsa K., Han J., Mahajan T., Oei H.B., Ahn C., Zhou X.J., Putterman C., et al. Urine VCAM-1 as a marker of renal pathology activity index in lupus nephritis. Arthritis Res. Ther. 2012;14:R164-11. doi: 10.1186/ar3912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Chalmers S.A., Ramachandran R.A., Garcia S.J., Der E., Herlitz L., Ampudia J., Chu D., Jordan N., Zhang T., Parodis I., et al. The CD6/ALCAM pathway promotes lupus nephritis via T cell–mediated responses. J. Clin. Investig. 2022;132 doi: 10.1172/JCI147334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Ding H., Lin C., Cai J., Guo Q., Dai M., Mohan C., Shen N. Urinary activated leukocyte cell adhesion molecule as a novel biomarker of lupus nephritis histology. Arthritis Res. Ther. 2020;22:122. doi: 10.1186/s13075-020-02209-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Wu T., Du Y., Han J., Singh S., Xie C., Guo Y., Zhou X.J., Ahn C., Saxena R., Mohan C. Urinary Angiostatin—A Novel Putative Marker of Renal Pathology Chronicity in Lupus Nephritis. Mol. Cell. Proteom. 2013;12:1170–1179. doi: 10.1074/mcp.M112.021667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Ren Y., Xie J., Lin F., Luo W., Zhang Z., Mao P., Zhong R., Liang Y., Yang Z. Serum human epididymis protein 4 is a predictor for developing nephritis in patients with systemic lupus erythematosus: A prospective cohort study. Int. Immunopharmacol. 2018;60:189–193. doi: 10.1016/j.intimp.2018.04.048. [DOI] [PubMed] [Google Scholar]
  • 71.Ding H., Kharboutli M., Saxena R., Wu T. Insulin-like growth factor binding protein-2 as a novel biomarker for disease activity and renal pathology changes in lupus nephritis. Clin. Exp. Immunol. 2016;184:11–18. doi: 10.1111/cei.12743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Davies J.C., Carlsson E., Midgley A., Smith E.M.D., Bruce I.N., Beresford M.W., Hedrich C.M. A panel of urinary proteins predicts active lupus nephritis and response to rituximab treatment. Rheumatology. 2020;60:3747–3759. doi: 10.1093/rheumatology/keaa851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Urrego T., Ortiz-Reyes B., Vanegas-García A.L., Muñoz C.H., González L.A., Vásquez G., Gómez-Puerta J.A. Utility of urinary transferrin and ceruloplasmin in patients with systemic lupus erythematosus for differentiating patients with lupus nephritis. Reumatol. Clin. 2019;16:17–23. doi: 10.1016/j.reuma.2018.02.002. [DOI] [PubMed] [Google Scholar]
  • 74.Choe J.-Y., Park S.-H., Kim S.-K. Urine β2-microglobulin is associated with clinical disease activity and renal involvement in female patients with systemic lupus erythematosus. Lupus. 2014;23:1486–1493. doi: 10.1177/0961203314547797. [DOI] [PubMed] [Google Scholar]
  • 75.Alves I., Santos-Pereira B., Dalebout H., Santos S., Vicente M.M., Campar A., Thepaut M., Fieschi F., Strahl S., Boyaval F., et al. Protein Mannosylation as a Diagnostic and Prognostic Biomarker of Lupus Nephritis: An Unusual Glycan Neoepitope in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2021;73:2069–2077. doi: 10.1002/art.41768. [DOI] [PubMed] [Google Scholar]
  • 76.Brad H.R. The chemokine network in systemic lupus erythematous nephritis. Front. Biosci. 2008;13:904–922. doi: 10.2741/2731. [DOI] [PubMed] [Google Scholar]
  • 77.Dedong H., Feiyan Z., Jie S., Xiaowei L., Shaoyang W. Analysis of interleukin-17 and interleukin-23 for estimating disease activity and predicting the response to treatment in active lupus nephritis patients. Immunol. Lett. 2019;210:33–39. doi: 10.1016/j.imlet.2019.04.002. [DOI] [PubMed] [Google Scholar]
  • 78.Stanley S., Mok C.C., Vanarsa K., Habazi D., Li J., Pedroza C., Saxena R., Mohan C. Identification of Low-Abundance Urinary Biomarkers in Lupus Nephritis Using Electrochemiluminescence Immunoassays. Arthritis Rheumatol. 2019;71:744–755. doi: 10.1002/art.40813. [DOI] [PubMed] [Google Scholar]
  • 79.Fava A., Rao D.A., Mohan C., Zhang T., Rosenberg A., Fenaroli P., Belmont H.M., Izmirly P., Clancy R., Trujillo J.M., et al. Urine Proteomics and Renal Single-Cell Transcriptomics Implicate Interleukin-16 in Lupus Nephritis. Arthritis Rheumatol. 2021;74:829–839. doi: 10.1002/art.42023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Vanarsa K., Soomro S., Zhang T., Strachan B., Pedroza C., Nidhi M., Cicalese P., Gidley C., Dasari S., Mohan S., et al. Quantitative planar array screen of 1000 proteins uncovers novel urinary protein biomarkers of lupus nephritis. Ann. Rheum. Dis. 2020;79:1349–1361. doi: 10.1136/annrheumdis-2019-216312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Puapatanakul P., Chansritrakul S., Susantitaphong P., Ueaphongsukkit T., Eiam-Ong S., Praditpornsilpa K., Kittanamongkolchai W., Avihingsanon Y. Interferon-Inducible Protein 10 and Disease Activity in Systemic Lupus Erythematosus and Lupus Nephritis: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2019;20:4954. doi: 10.3390/ijms20194954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Singh S., Anshita D., Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol. 2021;101:107598. doi: 10.1016/j.intimp.2021.107598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Parodis I., Ding H., Zickert A., Arnaud L., Larsson A., Svenungsson E., Mohan C., Gunnarsson I. Serum soluble tumour necrosis factor receptor-2 (sTNFR2) as a biomarker of kidney tissue damage and long-term renal outcome in lupus nephritis. Scand. J. Rheumatol. 2016;46:263–272. doi: 10.1080/03009742.2016.1231339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Rosa R.F., Takei K., Araújo N.C., Loduca S.M., Szajubok J.C., Chahade W.H. Monocyte Chemoattractant-1 as a Urinary Biomarker for the Diagnosis of Activity of Lupus Nephritis in Brazilian Patients. J. Rheumatol. 2012;39:1948–1954. doi: 10.3899/jrheum.110201. [DOI] [PubMed] [Google Scholar]
  • 85.Singh R.G., Usha, Rathore S.S., Behura S.K., Singh N.K. Urinary MCP-1 as diagnostic and prognostic marker in patients with lupus nephritis flare. Lupus. 2012;21:1214–1218. doi: 10.1177/0961203312452622. [DOI] [PubMed] [Google Scholar]
  • 86.Bona N., Pezzarini E., Balbi B., Daniele S.M., Rossi M.F., Monje A.L., Basiglio C.L., Pelusa H.F., Arriaga S.M.M. Oxidative stress, inflammation and disease activity biomarkers in lupus nephropathy. Lupus. 2020;29:311–323. doi: 10.1177/0961203320904784. [DOI] [PubMed] [Google Scholar]
  • 87.Liu L., Wang R., Ding H., Tian L., Gao T., Bao C. The utility of urinary biomarker panel in predicting renal pathology and treatment response in Chinese lupus nephritis patients. PLoS ONE. 2020;15:e0240942. doi: 10.1371/journal.pone.0240942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Alharazy S., Kong N.C., Mohd M., Shah S.A., Ba’in A., Abdul Gafor A.H. Urine Monocyte Chemoattractant Protein-1 and Lupus Nephritis Disease Activity: Preliminary Report of a Prospective Longitudinal Study. Autoimmune Dis. 2015;2015:962046. doi: 10.1155/2015/962046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Dong X.W., Zheng Z.H., Ding J., Luo X., Li Z.Q., Li Y., Rong M.Y., Fu Y.L., Shi J.H., Yu L.C., et al. Combined detection of uMCP-1 and uTWEAK for rapid discrimination of severe lupus nephritis. Lupus. 2018;27:971–981. doi: 10.1177/0961203318758507. [DOI] [PubMed] [Google Scholar]
  • 90.Taha H.A., Abdallah N.H., Salem M.N., Hamouda A.H., Abd Elazeem M.I., Eesa N.N. Urinary and tissue monocyte chemoattractant protein1 (MCP1) in lupus nephritis patients. Egypt. Rheumatol. 2017;39:145–150. doi: 10.1016/j.ejr.2017.01.004. [DOI] [Google Scholar]
  • 91.Xia Y.-R., Li Q.-R., Wang J.-P., Guo H.-S., Bao Y.-Q., Mao Y.-M., Wu J., Pan H.-F., Ye D.-Q. Diagnostic value of urinary monocyte chemoattractant protein-1 in evaluating the activity of lupus nephritis: A meta-analysis. Lupus. 2020;29:599–606. doi: 10.1177/0961203320914372. [DOI] [PubMed] [Google Scholar]
  • 92.Urrego-Callejas T., Álvarez S.S., Arias L.F., Reyes B.O., Vanegas-García A.L., A González L., Muñoz-Vahos C.H., Vásquez G., Quintana L.F., Gómez-Puerta J.A. Urinary levels of ceruloplasmin and monocyte chemoattractant protein-1 correlate with extra-capillary proliferation and chronic damage in patients with lupus nephritis. Clin. Rheumatol. 2020;40:1853–1859. doi: 10.1007/s10067-020-05454-0. [DOI] [PubMed] [Google Scholar]
  • 93.Soff G.A. Angiostatin and angiostatin-related proteins. Cancer Metastasis Rev. 2000;19:97–107. doi: 10.1023/A:1026525121027. [DOI] [PubMed] [Google Scholar]
  • 94.O’Reilly M.S., Holmgren L., Shing Y., Chen C., Rosenthal R.A., Moses M., Lane W.S., Cao Y., Sage E., Folkman J. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinoma. Cell. 1994;79:315–328. doi: 10.1016/0092-8674(94)90200-3. [DOI] [PubMed] [Google Scholar]
  • 95.Soliman S., Mohamed F.A., Ismail F.M., Stanley S., Saxena R., Mohan C. Urine angiostatin and VCAM-1 surpass conventional metrics in predicting elevated renal pathology activity indices in lupus nephritis. Int. J. Rheum. Dis. 2017;20:1714–1727. doi: 10.1111/1756-185X.13197. [DOI] [PubMed] [Google Scholar]
  • 96.Song D., Wu L.-H., Wang F.-M., Yang X.-W., Zhu D., Chen M., Yu F., Liu G., Zhao M.-H. The spectrum of renal thrombotic microangiopathy in lupus nephritis. Arthritis Res. Ther. 2013;15:R12. doi: 10.1186/ar4142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Qin L., Stanley S., Ding H., Zhang T., Truong V.T.T., Celhar T., Fairhurst A.-M., Pedroza C., Petri M., Saxena R., et al. Urinary pro-thrombotic, anti-thrombotic, and fibrinolytic molecules as biomarkers of lupus nephritis. Arth. Res. Ther. 2019;21:176. doi: 10.1186/s13075-019-1959-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Springer T.A. Adhesion receptors of the immune system. Nature. 1990;346:425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  • 99.Parodis I., Gokaraju S., Zickert A., Vanarsa K., Zhang T., Habazi D., Botto J., Alves C.S., Giannopoulos P., Larsson A., et al. ALCAM and VCAM-1 as urine biomarkers of activity and long-term renal outcome in systemic lupus erythematosus. Rheumatology. 2019;59:2237–2249. doi: 10.1093/rheumatology/kez528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Howe H.S., Kong K.O., Thong B.Y., Law W.G., Chia F.L.A., Lian T.Y., Lau T.C., Chng H.H., Leung B.P.L. Urine sVCAM-1 and sICAM-1 levels are elevated in lupus nephritis. Int. J. Rheum. Dis. 2012;15:13–16. doi: 10.1111/j.1756-185X.2012.01720.x. [DOI] [PubMed] [Google Scholar]
  • 101.Mejia-Vilet J.M., Zhang X.L., Cruz C., Cano-Verduzco M.L., Shapiro J.P., Nagaraja H.N., Morales-Buenrostro L.E., Rovin B.H. Urinary Soluble CD163: A Novel Noninvasive Biomarker of Activity for Lupus Nephritis. J. Am. Soc. Nephrol. 2020;31:1335–1347. doi: 10.1681/ASN.2019121285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Endo N., Tsuboi N., Furuhashi K., Shi Y., Du Q., Abe T., Hori M., Imaizumi T., Kim H., Katsuno T., et al. Urinary soluble CD163 level reflects glomerular inflammation in human lupus nephritis. Nephrol. Dial. Transplant. 2016;31:2023–2033. doi: 10.1093/ndt/gfw214. [DOI] [PubMed] [Google Scholar]
  • 103.Zhang T., Li H., Vanarsa K., Gidley G., Mok C.C., Petri M., Saxena R., Mohan C. Association of Urine sCD163 With Proliferative Lupus Nephritis, Fibrinoid Necrosis, Cellular Crescents and Intrarenal M2 Macrophages. Front. Immunol. 2020;11:671. doi: 10.3389/fimmu.2020.00671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Bock M., Heijnen I., Trendelenburg M. Anti-C1q Antibodies as a Follow-Up Marker in SLE Patients. PLoS ONE. 2015;10:e0123572. doi: 10.1371/journal.pone.0123572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Kianmehr N., Khoshmirsafa M., Shekarabi M., Falak R., Haghighi A., Masoodian M., Seif F., Omidi F., Shirani F., Dadfar N. High frequency of concurrent anti-C1q and anti-dsDNA but not anti-C3b antibodies in patients with Lupus Nephritis. J. Immunoass. Immunochem. 2021;42:406–423. doi: 10.1080/15321819.2021.1895215. [DOI] [PubMed] [Google Scholar]
  • 106.Fatemi A., Samadi G., Sayedbonakdar Z., Smiley A. Anti-C1q antibody in patients with lupus nephritic flare: 18-month follow-up and a nested case-control study. Mod. Rheumatol. 2015;26:233–239. doi: 10.3109/14397595.2015.1074649. [DOI] [PubMed] [Google Scholar]
  • 107.Fasano S., Pierro L., Borgia A., Coscia M.A., Formica R., Bucci L., Riccardi A., Ciccia F. Biomarker panels may be superior over single molecules in prediction of renal flares in systemic lupus erythematosus: An exploratory study. Rheumatology. 2020;59:3193–3200. doi: 10.1093/rheumatology/keaa074. [DOI] [PubMed] [Google Scholar]
  • 108.Yap D.Y.H., Yung S., Zhang Q., Tang C., Chan T.M. Serum level of proximal renal tubular epithelial cell-binding immunoglobulin G in patients with lupus nephritis. Lupus. 2015;25:46–53. doi: 10.1177/0961203315598018. [DOI] [PubMed] [Google Scholar]
  • 109.Selvaraja M., Abdullah M., Arip M., Chin V.K., Shah A., Nordin S.A. Elevated interleukin-25 and its association to Th2 cytokines in systemic lupus erythematosus with lupus nephritis. PLoS ONE. 2019;14:e0224707. doi: 10.1371/journal.pone.0224707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Ruchakorn N., Ngamjanyaporn P., Suangtamai T., Kafaksom T., Polpanumas C., Petpisit V., Pisitkun T., Pisitkun P. Performance of cytokine models in predicting SLE activity. Arthritis Res. Ther. 2019;21:287. doi: 10.1186/s13075-019-2029-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Buyon J.P., Kim M.Y., Guerra M.M., Lu S., Reeves E., Petri M., Laskin C.A., Lockshin M.D., Sammaritano L.R., Branch D.W., et al. Kidney Outcomes and Risk Factors for Nephritis (Flare/De Novo) in a Multiethnic Cohort of Pregnant Patients with Lupus. Clin. J. Am. Soc. Nephrol. 2017;12:940–946. doi: 10.2215/CJN.11431116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Dolff S., Abdulahad W.H., Arends S., Van Dijk M.C., Limburg P.C., Kallenberg C.G., Bijl M. Urinary CD8+ T-cell counts discriminate between active and inactive lupus nephritis. Arthritis Res. Ther. 2013;15:R36. doi: 10.1186/ar4189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Nordin F., Shaharir S.S., Wahab A.A., Mustafar R., Gafor A.H.A., Said M.S.M., Rajalingham S., Shah S.A. Serum and urine interleukin-17A levels as biomarkers of disease activity in systemic lupus erythematosus. Int. J. Rheum. Dis. 2019;22:1419–1426. doi: 10.1111/1756-185X.13615. [DOI] [PubMed] [Google Scholar]
  • 114.Wang Y., Tao Y., Liu Y., Zhao Y., Song C., Zhou B., Wang T., Gao L., Zhang L., Hu H. Rapid detection of urinary soluble intercellular adhesion molecule-1 for determination of lupus nephritis activity. Medicine. 2018;97:e11287. doi: 10.1097/MD.0000000000011287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Yu K.Y., Yung S., Chau M.K., Tang C.S., Yap D.Y., Tang A.H., Ying S.K., Lee C.K., Chan T.M. Clinico-pathological associations of serum VCAM-1 and ICAM-1 levels in patients with lupus nephritis. Lupus. 2021;30:1039–1050. doi: 10.1177/09612033211004727. [DOI] [PubMed] [Google Scholar]
  • 116.Alharazy S.M., Kong N.C., Mohd M., Shah S.A., Gafor A.H.A., Ba´in A. The role of urinary neutrophil gelatinase-associated lipocalin in lupus nephritis. Clin. Chim. Acta. 2013;425:163–168. doi: 10.1016/j.cca.2013.07.030. [DOI] [PubMed] [Google Scholar]
  • 117.Wu J., Wei L., Wang W., Zhang X., Chen L., Lin C. Diagnostic value of progranulin in patients with lupus nephritis and its correlation with disease activity. Rheumatol. Int. 2016;36:759–767. doi: 10.1007/s00296-016-3458-7. [DOI] [PubMed] [Google Scholar]
  • 118.Go D.J., Lee J.Y., Kang M.J., Lee E.Y., Yi E.C., Song Y.W. Urinary vitamin D-binding protein, a novel biomarker for lupus nephritis, predicts the development of proteinuric flare. Lupus. 2018;27:1600–1615. doi: 10.1177/0961203318778774. [DOI] [PubMed] [Google Scholar]
  • 119.Aggarwal A., Gupta R., Negi V.S., Rajasekhar L., Misra R., Singh P., Chaturvedi V., Sinha S. Urinary haptoglobin, alpha-1 anti-chymotrypsin and retinol binding protein identified by proteomics as potential biomarkers for lupus nephritis. Clin. Exp. Immunol. 2017;188:254–262. doi: 10.1111/cei.12930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Yu K.Y.C., Yung S., Chau M.K.M., O Tang C.S., Yap D.Y.H., Tang A.H.N., Ying S.K.Y., Lee C.K., Chan T.M. Serum syndecan-1, hyaluronan and thrombomodulin levels in patients with lupus nephritis. Rheumatology. 2021;60:737–750. doi: 10.1093/rheumatology/keaa370. [DOI] [PubMed] [Google Scholar]
  • 121.Kim K.-J., Kim J.-Y., Baek I.-W., Kim W.-U., Cho C.-S. Elevated Serum Levels of Syndecan-1 Are Associated with Renal Involvement in Patients with Systemic Lupus Erythematosus. J. Rheumatol. 2015;42:202–209. doi: 10.3899/jrheum.140568. [DOI] [PubMed] [Google Scholar]
  • 122.Smith M.A., Henault J., Karnell J.L., Parker M.L., Riggs J.M., Sinibaldi D., Taylor D.K., Ettinger R., Grant E.P., Sanjuan M.A., et al. SLE Plasma Profiling Identifies Unique Signatures of Lupus Nephritis and Discoid Lupus. Sci. Rep. 2019;9:14433. doi: 10.1038/s41598-019-50231-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Tan Y., Song D., Wu L.-H., Yu F., Zhao M.-H. Serum levels and renal deposition of C1q complement component and its antibodies reflect disease activity of lupus nephritis. BMC Nephrol. 2013;14:63. doi: 10.1186/1471-2369-14-63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Enghard P., Rieder C., Kopetschke K., Klocke J.R., Undeutsch R., Biesen R., Dragun D., Gollasch M., Schneider U., Aupperle K., et al. Urinary CD4 T cells identify SLE patients with proliferative lupus nephritis and can be used to monitor treatment response. Ann. Rheum. Dis. 2013;73:277–283. doi: 10.1136/annrheumdis-2012-202784. [DOI] [PubMed] [Google Scholar]
  • 125.Menke J., Amann K., Cavagna L., Blettner M., Weinmann A., Schwarting A., Kelley V.R. Colony-Stimulating Factor-1: A Potential Biomarker for Lupus Nephritis. J. Am. Soc. Nephrol. 2014;26:379–389. doi: 10.1681/ASN.2013121356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Wu T., Xie C., Han J., Ye Y., Singh S., Zhou J., Li Y., Ding H., Li Q.-Z., Zhou X., et al. Insulin-Like Growth Factor Binding Protein-4 as a Marker of Chronic Lupus Nephritis. PLoS ONE. 2016;11:e0151491. doi: 10.1371/journal.pone.0151491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Hutcheson J., Ye Y., Han J., Arriens C., Saxena R., Li Q.-Z., Mohan C., Wu T. Resistin as a potential marker of renal disease in lupus nephritis. Clin. Exp. Immunol. 2015;179:435–443. doi: 10.1111/cei.12473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Wantanasiri P., Satirapoj B., Charoenpitakchai M., Aramwit P. Periostin: A novel tissue biomarker correlates with chronicity index and renal function in lupus nephritis patients. Lupus. 2015;24:835–845. doi: 10.1177/0961203314566634. [DOI] [PubMed] [Google Scholar]
  • 129.Fiebeler A., Park J.-K., Muller D.N., Lindschau C., Mengel M., Merkel S., Banas B., Luft F.C., Haller H. Growth arrest specific protein 6/Axl signaling in human inflammatory renal diseases. Am. J. Kidney Dis. 2004;43:286–295. doi: 10.1053/j.ajkd.2003.10.016. [DOI] [PubMed] [Google Scholar]
  • 130.Rothlin C.V., Ghosh S., Zuniga E.I., Oldstone M.B., Lemke G. TAM Receptors Are Pleiotropic Inhibitors of the Innate Immune Response. Cell. 2007;131:1124–1136. doi: 10.1016/j.cell.2007.10.034. [DOI] [PubMed] [Google Scholar]
  • 131.Parodis I., Ding H., Zickert A., Cosson G., Fathima M., Grönwall C., Mohan C., Gunnarsson I. Serum Axl predicts histology-based response to induction therapy and long-term renal outcome in lupus nephritis. PLoS ONE. 2019;14:e0212068. doi: 10.1371/journal.pone.0212068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Ekman C., Jönsen A., Sturfelt G., Bengtsson A.A., Dahlbäck B. Plasma concentrations of Gas6 and sAxl correlate with disease activity in systemic lupus erythematosus. Rheumatology. 2011;50:1064–1069. doi: 10.1093/rheumatology/keq459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Möckel T., Basta F., Weinmann-Menke J., Schwarting A. B cell activating factor (BAFF): Structure, functions, autoimmunity and clinical implications in Systemic Lupus Erythematosus (SLE) Autoimmun. Rev. 2020;20:102736. doi: 10.1016/j.autrev.2020.102736. [DOI] [PubMed] [Google Scholar]
  • 134.A Levy R., Gonzalez-Rivera T., Khamashta M., Fox N.L., Jones-Leone A., Rubin B., Burriss S.W., Gairy K., van Maurik A., A Roth D. 10 Years of belimumab experience: What have we learnt? Lupus. 2021;30:1705–1721. doi: 10.1177/09612033211028653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Parodis I., Zickert A., Sundelin B., Axelsson M., Gerhardsson J., Svenungsson E., Malmström V., Gunnarsson I. Evaluation of B lymphocyte stimulator and a proliferation inducing ligand as candidate biomarkers in lupus nephritis based on clinical and histopathological outcome following induction therapy. Lupus Sci. Med. 2015;2:e000061. doi: 10.1136/lupus-2014-000061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Carlsson E., Quist A., Davies J.C., Midgley A., Smith E.M., Bruce I.N., Beresford M.W., Hedrich C.M. Longitudinal analysis of urinary proteins in lupus nephritis—A pilot study. Clin. Immunol. 2022;236:108948. doi: 10.1016/j.clim.2022.108948. [DOI] [PubMed] [Google Scholar]
  • 137.Ichinose K., Kitamura M., Sato S., Fujikawa K., Horai Y., Matsuoka N., Tsuboi M., Nonaka F., Shimizu T., Fukui S., et al. Podocyte foot process width is a prediction marker for complete renal response at 6 and 12 months after induction therapy in lupus nephritis. Clin. Immunol. 2018;197:161–168. doi: 10.1016/j.clim.2018.10.002. [DOI] [PubMed] [Google Scholar]
  • 138.Wang S., Wu M., Chiriboga L., Zeck B., Belmont H. Membrane attack complex (mac) deposition in lupus nephritis is associated with hypertension and poor clinical response to treatment. Semin. Arthritis Rheum. 2018;48:256–262. doi: 10.1016/j.semarthrit.2018.01.004. [DOI] [PubMed] [Google Scholar]
  • 139.Wang S., Wu M., Chiriboga L., Zeck B., Goilav B., Wang S., Jimenez A.L., Putterman C., Schwartz D., Pullman J., et al. Membrane attack complex (MAC) deposition in renal tubules is associated with interstitial fibrosis and tubular atrophy: A pilot study. Lupus Sci. Med. 2022;9:e000576. doi: 10.1136/lupus-2021-000576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Treamtrakanpon W., Tantivitayakul P., Benjachat T., Somparn P., Kittikowit W., Eiam-Ong S., Leelahavanichkul A., Hirankarn N., Avihingsanon Y. APRIL, a proliferation-inducing ligand, as a potential marker of lupus nephritis. Arthritis Res. Ther. 2012;14:R252. doi: 10.1186/ar4095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Wolf B.J., Spainhour J.C., Arthur J.M., Janech M.G., Petri M., Oates J.C. Development of Biomarker Models to Predict Outcomes in Lupus Nephritis. Arthritis Rheumatol. 2016;68:1955–1963. doi: 10.1002/art.39623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Cheng F.-J., Zhou X.-J., Zhao Y.-F., Zhao M.-H., Zhang H. Human neutrophil peptide 1-3, a component of the neutrophil extracellular trap, as a potential biomarker of lupus nephritis. Int. J. Rheum. Dis. 2014;18:533–540. doi: 10.1111/1756-185X.12433. [DOI] [PubMed] [Google Scholar]
  • 143.Torres-Salido M.T., Sanchis M., Solé C., Moliné T., Vidal M., Solà A., Hotter G., Ordi-Ros J., Cortés-Hernández J. Urinary Neuropilin-1: A Predictive Biomarker for Renal Outcome in Lupus Nephritis. Int. J. Mol. Sci. 2019;20:4601. doi: 10.3390/ijms20184601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Davies J.C., Midgley A., Carlsson E., Donohue S., Bruce I.N., Beresford M.W., Hedrich C.M. Urine and serum S100A8/A9 and S100A12 associate with active lupus nephritis and may predict response to rituximab treatment. RMD Open. 2020;6:e001257. doi: 10.1136/rmdopen-2020-001257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Garcia-Vives E., Solé C., Moliné T., Vidal M., Agraz I., Ordi-Ros J., Cortés-Hernández J. The Urinary Exosomal miRNA Expression Profile is Predictive of Clinical Response in Lupus Nephritis. Int. J. Mol. Sci. 2020;21:1372. doi: 10.3390/ijms21041372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Tamirou F., Lauwerys B.R., Dall’Era M., Mackay M., Rovin B., Cervera R., A Houssiau F., Maintain Nephritis on behalf of the MAINTAIN Nephritis Trial investigators A proteinuria cut-off level of 0.7 g/day after 12 months of treatment best predicts long-term renal outcome in lupus nephritis: Data from the MAINTAIN Nephritis Trial. Lupus Sci. Med. 2015;2:e000123. doi: 10.1136/lupus-2015-000123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Dall’Era M., Cisternas M.G., Smilek D.E., Straub L., Houssiau F.A., Cervera R., Rovin B.H., Mackay M. Predictors of Long-Term Renal Outcome in Lupus Nephritis Trials: Lessons Learned from the Euro-Lupus Nephritis Cohort. Arthritis Rheumatol. 2015;67:1305–1313. doi: 10.1002/art.39026. [DOI] [PubMed] [Google Scholar]
  • 148.Ugolini-Lopes M.R., Seguro L.P.C., Castro M.X.F., Daffre D., Lopes A.C., Borba E., Bonfa E. Early proteinuria response: A valid real-life situation predictor of long-term lupus renal outcome in an ethnically diverse group with severe biopsy-proven nephritis? Lupus Sci. Med. 2017;4:e000213. doi: 10.1136/lupus-2017-000213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Tamirou F., D’Cruz D., Sangle S., Remy P., Vasconcelos C., Fiehn C., Guttierez M.D.M.A., Gilboe I.-M., Tektonidou M., Blockmans D., et al. Long-term follow-up of the MAINTAIN Nephritis Trial, comparing azathioprine and mycophenolate mofetil as maintenance therapy of lupus nephritis. Ann. Rheum. Dis. 2015;75:526–531. doi: 10.1136/annrheumdis-2014-206897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Koo H.S., Kim S., Chin H.J. Remission of proteinuria indicates good prognosis in patients with diffuse proliferative lupus nephritis. Lupus. 2015;25:3–11. doi: 10.1177/0961203315595130. [DOI] [PubMed] [Google Scholar]
  • 151.Almaani S., Fussner L., Brodsky S., Meara A., Jayne D. ANCA-Associated Vasculitis: An Update. J. Clin. Med. 2021;10:1446. doi: 10.3390/jcm10071446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Nakazawa D., Masuda S., Tomaru U., Ishizu A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat. Rev. Rheumatol. 2018;15:91–101. doi: 10.1038/s41584-018-0145-y. [DOI] [PubMed] [Google Scholar]
  • 153.Wang Y., Huang X., Cai J., Xie L., Wang W., Tang S., Yin S., Gao X., Zhang J., Zhao J., et al. Clinicopathologic Characteristics and Outcomes of Lupus Nephritis With Antineutrophil Cytoplasmic Antibody: A Retrospective Study. Medicine. 2016;95:e2580. doi: 10.1097/MD.0000000000002580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Wang S., Shang J., Xiao J., Zhao Z. Clinicopathologic characteristics and outcomes of lupus nephritis with positive antineutrophil cytoplasmic antibody. Ren. Fail. 2020;42:244–254. doi: 10.1080/0886022X.2020.1735416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Yu F., Wu L.-H., Tan Y., Li L.-H., Wang C.-L., Wang W.-K., Qu Z., Chen M.-H., Gao J.-J., Li Z.-Y., et al. Tubulointerstitial lesions of patients with lupus nephritis classified by the 2003 International Society of Nephrology and Renal Pathology Society system. Kidney Int. 2010;77:820–829. doi: 10.1038/ki.2010.13. [DOI] [PubMed] [Google Scholar]
  • 156.Hsieh C., Chang A., Brandt D., Guttikonda R., Utset T.O., Clark M.R. Predicting outcomes of lupus nephritis with tubulointerstitial inflammation and scarring. Arthritis Care Res. 2011;63:865–874. doi: 10.1002/acr.20441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Alsuwaida A. Interstitial inflammation and long-term renal outcomes in lupus nephritis. Lupus. 2013;22:1446–1454. doi: 10.1177/0961203313507986. [DOI] [PubMed] [Google Scholar]
  • 158.Parodis I., Adamichou C., Aydin S., Gomez A., Demoulin N., Weinmann-Menke J., A Houssiau F., Tamirou F. Per-protocol repeat kidney biopsy portends relapse and long-term outcome in incident cases of proliferative lupus nephritis. Rheumatology. 2020;59:3424–3434. doi: 10.1093/rheumatology/keaa129. [DOI] [PubMed] [Google Scholar]
  • 159.Bajema I.M., Wilhelmus S., Alpers C.E., Bruijn J.A., Colvin R.B., Cook H.T., D’Agati V.D., Ferrario F., Haas M., Jennette J.C., et al. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: Clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int. 2018;93:789–796. doi: 10.1016/j.kint.2017.11.023. [DOI] [PubMed] [Google Scholar]
  • 160.Hachiya A., Karasawa M., Imaizumi T., Kato N., Katsuno T., Ishimoto T., Kosugi T., Tsuboi N., Maruyama S. The ISN/RPS 2016 classification predicts renal prognosis in patients with first-onset class III/IV lupus nephritis. Sci. Rep. 2021;11:1525. doi: 10.1038/s41598-020-78972-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Wu L.-H., Yu F., Tan Y., Qu Z., Chen M.-H., Wang S.-X., Liu G., Zhao M.-H. Inclusion of renal vascular lesions in the 2003 ISN/RPS system for classifying lupus nephritis improves renal outcome predictions. Kidney Int. 2013;83:715–723. doi: 10.1038/ki.2012.409. [DOI] [PubMed] [Google Scholar]
  • 162.Tan Y., Yu F., Liu G. Diverse vascular lesions in systemic lupus erythematosus and clinical implications. Curr. Opin. Nephrol. Hypertens. 2014;23:218–223. doi: 10.1097/01.mnh.0000444812.65002.cb. [DOI] [PubMed] [Google Scholar]
  • 163.Gerhardsson J., Sundelin B., Zickert A., Padyukov L., Svenungsson E., Gunnarsson I. Histological antiphospholipid-associated nephropathy versus lupus nephritis in patients with systemic lupus erythematosus: An observational cross-sectional study with longitudinal follow-up. Arthritis Res. Ther. 2015;17:109. doi: 10.1186/s13075-015-0614-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Leatherwood C., Speyer C.B., Feldman C.H., D’Silva K., A Gómez-Puerta J., Hoover P.J., Waikar S.S., McMahon G.M., Rennke H.G., Costenbader K.H. Clinical characteristics and renal prognosis associated with interstitial fibrosis and tubular atrophy (IFTA) and vascular injury in lupus nephritis biopsies. Semin. Arthritis Rheum. 2019;49:396–404. doi: 10.1016/j.semarthrit.2019.06.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Ding Y., Yu X., Wu L., Tan Y., Qu Z., Yu F. The Spectrum of C4d Deposition in Renal Biopsies of Lupus Nephritis Patients. Front. Immunol. 2021;12:654652. doi: 10.3389/fimmu.2021.654652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Kim H., Kim T., Kim M., Lee H.Y., Kim Y., Kang M.S., Kim J. Activation of the alternative complement pathway predicts renal outcome in patients with lupus nephritis. Lupus. 2020;29:862–871. doi: 10.1177/0961203320925165. [DOI] [PubMed] [Google Scholar]
  • 167.Chua J.S., Baelde H.J., Zandbergen M., Wilhelmus S., van Es L.A., de Fijter J.W., Bruijn J.A., Bajema I.M., Cohen D. Complement Factor C4d Is a Common Denominator in Thrombotic Microangiopathy. J. Am. Soc. Nephrol. 2015;26:2239–2247. doi: 10.1681/ASN.2014050429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Cohen D., Koopmans M., Hovinga I.C.L.K., Berger S.P., van Groningen M.R., Steup-Beekman G.M., de Heer E., Bruijn J.A., Bajema I.M. Potential for glomerular C4d as an indicator of thrombotic microangiopathy in lupus nephritis. Arthritis Care Res. 2008;58:2460–2469. doi: 10.1002/art.23662. [DOI] [PubMed] [Google Scholar]
  • 169.Chen Y.M., Hung W.T., Liao Y.W., Hsu C.Y., Hsieh T.Y., Chen H.H., Hsieh C.W., Lin C.T., Lai K.L., Tang K.T., et al. Combination immunosuppressant therapy and lupus nephritis outcome: A hospital-based study. Lupus. 2019;28:658–666. doi: 10.1177/0961203319842663. [DOI] [PubMed] [Google Scholar]
  • 170.Mejia-Vilet J.M., Shapiro J.P., Zhang X.L., Cruz C., Zimmerman G., Méndez-Pérez R.A., Cano-Verduzco M.L., Parikh S.V., Nagaraja H.N., Morales-Buenrostro L.E., et al. Association Between Urinary Epidermal Growth Factor and Renal Prognosis in Lupus Nephritis. Arthritis Rheumatol. 2020;73:244–254. doi: 10.1002/art.41507. [DOI] [PubMed] [Google Scholar]
  • 171.Parodis I., Tamirou F., Houssiau F.A. Treat-to-Target in Lupus Nephritis. What is the Role of the Repeat Kidney Biopsy? Arch. Immunol. et Ther. Exp. 2022;70:8. doi: 10.1007/s00005-022-00646-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Parodis I., Tamirou F., A Houssiau F. Prediction of prognosis and renal outcome in lupus nephritis. Lupus Sci. Med. 2020;7:e000389. doi: 10.1136/lupus-2020-000389. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.


Articles from Journal of Clinical Medicine are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES