Abstract
Due to the evolutionary arms race between hosts and viruses, viruses must adapt to host translation systems to rapidly synthesize viral proteins. Highly expressed genes in hosts have a codon bias related to tRNA abundance, the primary RNA translation rate determinant. We calculated the relative synonymous codon usage (RSCU) of three hepatitis viruses (HAV, HBV, and HCV), SARS-CoV-2, 30 human tissues, and hepatocellular carcinoma (HCC). After comparing RSCU between viruses and human tissues, we calculated the codon adaptation index (CAI) of viral and human genes. HBV and HCV showed the highest correlations with HCC and the normal liver, while SARS-CoV-2 had the strongest association with lungs. In addition, based on HCC RSCU, the CAI of HBV and HCV genes was the highest. HBV and HCV preferentially adapt to the tRNA pool in HCC, facilitating viral RNA translation. After an initial trigger, rapid HBV/HCV translation and replication may change normal liver cells into HCC cells. Our findings reveal a novel perspective on virus-mediated oncogenesis.
Keywords: hepatitis viruses, evolutionary arms race, hepatocellular carcinoma (HCC), relative synonymous codon usage (RSCU), codon adaptation index (CAI)
Acknowledgements
We thank the Wiley Editing Service for language editing. No funding has supported this study.
Author Contributions
Conceptualization: S.W.
Supervision: S.W.
Methodology: C.Y., J.L., Q.L., S.C., Y.C., H.J., L.X., and G.F.
Writing — original draft preparation: S.W.
Writing — review and editing: S.W.
All authors have read and agreed to the published version of the manuscript.
Data Availability
All data needed to evaluate the conclusions in the paper are present in the paper.
Ethical Statement
This article does not contain any studies with human participants or animals performed by any of the authors.
Footnotes
Conflict of Interest
The authors declare that they have no conflict of interest.
References
- Arella D, Dilucca M, Giansanti A. Codon usage bias and environmental adaptation in microbial organisms. Mol. Genet. Genomics. 2021;296:751–762. doi: 10.1007/s00438-021-01771-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cai H, Liu X, Zheng X. RNA editing detection in SARS-CoV-2 transcriptome should be different from traditional SNV identification. J. Appl. Genet. 2022;63:587–594. doi: 10.1007/s13353-022-00706-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang S, Li J, Li Q, Yu CP, Xie LL, Wang S. Retrieving the deleterious mutations before extinction: genome-wide comparison of shared derived mutations in liver cancer and normal population. Postgrad. Med. J. 2021;98:584–590. doi: 10.1136/postgradmedj-2021-139993. [DOI] [PubMed] [Google Scholar]
- Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K. A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA. 2000;6:755–767. doi: 10.1017/S1355838200000170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chu D, Wei L. Characterizing the heat response of Arabidopsis thaliana from the perspective of codon usage bias and translational regulation. J. Plant Physiol. 2019;240:153012. doi: 10.1016/j.jplph.2019.153012. [DOI] [PubMed] [Google Scholar]
- dos Reis M, Savva R, Wernisch L. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 2004;32:5036–5044. doi: 10.1093/nar/gkh834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li J, Li Q, Yu CP, Chang S, Xie LL, Wang S. Genome-wide expression changes mediated by A-to-I RNA editing correlate with hepatic oncogenesis. Transl. Cancer Res. 2021;10:2725–2737. doi: 10.21037/tcr-21-236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Q, Li J, Yu CP, Chang S, Xie LL, Wang S. Synonymous mutations that regulate translation speed might play a non-negligible role in liver cancer development. BMC Cancer. 2021;21:388. doi: 10.1186/s12885-021-08131-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Y, Yang X, Wang N, Wang H, Yin B, Yang X, Jiang W. GC usage of SARS-CoV-2 genes might adapt to the environment of human lung expressed genes. Mol. Genet. Genomics. 2020;295:1537–1546. doi: 10.1007/s00438-020-01719-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Y, Yang XN, Wang N, Wang HY, Yin B, Yang XP, Jiang WQ. Pros and cons of the application of evolutionary theories to the evolution of SARS-CoV-2. Future Virol. 2020;15:369–372. doi: 10.2217/fvl-2020-0048. [DOI] [Google Scholar]
- Li Y, Yang XN, Wang N, Wang H, Yin B, Yang X, Jiang WQ. The divergence between SARS-CoV-2 and RaTG13 might be overestimated due to the extensive RNA modification. Future Virol. 2020;15:341–347. doi: 10.2217/fvl-2020-0066. [DOI] [Google Scholar]
- Li J, Yu CP, Li Q, Chang S, Xie LL, Wang S. Large-scale omics data reveal the cooperation of mutation-circRNA-miRNA-target gene network in liver cancer oncogenesis. Future Oncol. 2022;18:163–178. doi: 10.2217/fon-2021-0940. [DOI] [PubMed] [Google Scholar]
- Liang H, Landweber LF. Hypothesis: RNA editing of microRNA target sites in humans? RNA. 2007;13:463–467. doi: 10.1261/rna.296407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu W, Cai S, Pu R, Li Z, Liu D, Zhou X, Yin J, Chen X, Chen L, Wu J, et al. HBV preS mutations promote hepatocarcinogenesis by inducing endoplasmic reticulum stress and up-regulating inflammatory signaling. Cancers. 2022;14:3274. doi: 10.3390/cancers14133274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu X, Liu X, Zhou J, Dong Y, Jiang W, Jiang W. Rampant C-to-U deamination accounts for the intrinsically high mutation rate in SARS-CoV-2 spike gene. RNA. 2022;28:917–926. doi: 10.1261/rna.079160.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martignano F, Di Giorgio S, Mattiuz G, Conticello SG. Commentary on “Poor evidence for host-dependent regular RNA editing in the transcriptome of SARS-CoV-2”. J. Appl. Genet. 2022;63:423–428. doi: 10.1007/s13353-022-00688-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palladino MJ, Keegan LP, O’Connell MA, Reenan RA. dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA. 2000;6:1004–1018. doi: 10.1017/S1355838200000248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genetics. 2011;12:32–42. doi: 10.1038/nrg2899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp PM, Li WH. The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15:1281–1295. doi: 10.1093/nar/15.3.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stadler M, Fire A. Wobble base-pairing slows in vivo translation elongation in metazoans. RNA. 2011;17:2063–2073. doi: 10.1261/rna.02890211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Supek F, Miñana B, Valcárcel J, Gabaldón T, Lehner B. Synonymous mutations frequently act as driver mutations in human cancers. Cell. 2014;156:1324–1335. doi: 10.1016/j.cell.2014.01.051. [DOI] [PubMed] [Google Scholar]
- The GTEx Consortium The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013;45:580–585. doi: 10.1038/ng.2653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y, Gai Y, Li Y, Li C, Li Z, Wang X. SARS-CoV-2 has the advantage of competing the iMet-tRNAs with human hosts to allow efficient translation. Mol. Genet. Genomics. 2021;296:113–118. doi: 10.1007/s00438-020-01731-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang N, Wang D. Genome-wide transcriptome and translatome analyses reveal the role of protein extension and domestication in liver cancer oncogenesis. Mol. Genet. Genomics. 2021;296:561–569. doi: 10.1007/s00438-021-01766-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei L. Selection on synonymous mutations revealed by 1135 genomes of Arabidopsis thaliana. Evol. Bioinform. Online. 2020;16:1176934320916794. doi: 10.1177/1176934320916794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei L. Reconciling the debate on deamination on viral RNA. J. Appl. Genet. 2022;63:583–585. doi: 10.1007/s13353-022-00698-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu CH, Dang Y, Zhou Z, Wu C, Zhao F, Sachs MS, Liu Y. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol. Cell. 2015;59:744–754. doi: 10.1016/j.molcel.2015.07.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu Y, Li Y, Dong Y, Wang X, Li C, Jiang W. Natural selection on synonymous mutations in SARS-CoV-2 and the impact on estimating divergence time. Future Virol. 2021;16:447–450. doi: 10.2217/fvl-2021-0078. [DOI] [Google Scholar]
- Zaki MYW, Fathi AM, Samir S, Eldafashi N, William KY, Nazmy MH, Fathy M, Gill US, Shetty S. Innate and adaptive immunopathogeneses in viral hepatitis; crucial determinants of hepatocellular carcinoma. Cancers. 2022;14:1255. doi: 10.3390/cancers14051255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y, Jiang W, Li Y, Jin XJ, Yang XP, Zhang PR, Jiang W, Yin B. Fast evolution of SARS-CoV-2 driven by deamination systems in hosts. Future Virol. 2021;16:587–590. doi: 10.2217/fvl-2021-0181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y, Jin X, Wang H, Miao Y, Yang X, Jiang W, Yin B. Compelling evidence suggesting the codon usage of SARS-CoV-2 adapts to human after the split from RaTG13. Evol. Bioinform. Online. 2021;17:11769343211052013. doi: 10.1177/11769343211052013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y, Jin X, Wang H, Miao Y, Yang X, Jiang W, Yin B. SARS-CoV-2 competes with host mRNAs for efficient translation by maintaining the mutations favorable for translation initiation. J. Appl. Genet. 2022;63:159–167. doi: 10.1007/s13353-021-00665-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu L, Wang Q, Zhang W, Hu H, Xu K. Evidence for selection on SARS-CoV-2 RNA translation revealed by the evolutionary dynamics of mutations in UTRs and CDSs. RNA Biol. 2022;19:866–876. doi: 10.1080/15476286.2022.2092351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zong J, Zhang Y, Guo F, Wang C, Li H, Lin G, Jiang W, Song X, Zhang X, Huang F, et al. Poor evidence for host-dependent regular RNA editing in the transcriptome of SARS-CoV-2. J. Appl. Genet. 2022;63:413–421. doi: 10.1007/s13353-022-00687-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zou Q, Xiao Z, Huang R, Wang X, Wang X, Zhao H, Yang X. Survey of the translation shifts in hepatocellular carcinoma with ribosome profiling. Theranostics. 2019;9:4141–4155. doi: 10.7150/thno.35033. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
All data needed to evaluate the conclusions in the paper are present in the paper.