Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2022 Sep 6:2022.09.05.506686. [Version 1] doi: 10.1101/2022.09.05.506686

Controllable self-replicating RNA vaccine delivered intradermally elicits predominantly cellular immunity

Tomokazu Amano, Hong Yu, Misa Amano, Erica Leyder, Maria Badiola, Priyanka Ray, Jiyoung Kim, Akihiro C Ko, Achouak Achour, Nan-ping Weng, Efrat Kochba, Yotam Levin, Minoru SH Ko
PMCID: PMC9580376  PMID: 36263074

Summary

Intradermal delivery of self-replicating RNA (srRNA) is a promising vaccine platform. Considering that human skin temperature is around 33°C, lower than core body temperature of 37°C, we have developed an srRNA that functions optimally at skin temperature and is inactivated at or above 37°C as a safety switch. This temperature- c ontrollable srRNA (c-srRNA), when tested as an intradermal vaccine against SARS-CoV-2, functions when injected naked without lipid nanoparticles. Unlike most currently available vaccines, c-srRNA vaccines predominantly elicit cellular immunity with little or no antibody production. Interestingly, c-srRNA-vaccinated mice produced antigen-specific antibodies upon subsequent stimulation with antigen protein. Antigen-specific antibodies were also produced when B-cell stimulation using antigen protein was followed by c-srRNA booster vaccination. Using c-srRNA, we have designed a pan-coronavirus booster vaccine that incorporates both spike receptor binding domains as viral surface proteins and evolutionarily conserved nucleoproteins as viral non-surface proteins, from both SARS-CoV-2 and MERS-CoV. It can thereby potentially immunize against SARS-CoV-2, SARS-CoV, MERS-CoV, and their variants. c-srRNA may provide a route to activate cellular immunity against a wide variety of pathogens.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES