Skip to main content
ACS Pharmacology & Translational Science logoLink to ACS Pharmacology & Translational Science
editorial
. 2022 Sep 9;5(10):829–834. doi: 10.1021/acsptsci.2c00169

Virtual Special Issue: Epigenetics 2022

Courtney C Aldrich , Félix Calderón , Stuart J Conway , Chuan He , Jacob M Hooker , Donna M Huryn , Craig W Lindsley , Dennis C Liotta , Christa E Müller
PMCID: PMC9578134  PMID: 36268124

Without question, epigenetics is one of the fastest growing, and most impactful, fields in chemical biology, neuroscience, medicinal chemistry, and drug discovery today. Recognizing the importance of this area, in 2020 we invited submissions for a virtual special issue on this topic hosted by ACS Chemical Biology, ACS Chemical Neuroscience, ACS Infectious Diseases, ACS Medicinal Chemistry Letters, ACS Pharmacology & Translational Science, and the Journal of Medicinal Chemistry. We are now delighted to present the Epigenetics 2022 virtual special issue. Below, content from each of the journals involved in this collection of papers is highlighted.

ACS Chemical Biology

Chemical modifications on DNA and histone proteins add tremendous complexity on top of the genetic code. New tools and probes are needed in order to dissect this additional layer of gene expression regulation in eukaryotes. The molecular-level understanding of regulatory mechanisms underlying different epigenetics modifications require new methods and molecular probes. Chemical biologists are playing increasingly important roles in this fast-developing field of biology. We have included reviews that introduce chemical biology approaches to inhibit histone methyltransferase1 and chromatin interacting proteins,2 visualize ensembles of the nucleosome,3 summarize recent progresses on histone modification reader proteins,4 and propose new concepts on dynamic regulation through reversible histone modifications.5

We also include several research articles that develop chemical probes to study chromatin,6,7 study an emerging glycation on histones,8 and investigate how the local chemical environment may perturb the histone acetylation reaction.9 With chemical changes on DNA and histones constituting the molecular basis for epigenetic regulation, chemical biologists will continue to play vital roles in this broad area of biology that affects almost every life process in high eukaryotes.

We are grateful for the invaluable efforts and insight of our ACS Chemical Biology Guest Editor, Jordan L. Meier, and his contributions to compiling this collection.

ACS Chemical Neuroscience

The complexity of the human brain is governed, to a large degree, by its transcriptional program: neurons have tremendous diversity of protein expression for synaptic signaling; microglia “activate” and change phenotype, and even physical morphology, in response to their environment; oligodendrocytes reprogram to facilitate myelination repair. These dynamic processes and the diversity of functions created are controlled at the level of epigenetics. Chemical neuroscience through cell biology, chemical probe development, and animal behavior can help deconstruct the epigenetic mechanisms that ultimately define brain function.

In this joint virtual special issue, you will see contributions spanning the neuroepigentic landscape from some of the top authors in the field. Of particular note are several exceptional Perspective and Review papers covering epigenetic mechanisms of memory,10 activity-dependent brain plasticity,11 neurodegeneration,12 and chronic pain.13 Beyond this, you will find new research that points to the therapeutic potential of epigenetic regulation in a number of disease contexts. Epigenetic modulation of the brain will be a key driver of therapeutic strategies in the future of human health. ACS Chemical Neuroscience is proud to highlight this area of research and welcomes future contributions from the field.

ACS Infectious Diseases

The World Health Organization has declared antimicrobial resistance one of the top 10 global public health threats that humanity is facing. As an urgent global hazard, new strategies and ways of thinking are necessary to control it. Otherwise, modern medicine’s progress in treating infections risks being set back decades. The menace is even more dramatic for endemic infectious diseases, where the options available are very limited. The application of genetic tools to manipulate the genome of pathogens, such as CRISPR/Cas9, and advances in the understanding on how hosts react to infections are opening a new chapter in antimicrobial therapy. In this context, the manipulation of epigenetic processes to control an infection is emerging as a novel promising therapeutic opportunity.

ACS Infectious Diseases is contributing to this joint virtual special issue focused on epigenetics with 11 publications in the form of nine innovative research articles, one Perspective, and one Viewpoint. Not surprisingly, histone deacetylase (HDAC) is the target class with a major presence (four research articles), as HDAC has already shown its therapeutic potential to treat infectious diseases.1417 Also notable is the increase of interest in bromodomains in protozoa; their potential as novel targets against protozoans-mediated diseases is discussed in a Viewpoint18 and two articles.19,20 Finally, the characterization of acetyl-CoA synthetase as an interesting target for the development of antiplasmodial drugs,21 the profiling of epigenetic modulators against hemoprotozoan parasites,22 and two publications focused on the role of the host23,24 complete the contributions from ACS Infectious Diseases to this virtual special issue. We thank Drs. Kelly Chibale and Nathaniel Jones, who served as Guest Editors for ACS Infectious Diseases.

ACS Medicinal Chemistry Letters

As the role of epigenetic targets in disease is unraveled, medicinal chemists and drug discovery scientists have rapidly developed an impressive catalog of small molecules that modulate various aspects of chromatin and RNA modification. This emergence is evidenced by the increasing numbers of papers on epigenetic modulators that have appeared in ACS Medicinal Chemistry Letters in the past 5 years vs the first 5 years of the journal’s history. As part of this joint virtual special issue, we continue this trend. Farrow and co-workers report on EZM0141, a potent selective inhibitor of SETD2 which is in Phase I clinical trials for cancer.25 The development of brain penetrant EZH2 (enhancer of zeste homologue 2) inhibitors for cancers is reported by Liang, Phillips, and co-workers.26 Also focusing on brain cancers, and in particular neuroblastoma, Dev et al. describe a formulation strategy that delivers a pool of acetate together with a chemotherapeutic agent with the goal of rebalancing the aberrant methylation/acetylation state of cancer cells.27 Niwa et al. define the structural requirements of the phenylcyclopropylamine scaffold for covalent inhibition of lysine-specific demethylase 1 (LSD1/KDM1A), another cancer target.28 The removal of hERG and microsomal stability liabilities from this trans-phenylcyclopropylamine scaffold is described by Koyama, Umehara, and co-workers.29 Bushweller et al. describe the development of assays for 11 CXXC domains (readers of DNA methylation) and use of the assay to screen a library of covalent fragments.30 Finally, in a cautionary tale, Moreno-Yruela and Olsen highlight the need for careful analysis of kinetic data when characterizing HDAC inhibitors. The importance of epigenetic targets to drug discovery is also reflected in the patent literature.31 We capture that in 11 Patent Highlights devoted to novel chemical matter that modulates various epigenetic targets such as protein arginine N-methyltransferases (PRMT5), bromodomains, and HDACs, which have potential utility in various disease states such as HIV, Alzheimer’s disease, cancer, fibrosis, inflammation, and cardiovascular disease.3242 It is clear that epigenetic regulation will continue to be an important area for medicinal chemistry and drug discovery scientists. ACS Medicinal Chemistry Letters benefited from the expertise and efforts of Guest Editor Robert Copeland (Accent Therapeutics, Inc.), and we thank him for his contributions.

ACS Pharmacology & Translational Science

Several epigenetic drugs have already been approved by the authorities and are used for the treatment of various types of cancer. Moreover, a significant number of drugs for the different epigenetic target classes is currently evaluated in clinical trials. A major focus is still cancer, as exemplified by several papers published in this joint virtual special issue, e.g., focusing on the development of murine leukemia virus integrase-derived peptides that interact with the bromodomain 4 (Brd4) and suppress acute myeloid leukemia,43 or describing the characterization of small-molecule inhibitors of lysine-specific histone demethylase 1 (LSD1) in oncology.44 However, epigenetic drugs are increasingly studied in other contexts and developed for treating a range of disorders. Examples published in this collection include the effects of arginine methylation inhibitors on blood platelets,45 a role for histone kinase inhibitors in neurodegenerative diseases,46 and the validation of histone deacetylase 8 (HDAC8) inhibitors for the treatment of acute kidney injury.47 A noteworthy paper focuses on methods for determining cellular target engagement of inhibitors of selected deacetylases.48

Journal of Medicinal Chemistry

The editors of the Journal of Medicinal Chemistry are thrilled to be a part of this joint virtual special issue, highlighting the most recent advances in the field of epigenetics, new ligands, new discovery/assay/DMPK (drug metabolism and pharmacokinetics) paradigms, and key lessons learned in this important field of drug discovery. There are approximately 40 Journal of Medicinal Chemistry papers in this virtual special issue, reflecting the intense medicinal chemistry in epigenetics. What is notable about this collection of papers is the diversity of targets and approaches that are described. It is exciting to see a range of contemporary medicinal chemistry techniques applied to epigenetics targets, including covalent inhibitors,49 fragment-based approaches to ligand development,50 machine learning,51 and DNA-encoded libraries.52

The acetyl-lysine-reading bromodomains continue to be an important target in epigenetics. The maturity of the bromodomain and extraterminal domain (BET) proteins as targets is reflected by the reports of pan-BET ligands developed for clinical studies.53 In addition, there are reports of ligands that are selective for either the first54 or second55 bromodomains of these proteins and their use as tools to selectively probe the function of these bromodomains. The use of a PET radiotracer for imaging has been applied to studying the distribution of BET proteins in mice brains.56 There are also reports of ligand development for non-BET bromodomains including ATAD2,57 BPTF,58 and CREBBP.59 While there has been significant progress in the development of ligands for bromodomains, ligands for methyl-lysine readers have been more challenging, so it is encouraging to see papers focusing on the development of peptidomimetic ligands for the plant homeodomain (PHD) of plant homeodomain finger protein 1 (PHF)60 and for the CBX5 chromodomain.61

The lysine/histone deacetylases (K/HDAC) are an established epigenetic therapeutic target. In this collection there are reports of HDAC inhibitors being investigated for the treatment of T-cell prolymphocytic leukemia62 and the repurposing of human HDAC6 inhibitors to treat multi-drug-resistant malaria-causing parasites.63 There is also a Perspective discussing the potential for using selective HDAC6 inhibitors as a treatment for aspects of cystic fibrosis-associated lung disease.64 The development of dual inhibitors of the BET bromodomains and the HDAC enzymes as drug leads to treat leukemia is also described.65

Methyltransferase enzymes are also an area of significant activity in epigenetic medicinal chemistry. This is exemplified by a Drug Annotation reporting the discovery of development candidate MRTX1719.66 MRTX1719 is a potent binder to the PRMT5·MTA complex that selectively inhibits PRMT5 activity in MTAP-deleted cells over MTAP-wild-type cells. This compound is being investigated as a way of inhibiting this new synthetically lethal drug target for the treatment of MTAP-deleted cancers. There is also a report of an orally bioavailable inhibitor of the WDR5-mixed lineage leukemia (MLL) protein–protein interaction, which prevents MLL histone methylransferase activity.67 There are additional papers reporting inhibitors of PRMT5,68 PRMT4,69 and nicotinamide N-methyltransferase.70 Compounds that bind to the EED subunit of PRC2 and that act as allosteric inhibitors of PRC2 methyltransferase71 activity are disclosed. These compounds are orally bioavailable EED ligands with good solubilities. Lysine-specific demethylase (LSD1) inhibitors72 are also reported, demonstrating that there is also interest in these enzymes.

Taken together, this collection of papers shows the wide range of activities that are underway in the field of epigenetic drug discovery. The reports of orally bioavailable compounds and clinical candidates indicate that epigenetic targets represent a major component of the global medicinal chemistry effort. We are very grateful to our Journal of Medicinal Chemistry Guest Editors, Paola Arimondo, Jian Jin, Cheryl Arrowsmith, and Cheng Luo, who have been invaluable in helping to curate this excellent collection of papers. We hope that you enjoy reading them.

Views expressed in this editorial are those of the authors and not necessarily the views of the ACS.

Special Issue

Published as part of the ACS Pharmacology & Translational Science special issue “Epigenetics 2022”.

References

  1. Wang M. Y.; Liow P.; Guzman M. I. T.; Qi J. Exploring Methods of Targeting Histone Methyltransferases and Their Applications in Cancer Therapeutics. ACS Chem. Biol. 2022, 17 (4), 744–755. 10.1021/acschembio.2c00062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Nickel G. A.; Diehl K. L. Chemical Biology Approaches to Identify and Profile Interactors of Chromatin Modifications. ACS Chem. Biol. 2022, 10.1021/acschembio.1c00794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Musselman C. A.; Kutateladze T. G. Visualizing Conformational Ensembles of the Nucleosome by NMR. ACS Chem. Biol. 2022, 17 (3), 495–502. 10.1021/acschembio.1c00954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Li X.; Liu S.; Li X.; Li X. D. YEATS Domains as Novel Epigenetic Readers: Structures, Functions, and Inhibitor Development. ACS Chem. Biol. 2022, 10.1021/acschembio.1c00945. [DOI] [PubMed] [Google Scholar]
  5. Garzon-Porras A. M.; Chory E.; Gryder B. E. Dynamic Opposition of Histone Modifications. ACS Chem. Biol. 2022, 10.1021/acschembio.1c01000. [DOI] [PubMed] [Google Scholar]
  6. Waybright J. M.; Clinkscales S. E.; Barnash K. D.; Budziszewski G. R.; Rectenwald J. M.; Chiarella A. M.; Norris-Drouin J. L.; Cholensky S. H.; Pearce K. H.; Herring L. E.; McGinty R. K.; Hathaway N. A.; James L. I. A Peptidomimetic Ligand Targeting the Chromodomain of MPP8 Reveals HRP2’s Association with the HUSH Complex. ACS Chem. Biol. 2021, 16 (9), 1721–1736. 10.1021/acschembio.1c00429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guidotti N.; Eordogh A.; Mivelaz M.; Rivera-Fuentes P.; Fierz B. Multivalent Peptide Ligands To Probe the Chromocenter Microenvironment in Living Cells. ACS Chem. Biol. 2022, 10.1021/acschembio.2c00203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ray D. M.; Jennings E. Q.; Maksimovic I.; Chai X.; Galligan J. J.; David Y.; Zheng Q. Chemical Labeling and Enrichment of Histone Glyoxal Adducts. ACS Chem. Biol. 2022, 17 (4), 756–761. 10.1021/acschembio.1c00864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ho Y.-H.; Huang R. Effects of Oncohistone Mutations and PTM Crosstalk on the N-Terminal Acetylation Activities of NatD. ACS Chem. Biol. 2022, 10.1021/acschembio.1c00840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pao P.-C.; Tsai L.-H. Histone Deacetylases 1 and 2 in Memory Function. ACS Chem. Neurosci. 2022, 13 (7), 848–858. 10.1021/acschemneuro.1c00775. [DOI] [PubMed] [Google Scholar]
  11. Robison A. J.; Nestler E. J. ΔFOSB: A Potentially Druggable Master Orchestrator of Activity-Dependent Gene Expression. ACS Chem. Neurosci. 2022, 13 (3), 296–307. 10.1021/acschemneuro.1c00723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zhang X.; Zhang J.; Wang Y.; Wang M.; Tang M.; Lin Y.; Liu Q. Epigenetic Modifications and Neurodegenerative Disorders: A Biochemical Perspective. ACS Chem. Neurosci. 2022, 13 (2), 177–184. 10.1021/acschemneuro.1c00701. [DOI] [PubMed] [Google Scholar]
  13. Ghosh K.; Pan H.-L. Epigenetic Mechanisms of Neural Plasticity in Chronic Neuropathic Pain. ACS Chem. Neurosci. 2022, 13 (4), 432–441. 10.1021/acschemneuro.1c00841. [DOI] [PubMed] [Google Scholar]
  14. Collins J. E.; Lee J. W.; Bohmer M. J.; Welden J. D.; Arshadi A. K.; Du L.; Cichewicz R. H.; Chakrabarti D. Cyclic Tetrapeptide HDAC Inhibitors with Improved Plasmodium falciparum Selectivity and Killing Profile. ACS Infect. Dis. 2021, 7 (10), 2889–2903. 10.1021/acsinfecdis.1c00341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hesping E.; Chua M. J.; Pflieger M.; Qian Y.; Dong L.; Bachu P.; Liu L.; Kurz T.; Fisher G. M.; Skinner-Adams T. S.; Reid R. C.; Fairlie D. P.; Andrews K. T.; Gorse A.-D. J. P. QSAR Classification Models for Prediction of Hydroxamate Histone Deacetylase Inhibitor Activity against Malaria Parasites. ACS Infect. Dis. 2022, 8 (1), 106–117. 10.1021/acsinfecdis.1c00355. [DOI] [PubMed] [Google Scholar]
  16. Chu K.-B.; Lee H.-A.; Pflieger M.; Fischer F.; Asfaha Y.; Alves Avelar L. A.; Skerhut A.; Kassack M. U.; Hansen F. K; Schöler A.; Kurz T.; Kim M.-J.; Moon E.-K.; Quan F.-S. Antiproliferation and Antiencystation Effect of Class II Histone Deacetylase Inhibitors on Acanthamoeba castellanii. ACS Infect. Dis. 2022, 8 (2), 271–279. 10.1021/acsinfecdis.1c00390. [DOI] [PubMed] [Google Scholar]
  17. Di Bello E.; Noce B.; Fioravanti R.; Zwergel C.; Valente S.; Rotili D.; Fianco G.; Trisciuoglio D.; Mourão M. M.; Sales P. Jr.; Lamotte S.; Prina E.; Späth G. F.; Häberli C.; Keiser J.; Mai A. Effects of Structurally Different HDAC Inhibitors against Trypanosoma cruzi, Leishmania, and Schistosoma mansoni. ACS Infect. Dis. 2022, 8 (7), 1356–1366. 10.1021/acsinfecdis.2c00232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tallant C.; Bamborough P.; Chung C.-w.; Gamo F. J.; Kirkpatrick R.; Larminie C.; Martín J.; Prinjha R.; Rioja I.; Simola D. F.; Gabarró R.; Calderón F. Expanding Bromodomain Targeting into Neglected Parasitic Diseases. ACS Infect. Dis. 2021, 7 (11), 2953–2958. 10.1021/acsinfecdis.1c00387. [DOI] [PubMed] [Google Scholar]
  19. Pezza A.; Tavernelli L. E.; Alonso V. L.; Perdomo V.; Gabarro R.; Prinjha R.; Rodriguez Araya E.; Rioja I.; Docampo R.; Calderón F.; Martin J.; Serra E. Essential Bromodomain TcBDF2 as a Drug Target against Chagas Disease. ACS Infect. Dis. 2022, 8 (5), 1062–1074. 10.1021/acsinfecdis.2c00057. [DOI] [PubMed] [Google Scholar]
  20. Laurin C. M. C.; Bluck J. P.; Chan A. K. N.; Keller M.; Boczek A.; Scorah A. R.; See K. F. L.; Jennings L. E.; Hewings D. S.; Woodhouse F.; Reynolds J. K.; Schiedel M.; Humphreys P. G.; Biggin P. C.; Conway S. J. Fragment-Based Identification of Ligands for Bromodomain-Containing Factor 3 of Trypanosoma cruzi. ACS Infect. Dis. 2021, 7 (8), 2238–2249. 10.1021/acsinfecdis.0c00618. [DOI] [PubMed] [Google Scholar]
  21. Prata I. O.; Cubillos E. F. G.; Krüger A.; Barbosa D.; Martins J. Jr.; Setubal J. C.; Wunderlich G. Plasmodium falciparum Acetyl-CoA Synthetase Is Essential for Parasite Intraerythrocytic Development and Chromatin Modification. ACS Infect. Dis. 2021, 7 (12), 3224–3240. 10.1021/acsinfecdis.1c00414. [DOI] [PubMed] [Google Scholar]
  22. Vanheer L. N.; Kafsack B. F. C. Activity Comparison of Epigenetic Modulators against the Hemoprotozoan Parasites Babesia divergens and Plasmodium falciparum. ACS Infect. Dis. 2021, 7 (8), 2277–2284. 10.1021/acsinfecdis.0c00853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lorenzon L.; Quilles J. C. Jr.; Campagnaro G. D.; Azevedo Orsine L.; Almeida L.; Veras F.; Miserani Magalhães R. D.; Alcoforado Diniz J.; Rodrigues Ferreira T.; Kaysel Cruz A. Functional Study of Leishmania braziliensis Protein Arginine Methyltransferases (PRMTs) Reveals That PRMT1 and PRMT5 Are Required for Macrophage Infection. ACS Infect. Dis. 2022, 8 (3), 516–532. 10.1021/acsinfecdis.1c00509. [DOI] [PubMed] [Google Scholar]
  24. Rosenberg A.; Sibley L Epigenetic Modifiers Alter Host Cell Transcription to Promote Toxoplasma Infection. ACS Infect. Dis. 2022, 8 (3), 411–413. 10.1021/acsinfecdis.2c00054. [DOI] [PubMed] [Google Scholar]
  25. Alford J. S.; Lampe J. W.; Brach D.; Chesworth R.; Cosmopoulos K.; Duncan K. W.; Eckley S. T.; Kutok J. L.; Raimondi A.; Riera T. V.; Shook B.; Tang C.; Totman J.; Farrow N. A. Conformational-Design-Driven Discovery of EZM0414: A Selective, Potent SETD2 Inhibitor for Clinical Studies. ACS Med. Chem. Lett. 2022, 13 (7), 1137–1143. 10.1021/acsmedchemlett.2c00167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Liang R.; Tomita D.; Sasaki Y.; Ginn J.; Michino M.; Huggins D. J.; Baxt L.; Kargman S.; Shahid M.; Aso K.; Duggan M.; Stamford A. W.; DeStanchina E.; Liverton N.; Meinke P. T.; Foley M. A.; Phillips R. E. A Chemical Strategy toward Novel Brain-Penetrant EZH2 Inhibitors. ACS Med. Chem. Lett. 2022, 13 (3), 377–387. 10.1021/acsmedchemlett.1c00448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dev A.; Sardoiwala M. N.; Sharma A.; MohanBhai S. J.; Karmakar S.; Choudhury S. R. Nanoacetylated N-(4-Hydroxyphenyl) Retinamide Modulates Histone Acetylation-Methylation Epigenetic Disparity to Restrict Epithelial-Mesenchymal Transition in Neuroblastoma. ACS Med. Chem. Lett. 2022, 13 (7), 1109–1117. 10.1021/acsmedchemlett.2c00135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Niwa H.; Watanabe C.; Sato S.; Harada T.; Watanabe H.; Tabusa R.; Fukasawa S.; Shiobara A.; Hashimoto T.; Ohno O.; Nakamura K.; Tsuganezawa K.; Tanaka A.; Shirouzu M.; Honma T.; Matsuno K.; Umehara T. Structure-activity relationship and in silico evaluation of cis- and trans-PCPA-derived inhibitors of LSD1 and LSD2. ACS Med. Chem. Lett. 2022, 10.1021/acsmedchemlett.2c00294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Koda Y.; Sato S.; Yamamoto H.; Niwa H.; Watanabe H.; Watanabe C.; Sato T.; Nakamura K.; Tanaka A.; Shirouzu M.; Honma T.; Fukami T.; Koyama H.; Umehara T. Design and Synthesis of Tranylcypromine-Derived LSD1 Inhibitors with Improved hERG and Microsomal Stability Profiles. ACS Med. Chem. Lett. 2022, 13 (5), 848–854. 10.1021/acsmedchemlett.2c00120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kalmode H. P.; Podsiadly I.; Kabra A.; Boulton A.; Reddy P.; Gao Y.; Li C.; Bushweller J. H. Small-Molecule Inhibitors of the MLL1 CXXC Domain, an Epigenetic Reader of DNA Methylation. ACS Med. Chem. Lett. 2022, 13 (8), 1363–1369. 10.1021/acsmedchemlett.2c00198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moreno-Yruela C.; Olsen C. A. Determination of Slow-Binding HDAC Inhibitor Potency and Subclass Selectivity. ACS Med. Chem. Lett. 2022, 13 (5), 779–785. 10.1021/acsmedchemlett.1c00702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sabnis R. W. Novel Bromodomain BRD4 Inhibitors for Treating Cancer. ACS Med. Chem. Lett. 2021, 12 (6), 951–952. 10.1021/acsmedchemlett.1c00281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sabnis R. W. Fluoronicotinamide Derivatives as HDAC6 Inhibitors for Treating Heart Diseases. ACS Med. Chem. Lett. 2021, 12 (6), 953–954. 10.1021/acsmedchemlett.1c00282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sabnis R. W. Novel Histone Deacetylase Inhibitors for Treating HIV Infection. ACS Med. Chem. Lett. 2021, 12 (8), 1196–1197. 10.1021/acsmedchemlett.1c00336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sabnis R. W. Novel Histone Acetyltransferase (HAT) Inhibitors for Treating Diseases. ACS Med. Chem. Lett. 2021, 12 (8), 1198–1199. 10.1021/acsmedchemlett.1c00337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sabnis R. W. Novel Bromodomain Inhibitors for Treating Cancer, Fibrosis, and Inflammatory Disorders. ACS Med. Chem. Lett. 2021, 12 (8), 1200–1201. 10.1021/acsmedchemlett.1c00338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sabnis R. W. Novel Histone Deacetylase 6 Inhibitors for Treating Alzheimer’s Disease and Cancer. ACS Med. Chem. Lett. 2021, 12 (8), 1202–1203. 10.1021/acsmedchemlett.1c00339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sabnis R. W. Substituted 2,3-Benzodiazepines Derivatives as Bromodomain BRD4 Inhibitors. ACS Med. Chem. Lett. 2021, 12 (10), 1530–1531. 10.1021/acsmedchemlett.1c00487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sabnis R. W. Novel HDAC1 and HDAC2 Inhibitors for Treating Disease . ACS Med. Chem. Lett. 2021, 12 (10), 1532–1533. 10.1021/acsmedchemlett.1c00488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sabnis R. W. Novel PRMT5 Inhibitors for Treating Cancer. ACS Med. Chem. Lett. 2021, 12 (10), 1537–1538. 10.1021/acsmedchemlett.1c00512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sabnis R. W. BRD9 Bifunctional Degraders for Treating Cancer. ACS Med. Chem. Lett. 2021, 12 (12), 1879–1880. 10.1021/acsmedchemlett.1c00580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sabnis R. W. Tricyclic Carboxamide Derivatives as PRMT5 Inhibitors for Treating Cancer. ACS Med. Chem. Lett. 2022, 13 (8), 1204–1205. 10.1021/acsmedchemlett.2c00292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Xing E.; Surendranathan N.; Kong X.; Cyberski N.; Garcia J. D.; Cheng X.; Sharma A.; Li P.-K.; Larue R. C. Development of Murine Leukemia Virus Integrase-Derived Peptides That Bind Brd4 Extra-Terminal Domain as Candidates for Suppression of Acute Myeloid Leukemia. ACS Pharmacol. Transl. Sci. 2021, 4 (5), 1628–1638. 10.1021/acsptsci.1c00159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sacilotto N.; Dessanti P.; Lufino M. M. P.; Ortega A.; Rodríguez-Gimeno A.; Salas J.; Maes T.; Buesa C.; Mascaró C.; Soliva R. Comprehensive in Vitro Characterization of the LSD1 Small Molecule Inhibitor Class in Oncology. ACS Pharmacol. Transl. Sci. 2021, 4 (6), 1818–1834. 10.1021/acsptsci.1c00223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Marsden A. J.; Riley D. R. J.; Barry A.; Khalil J. S.; Guinn B.-a.; Kemp N. T.; Rivero F.; Beltran-Alvarez P. Inhibition of Arginine Methylation Impairs Platelet Function. ACS Pharmacol. Transl. Sci. 2021, 4 (5), 1567–1577. 10.1021/acsptsci.1c00135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Cobos S. N.; Torrente M. P. Epidrugs in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia: Contextualizing a Role for Histone Kinase Inhibition in Neurodegenerative Disease. ACS Pharmacol. Transl. Sci. 2022, 5 (2), 134–137. 10.1021/acsptsci.1c00265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Long K.; Vaughn Z.; McDaniels M. D.; Joyasawal S.; Przepiorski A.; Parasky E.; Sander V.; Close D.; Johnston P. A.; Davidson A. J.; de Caestecker M.; Hukriede N. A.; Huryn D. M. Validation of HDAC8 Inhibitors as Drug Discovery Starting Points to Treat Acute Kidney Injury. ACS Pharmacol. Transl. Sci. 2022, 5 (4), 207–215. 10.1021/acsptsci.1c00243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vogelmann A.; Jung M.; Hansen F. K.; Schiedel M. Comparison of Cellular Target Engagement Methods for the Tubulin Deacetylases Sirt2 and HDAC6: NanoBRET, CETSA, Tubulin Acetylation, and PROTACs. ACS Pharmacol. Transl. Sci. 2022, 5 (2), 138–140. 10.1021/acsptsci.2c00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zhang Y.; Rong D.; Li B.; Wang Y. Targeting Epigenetic Regulators with Covalent Small-Molecule Inhibitors. J. Med. Chem. 2021, 64 (12), 7900–7925. 10.1021/acs.jmedchem.0c02055. [DOI] [PubMed] [Google Scholar]
  50. a Seal J. T.; Atkinson S. J.; Bamborough P.; Bassil A.; Chung C.-w.; Foley J.; Gordon L.; Grandi P.; Gray J. R. J.; Harrison L. A.; Kruger R. G.; Matteo J. J.; McCabe M. T.; Messenger C.; Mitchell D.; Phillipou A.; Preston A.; Prinjha R. K.; Rianjongdee F.; Rioja I.; Taylor S.; Wall I. D.; Watson R. J.; Woolven J. M.; Wyce A.; Zhang X.-P.; Demont E. H. Fragment-based Scaffold Hopping: Identification of Potent, Selective, and Highly Soluble Bromo and Extra Terminal Domain (BET) Second Bromodomain (BD2) Inhibitors. J. Med. Chem. 2021, 64 (15), 10772–10805. 10.1021/acs.jmedchem.1c00365. [DOI] [PubMed] [Google Scholar]; b Vaidergorn M. M.; da Silva Emery F.; Ganesan A. From Hit Seeking to Magic Bullets: The Successful Union of Epigenetic and Fragment Based Drug Discovery (EPIDD + FBDD). J. Med. Chem. 2021, 64 (19), 13980–14010. 10.1021/acs.jmedchem.1c00787. [DOI] [PubMed] [Google Scholar]; c Prakash M.; Itoh Y.; Fujiwara Y.; Takahashi Y.; Takada Y.; Mellini P.; Elboray E. E.; Terao M.; Yamashita Y.; Yamamoto C.; Yamaguchi T.; Kotoku M.; Kitao Y.; Singh R.; Roy R.; Obika S.; Oba M.; Wang D. O.; Suzuki T. Identification of Potent and Selective Inhibitors of Fat Mass Obesity-Associated Protein Using a Fragment-Merging Approach. J. Med. Chem. 2021, 64 (21), 15810–15824. 10.1021/acs.jmedchem.1c01107. [DOI] [PubMed] [Google Scholar]
  51. Sánchez-Cruz N.; Medina-Franco J. L. Epigenetic Target Fishing with Accurate Machine Learning Models. J. Med. Chem. 2021, 64 (12), 8208–8220. 10.1021/acs.jmedchem.1c00020. [DOI] [PubMed] [Google Scholar]
  52. Rianjongdee F.; Atkinson S. J.; Chung C.-w.; Grandi P.; Gray J. R. J.; Kaushansky L. J.; Medeiros P.; Messenger C.; Phillipou A.; Preston A.; Prinjha R. K.; Rioja I.; Satz A. L.; Taylor S.; Wall I. D.; Watson R. J.; Yao G.; Demont E. H. Discovery of a Highly Selective BET BD2 Inhibitor from a DNA-Encoded Library Technology Screening Hit. J. Med. Chem. 2021, 64 (15), 10806–10833. 10.1021/acs.jmedchem.1c00412. [DOI] [PubMed] [Google Scholar]
  53. a Jones K. L.; Beaumont D. M.; Bernard S. G.; Bit R. A.; Campbell S. P.; Chung C.-w.; Cutler L.; Demont E. H.; Dennis K.; Gordon L.; Gray J. R.; Haase M. V.; Lewis A. J.; McCleary S.; Mitchell D. J.; Moore S. M.; Parr N.; Robb O. J.; Smithers N.; Soden P. E.; Suckling C. J.; Taylor S.; Walker A. L.; Watson R. J.; Prinjha R. K. Discovery of a Novel Bromodomain and Extra Terminal Domain (BET) Protein Inhibitor, I-BET282E, Suitable for Clinical Progression. J. Med. Chem. 2021, 64 (16), 12200–12227. 10.1021/acs.jmedchem.1c00855. [DOI] [PubMed] [Google Scholar]; b Humphreys P. G.; Atkinson S. J.; Bamborough P.; Bit R. A.; Chung C.-w.; Craggs P. D.; Cutler L.; Davis R.; Ferrie A.; Gong G.; Gordon L. J.; Gray M.; Harrison L. A.; Hayhow T. G.; Haynes A.; Henley N.; Hirst D. J.; Holyer I. D.; Lindon M. J.; Lovatt C.; Lugo D.; McCleary S.; Molnar J.; Osmani Q.; Patten C.; Preston A.; Rioja I.; Seal J. T.; Smithers N.; Sun F.; Tang D.; Taylor S.; Theodoulou N. H.; Thomas C.; Watson R. J.; Wellaway C. R.; Zhu L.; Tomkinson N. C. O.; Prinjha R. K. Design, Synthesis, and Characterization of I-BET567, a Pan-Bromodomain and Extra Terminal (BET) Bromodomain Oral Candidate. J. Med. Chem. 2022, 65 (3), 2262–2287. 10.1021/acs.jmedchem.1c01747. [DOI] [PubMed] [Google Scholar]
  54. Cui H.; Divakaran A.; Hoell Z. J.; Ellingson M. O.; Scholtz C. R.; Zahid H.; Johnson J. A.; Griffith E. C.; Gee C. T.; Lee A. L.; Khanal S.; Shi K.; Aihara H.; Shah V. H.; Lee R. E.; Harki D. A.; Pomerantz W. C. K. A Structure-based Design Approach for Generating High Affinity BRD4 D1-Selective Chemical Probes. J. Med. Chem. 2022, 65 (3), 2342–2360. 10.1021/acs.jmedchem.1c01779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Seal J. T.; Atkinson S. J.; Bamborough P.; Bassil A.; Chung C.-w.; Foley J.; Gordon L.; Grandi P.; Gray J. R. J.; Harrison L. A.; Kruger R. G.; Matteo J. J.; McCabe M. T.; Messenger C.; Mitchell D.; Phillipou A.; Preston A.; Prinjha R. K.; Rianjongdee F.; Rioja I.; Taylor S.; Wall I. D.; Watson R. J.; Woolven J. M.; Wyce A.; Zhang X.-P.; Demont E. H. Fragment-based Scaffold Hopping: Identification of Potent, Selective, and Highly Soluble Bromo and Extra Terminal Domain (BET) Second Bromodomain (BD2) Inhibitors. J. Med. Chem. 2021, 64 (15), 10772–10805. 10.1021/acs.jmedchem.1c00365. [DOI] [PubMed] [Google Scholar]
  56. Bai P.; Lan Y.; Patnaik D.; Wang H.; Liu Y.; Chen Z.; Yuan G.; Afshar S.; Striar R.; Zagaroli J. S.; Tocci D. R.; Langan A. G.; Haggarty S. J.; Wang C. Design, Synthesis, and Evaluation of Thienodiazepine Derivatives as Positron Emission Tomography Imaging Probes for Bromodomain and Extra-Terminal Domain Family Proteins. J. Med. Chem. 2021, 64 (19), 14745–14756. 10.1021/acs.jmedchem.1c01323. [DOI] [PubMed] [Google Scholar]
  57. Winter-Holt J. J.; Bardelle C.; Chiarparin E.; Dale I. L.; Davey P. R. J.; Davies N. L.; Denz C.; Fillery S. M.; Guérot C. M.; Han F.; Hughes S. J.; Kulkarni M.; Liu Z.; Milbradt A.; Moss T. A.; Niu H.; Patel J.; Rabow A. A.; Schimpl M.; Shi J.; Sun D.; Yang D.; Guichard S. Discovery of a Potent and Selective ATAD2 Bromodomain Inhibitor with Antiproliferative Activity in Breast Cancer Models. J. Med. Chem. 2022, 65 (4), 3306–3331. 10.1021/acs.jmedchem.1c01871. [DOI] [PubMed] [Google Scholar]
  58. a Lu T.; Lu H.; Duan Z.; Wang J.; Han J.; Xiao S.; Chen H.; Jiang H.; Chen Y.; Yang F.; Li Q.; Chen D.; Lin J.; Li B.; Jiang H.; Chen K.; Lu W.; Lin H.; Luo C. Discovery of High-Affinity Inhibitors of the BPTF Bromodomai. J. Med. Chem. 2021, 64 (16), 12075–12088. 10.1021/acs.jmedchem.1c00721. [DOI] [PubMed] [Google Scholar]; b Zahid H.; Buchholz C. R.; Singh M.; Ciccone M. F.; Chan A.; Nithianantham S.; Shi K.; Aihara H.; Fischer M.; Schönbrunn E.; dos Santos C. O.; Landry J. W.; Pomerantz W. C. K. New Design Rules for Developing Potent Cell-Active Inhibitors of the Nucleosome Remodeling Factor (NURF) via BPTF Bromodomain Inhibition. J. Med. Chem. 2021, 64 (18), 13902–13917. 10.1021/acs.jmedchem.1c01294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. a Brand M.; Clayton J.; Moroglu M.; Schiedel M.; Picaud S.; Bluck J. P.; Skwarska A.; Bolland H.; Chan A. K. N.; Laurin C. M. C.; Scorah A. R.; See L.; Rooney T. P. C.; Andrews K. H.; Fedorov O.; Perell G.; Kalra P.; Vinh K. B.; Cortopassi W. A.; Heitel P.; Christensen K. E.; Cooper R. I.; Paton R. S.; Pomerantz W. C. K.; Biggin P. C.; Hammond E. M.; Filippakopoulos P.; Conway S. J. Controlling Intramolecular Interactions in the Design of Selective, High-Affinity Ligands for the CREBBP Bromodomain. J. Med. Chem. 2021, 64 (14), 10102–10123. 10.1021/acs.jmedchem.1c00348. [DOI] [PMC free article] [PubMed] [Google Scholar]; b Xiang Q.; Wang C.; Wu T.; Zhang C.; Hu Q.; Luo G.; Hu J.; Zhuang X.; Zou L.; Shen H.; Wu X.; Zhang Y.; Kong X.; Liu J.; Xu Y. Design, Synthesis, and Biological Evaluation of 1-(Indolizin-3-yl)ethan-1-ones as CBP Bromodomain Inhibitors for the Treatment of Prostate Cancer. J. Med. Chem. 2022, 65 (1), 785–810. 10.1021/acs.jmedchem.1c01864. [DOI] [PubMed] [Google Scholar]
  60. Engelberg I. A.; Liu J.; Norris-Drouin J. L.; Cholensky S. H.; Ottavi S. A.; Frye S. V.; Kutateladze T. G.; James L. I. Discovery of an H3K36me3-Derived Peptidomimetic Ligand with Enhanced Affinity for Plant Homeodomain Finger Protein 1 (PHF1). J. Med. Chem. 2021, 64 (12), 8510–8522. 10.1021/acs.jmedchem.1c00430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Kean K. M.; Baril S. A.; Lamb K. N.; Dishman S. N.; Treacy J. W.; Houk K. N.; Brustad E. M.; James L. I.; Waters M. L. Systematic Variation of Both the Aromatic Cage and Dialkyllysine via GCE-SAR Reveal Mechanistic Insights in CBX5 Reader Protein Binding. J. Med. Chem. 2022, 65 (3), 2646–2655. 10.1021/acs.jmedchem.1c02049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Toutah K.; Nawar N.; Timonen S.; Sorger H.; Raouf Y. S.; Bukhari S.; von Jan J.; Ianevski A.; Gawel J. M.; Olaoye O. O.; Geletu M.; Abdeldayem A.; Israelian J.; Radu T. B.; Sedighi A.; Bhatti M. N.; Hassan M. M.; Manaswiyoungkul P.; Shouksmith A. E.; Neubauer H. A.; de Araujo E. D.; Aittokallio T.; Kramer O. H.; Moriggl R.; Mustjoki S.; Herling M.; Gunning P. T. Development of HDAC Inhibitors Exhibiting Therapeutic Potential in T-Cell Prolymphocytic Leukemia. J. Med. Chem. 2021, 64 (12), 8486–8509. 10.1021/acs.jmedchem.1c00420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Nardella F.; Halby L.; Dobrescu I.; Viluma J.; Bon C.; Claes A.; Cadet-Daniel V.; Tafit A.; Roesch C.; Hammam E.; Erdmann D.; Mairet-Khedim M.; Peronet R.; Mecheri S.; Witkowski B.; Scherf A.; Arimondo P. B. Procainamide-SAHA Fused Inhibitors of hHDAC6 Tackle Multidrug-Resistant Malaria Parasites. J. Med. Chem. 2021, 64 (14), 10403–10417. 10.1021/acs.jmedchem.1c00821. [DOI] [PubMed] [Google Scholar]
  64. Barone S.; Cassese E.; Alfano A. I.; Brindisi M.; Summa V. Chasing a Breath of Fresh Air in Cystic Fibrosis (CF): Therapeutic Potential of Selective HDAC6 Inhibitors to Tackle Multiple Pathways in CF Pathophysiology. J. Med. Chem. 2022, 65 (4), 3080–3097. 10.1021/acs.jmedchem.1c02067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Schäker-Hübner L.; Warstat R.; Ahlert H.; Mishra P.; Kraft F. B.; Schliehe-Diecks J.; Schöler A.; Borkhardt A.; Breit B.; Bhatia S.; Hügle M.; Günther S.; Hansen F. K. 4-Acyl Pyrrole Capped HDAC Inhibitors: A New Scaffold for Hybrid Inhibitors of BET Proteins and Histone Deacetylases as Antileukemia Drug Leads. J. Med. Chem. 2021, 64 (19), 14620–14646. 10.1021/acs.jmedchem.1c01119. [DOI] [PubMed] [Google Scholar]
  66. Smith C. R.; Aranda R.; Bobinski T. P.; Briere D. M.; Burns A. C.; Christensen J. G.; Clarine J.; Engstrom L. D.; Gunn R. J.; Ivetac A.; Jean-Baptiste R.; Ketcham J. M.; Kobayashi M.; Kuehler J.; Kulyk S.; Lawson J. D.; Moya K.; Olson P.; Rahbaek L.; Thomas N. C.; Wang X.; Waters L. M.; Marx M. A. Fragment-Based Discovery of MRTX1719, a Synthetic Lethal Inhibitor of the PRMT5·MTA Complex for the Treatment of MTAP-Deleted Cancers. J. Med. Chem. 2022, 65 (3), 1749–1766. 10.1021/acs.jmedchem.1c01900. [DOI] [PubMed] [Google Scholar]
  67. Chen W.; Chen X.; Li D.; Zhou J.; Jiang Z.; You Q.; Guo X. Discovery of DDO-2213 as a Potent and Orally Bioavailable Inhibitor of the WDR5-Mixed Lineage Leukemia 1 Protein-Protein Interaction for the Treatment of MLL Fusion Leukemia. J. Med. Chem. 2021, 64 (12), 8221–8245. 10.1021/acs.jmedchem.1c00091. [DOI] [PubMed] [Google Scholar]
  68. McKinney D. C.; McMillan B. J.; Ranaghan M. J.; Moroco J. A.; Brousseau M.; Mullin-Bernstein Z.; O’Keefe M.; McCarren P.; Mesleh M. F.; Mulvaney K. M.; Robinson F.; Singh R.; Bajrami B.; Wagner F. F.; Hilgraf R.; Drysdale M. J.; Campbell A. J.; Skepner A.; Timm D. E.; Porter D.; Kaushik V. K.; Sellers W. R.; Ianari A. Discovery of a First-in-Class Inhibitor of the PRMT5-Substrate Adaptor Interaction. J. Med. Chem. 2021, 64 (15), 11148–11168. 10.1021/acs.jmedchem.1c00507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Iannelli G.; Milite C.; Marechal N.; Cura V.; Bonnefond L.; Troffer-Charlier N.; Feoli A.; Rescigno D.; Wang Y.; Cipriano A.; Viviano M.; Bedford M. T.; Cavarelli J.; Castellano S.; Sbardella G. Turning Nonselective Inhibitors of Type I Protein Arginine Methyltransferases into Potent and Selective Inhibitors of Protein Arginine Methyltransferase 4 through a Deconstruction-Reconstruction and Fragment-Growing Approach. J. Med. Chem. 2022, 10.1021/acs.jmedchem.2c00252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Gao Y.; van Haren M. J.; Buijs N.; Innocenti P.; Zhang Y.; Sartini D.; Campagna R.; Emanuelli M.; Parsons R. B.; Jespers W.; Gutiérrez-de-Terán H.; van Westen G. J. P.; Martin N. I. Potent Inhibition of Nicotinamide N-Methyltransferase by Alkene-Linked Bisubstrate Mimics Bearing Electron Deficient Aromatics. J. Med. Chem. 2021, 64 (17), 12938–12963. 10.1021/acs.jmedchem.1c01094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Bagal S. K.; Gregson C.; O’Donovan D. H.; Pike K. G.; Bloecher A.; Barton P.; Borodovsky A.; Code E.; Fillery S. M.; Hsu J. H.-R.; Kawatkar S. P.; Li C.; Longmire D.; Nai Y.; Nash S. C.; Pike A.; Robinson J.; Read J. A.; Rawlins P. B.; Shen M.; Tang J.; Wang P.; Woods H.; Williamson B. Diverse, Potent, and Efficacious Inhibitors That Target the EED Subunit of the Polycomb Repressive Complex 2 Methyltransferase. J. Med. Chem. 2021, 64 (23), 17146–17183. 10.1021/acs.jmedchem.1c01161. [DOI] [PubMed] [Google Scholar]
  72. Li C.; Su M.; Zhu W.; Kan W.; Ge T.; Xu G.; Wang S.; Sheng L.; Gao F.; Ye Y.; Wang J.; Zhou Y.; Li J.; Liu H. Structure-Activity Relationship Study of Indolin-5-yl-cyclopropanamine Derivatives as Selective Lysine Specific Demethylase 1 (LSD1) Inhibitors. J. Med. Chem. 2022, 65 (5), 4335–4349. 10.1021/acs.jmedchem.1c02156. [DOI] [PubMed] [Google Scholar]

Articles from ACS Pharmacology & Translational Science are provided here courtesy of American Chemical Society

RESOURCES