Skip to main content
BioMed Research International logoLink to BioMed Research International
. 2022 Oct 13;2022:5886687. doi: 10.1155/2022/5886687

Computational Clues of Immunogenic Hotspots in Plasmodium falciparum Erythrocytic Stage Vaccine Candidate Antigens: In Silico Approach

Mojtaba Azimi-Resketi 1, Saeed Heydaryan 2, Niloufar Kumar 3, Azin Takalou 3, Reza Esmaeelzadeh Dizaji 4, Bahman Noroozi Gorgani 5, Morteza Shams 6,
PMCID: PMC9584662  PMID: 36277884

Abstract

Malaria is the most pernicious parasitic infection, and Plasmodium falciparum is the most virulent species with substantial morbidity and mortality worldwide. The present in silico investigation was performed to reveal the biophysical characteristics and immunogenic epitopes of the 14 blood-stage proteins of the P. falciparum using comprehensive immunoinformatics approaches. For this aim, various web servers were employed to predict subcellular localization, antigenicity, allergenicity, solubility, physicochemical properties, posttranslational modification sites (PTMs), the presence of signal peptide, and transmembrane domains. Moreover, structural analysis for secondary and 3D model predictions were performed for all and stable proteins, respectively. Finally, human helper T lymphocyte (HTL) epitopes were predicted using HLA reference set of IEDB server and screened in terms of antigenicity, allergenicity, and IFN-γ induction as well as population coverage. Also, a multiserver B-cell epitope prediction was done with subsequent screening for antigenicity, allergenicity, and solubility. Altogether, these proteins showed appropriate antigenicity, abundant PTMs, and many B-cell and HTL epitopes, which could be directed for future vaccination studies in the context of multiepitope vaccine design.

1. Introduction

Human malaria disease has been a lethal parasitic infection during centuries and continues as one of the most prevalent infectious diseases with almost 228 million cases and 405000 deaths globally, according to the World Health Organization (WHO) [1, 2]. Five Plasmodium species, transmitted via bites of female Anopheles mosquitoes, are responsible for malaria outbreaks across the world, comprising the deadliest Plasmodium falciparum (P. falciparum, Pf), followed by P. vivax, P. ovale, P. malariae, and P. knowelsi [3]. Reportedly, Pf has been documented as the causative agent of 99.7% and 62.8% of human cases in tropical Africa and Southeast Asia, respectively [4, 5]. About 10-15 days postinoculation, symptoms of a mild illness would emerge, primarily manifested by head and body aches, chill, nausea, vomiting, and fever, whereas severe malaria cases suffer from multiorgan involvement in adults as well as respiratory distress and anemia in children [6].

There are multiple therapeutic agents with varying degrees of efficacy used to combat malaria; for instance, artemisinin-based combination therapies (ACTs), including artemisinin derivative plus antimalarial drugs such as mefloquine or lumefantrine, as well as durable injection of artesunate are administered to control uncomplicated and complicated malaria, respectively [79]. In addition to the drug resistance against most administered therapeutics, based on WHO reports, cross-resistance is a more complicated issue, which may be observed in case of those drugs with similar action mode or of the same chemical family [10]. Hence, a successful malaria elimination program requires the implementation of prophylactic along with therapeutic approaches. Thus far, there is no licensed human malaria vaccine, while such an advantageous vaccine has been targeted by WHO to be available by 2030s [11]. Currently, RTS, S/AS01 based on segments of the circumsporozoite (CSP) protein of the African strain 3D7, is a well-known vaccine candidate which passed phase III trials in African countries [12].

The vaccine production strategies against malaria parasites is commonly based on their complicated life cycle, being sorted into three categories: (i) preerythrocytic vaccines which target sporozoites entering liver cells [13]; (ii) erythrocytic vaccines, targeting asexual stages within red blood cells (RBCs) [14]; and (iii) transmission-blocking vaccines, targeting sexual stages in the mosquito gut [15]. Because blood-stage infection is responsible for major malaria-induced pathology and clinical disease, there exist a robust rationale for the development of erythrocytic stage vaccines [16]. At this stage, merozoites successively invade and replicate within erythrocytes and cause cell burst ([17]); hence, they are easily exposed to the host's humoral immune responses, which in turn facilitate the control of parasitemia or even a partial protection [18, 19]. On this basis, blood-stage antigens are of utmost interest in seeking an appropriate vaccine candidate and have been shown to be protective, to some extent, in laboratory animal models [2023] and in humans [24]. Also, simultaneous targeting of an array of antigens would demonstrate a more potent inhibitory effects on Pf [25, 26]. Based on previous studies, several blood-stage vaccine candidate antigens have been discovered in P. falciparum, including apical membrane antigen 1 (AMA1); rhoptry neck 2 (Ron2); erythrocyte-binding antigen 175 (Eba175); reticulocyte-binding protein homolog 5 (PfRh5); merozoite Rh5 interacting protein; cysteine-rich protective antigen (CyRPA); merozoite surface proteins (MSP) 1, 3, 4, and 6; the rhoptry-associated, leucine zipper-like protein 1 (Ralp1); ring-infected erythrocyte surface antigen (RESA); and serine repeat antigens (Sera) 5 and 8 [27].

Advances in the vaccinology studies during last decades have promoted our knowledge on the novel vaccine development methods [28]. Subunit-based vaccines are safe and efficient procedures in vaccine researches, based on the selection and incorporation of different epitope and/or antigens [29]. In this sense, unprecedented computational tools facilitate the identification and screening of potent vaccine candidates and/or their immunogenic epitopes within a given organism. Such approaches can target specific immune responses in a time- and cost-effective manner [30]. The present study aimed at the prediction of some basic features (antigenicity, allergenicity, physicochemical properties, posttranslational modification (PTM) sites, signal peptide, transmembrane domains, subcellular localization, and structural analysis) and structural analysis of the aforementioned 14 erythrocytic stage Pf antigens along with the prediction of the potent B-cell and helper T lymphocyte (HTL) epitopes through comprehensive immunoinformatics approaches.

2. Methods

2.1. Retrieval of Amino Acid Sequences of 14 Blood-Stage Proteins of Pf

Amino acid sequences of the selected blood-stage antigens of Pf were retrieved through the freely accessible UniProt Knowledgebase (UniProt KB) (https://www.uniprot.org/) [31], as follows: AMA1 (P22621), CyRPA (Q8IFM8), Eba175 (P19214), MSP1 (P04933), MSP3 (A0A7D5SLD3), MSP4 (O76244), MSP6 (C6ZGD4), Ralp1 (A0A193PDF2), RESA (P13830), Rh5 (Q8IFM5), Ripr (O97302), Ron2 (B9A598), Sera5 (Q9TY95), and Sera8 (A0A0E3VL24).

2.2. Prediction of Basic Biochemical Characteristics of Erythrocytic Stage Antigens

Some of the fundamental biochemical properties of the selected proteins were predicted using different web servers. For antigenicity, VaxiJen v2.0 (threshold: 0.45) possesses 78.0% prediction accuracy, based on physicochemical features of a protein (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) [32]. Also, ANTIGENpro, available at http://scratch.proteomics.ics.uci.edu/, is an alignment- and pathogen-free predictor of antigenicity using microarray data. Another important aspect of a vaccine candidate is lack of allergenicity, which was predicted using two web servers [33]. AllergenFP v1.0, available at https://ddg-pharmfac.net/AllergenFP/method.html, differentiates allergens from nonallergens with a descriptor fingerprint approach [34], whereas AllerTOP v2.0, available at https://www.ddg-pharmfac.net/AllerTOP/method.html, performs mostly through k-nearest neighbors (k NN) [35]. The solubility of each protein was predicted using Protein-Sol server (https://protein-sol.manchester.ac.uk/), based on available data for Escherichia coli protein solubility in a cell-free expression system [36].

Preliminary physicochemical properties of the erythrocytic stage proteins were predicted using ProtParam server, available at https://web.expasy.org/protparam/, which estimates the molecular weight (MW), positively and negatively charged residues, isoelectric point (pI), in vitro and in vivo estimated half-life, instability index, aliphatic index, and grand average of hydropathicity (GRAVY) [37]. Moreover, three online bioinformatics tools from DTU Health Tech Services server (Denmark), available at https://services.healthtech.dtu.dk/, including SignalP-6.0 [38], Deep TMHMM [39], and DeepLoc-2.0 [40] were used to characterize the putative signal peptide, transmembrane domain, and subcellular localization for each protein.

2.3. Prediction of Major Posttranslational Modification (PTM) Sites

A number of PTM sites were predicted for P. falciparum blood-stage proteins, including phosphorylation, palmitoylation, lysine acetylation, O-glycosylation, and N-glycosylation. For this purpose, online tools of the DTU Health Tech Services (Denmark) including NetPhos 3.1, NetOGlyc 4.0, and NetNGlyc 1.0 (https://services.healthtech.dtu.dk/) as well as tools of the Cuckoo workgroup (http://biocuckoo.org/) such as CSS-Palm and GPS-Pail 2.0 were employed. “All Asn residues” option was used for NetNGlyc 1.0 prediction, while default parameters were applied to NetOGlyc 4.0 server.

2.4. Secondary and Three-Dimensional (3D) Model Prediction

To predict the secondary structures of each examined protein of Pf, amino acid sequences were submitted to the GOR IV web server, available at https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html. This server predicts three main secondary structures, including alpha helix, extended strands, and random coils, within a given sequence [41]. In the following, the fully automated protein homology modeling server, SWISS-MODEL, was used to predict the 3D structure of stable proteins [42], including AMA1, CyRPA, MSP1, Rh5, and Sera5.

2.5. Prediction of Continuous and Conformational B-Cell Epitopes

A multistep approach was employed regarding prediction of 14-mer linear B-cell epitopes; hence, three web servers, ABCpred (http://crdd.osdd.net/raghava/abcpred/) with 0.8 threshold [43], BCPRED (http://ailab-projects1.ist.psu.edu:8080/bcpred/) with 80% threshold [44], and BepiPred (https://services.healthtech.dtu.dk/service.php?BepiPred-2.0) [45], were used, based on different machine learning methods. Shared epitopes in each protein sequence were then spotted and selected for further screening in terms of antigenicity, allergenicity, and water solubility using VaxiJen, AllergenFP, and PepCalc (https://pepcalc.com/) [46] web servers, respectively. Also, conformational B-cell epitopes of those stable proteins were predicted using ElliPro online tool, available at http://tools.iedb.org/ellipro/.

2.6. Prediction and Screening of Human Helper T Lymphocyte (HTL) Epitopes with Population Coverage Analysis

For this aim, major histocompatibility complex (MHC)-II binding tool of the Immune Epitope Database (IEDB) server was selected and human HTL epitope prediction was done using recommended method 2.22 and selecting “full human leukocyte antigen (HLA) reference set” option to predict 15-mer epitopes. Potential binders had a lower percentile rank in the provided results table. In the following, the antigenicity, allergenicity, and IFN-γ-inducing capacity of each epitope was estimated using VaxiJen, AllerTOP, and IFNepitope (http://crdd.osdd.net/raghava/ifnepitope/) online tools, respectively. The population coverage analysis was, also, done by the Population Coverage tool in IEDB server using all predicted epitopes.

2.7. Immune Simulation

The immune responses provoked by the five stable erythrocytic stage proteins (AMA1, CyRPA, Rh5, MSP1, and Sera5) were predicted in silico, using C-ImmSim web server, available at http://150.146.2.1/C-IMMSIM/index.php. This virtual simulation process was accomplished using default parameters with random seed 12345, simulation volume 10, and simulation steps 100. A PSSM for ML methods are the basis for the predictions in this server. The output indicates to three stimulated regions including the bone marrow, thymus, and lymph node [47, 48].

3. Results

A schematic representation of the whole study design is illustrated in Figure 1.

Figure 1.

Figure 1

Schematic representation of the whole study design, prediction web servers, and screening methods regarding 14 Pf blood-stage vaccine candidate antigens [49].

3.1. Antigenicity, Allergenicity, Solubility, and Other Physicochemical Characteristics

With respect to antigenicity prediction by VaxiJen server, MSP4 possessed highest score (1.0076), followed by MSP3 (0.8309), Sera5 (0.7150), and Eba175 (0.6903). Of note, Rh5 and Ripr showed least antigenic indices as 0.4882 and 0.4980, respectively. Using AllergenFP and AllerTOP servers, 3 (RESA, Sera5, and Sera8) and 5 proteins (AMA1, CyRPA, MSP3, RESA and Ripr) were found to be allergenic in nature. Based on Protein-Sol server, AMA1, Ripr, Ron2, and Sera8 showed to be low solubility scores, below threshold (0.45), whereas MSP3 and MSP4 were demonstrated to be highly soluble (0.806 vs. 0.894). Among blood-stage antigens of Pf, MSP1 had the longest protein sequence and heaviest MW with 1639 residues and ~187 kDa, while MSP4 had the smallest amino acid sequence and MW with only 272 residues and ~30 kDa, respectively. The pI of the examined proteins ranged from 4.46 in RESA to 9.37 in Ron2. In total, the predicted number of negatively charged residues was higher in all proteins, with the exception of Rh5, Ron2, and Sera8. The estimated half-life was 30 hours in mammalian reticulocytes for all proteins, except of Ralp1, which was predicted to be 1.1 hours. Out of 14 submitted proteins, 6 were shown to be stable, including AMA1, CyRPA, MSP1, Rh5, Sera5, and Sera8, while others were unstable. No dramatic variations were found regarding aliphatic index among examined proteins, and the highest and lowest scores belonged to CyRPA (88.23) and MSP3 (57.82), respectively. Moreover, a negative GRAVY score was estimated for all proteins, indicating hydrophilic trait in nature (Table 1).

Table 1.

Prediction of antigenicity, allergenicity, solubility, stability, and physicochemical properties of 14 P. falciparum erythrocytic stage proteins.

Server/Parameter AMA1 CyRPA Eba175 MSP1 MSP3 MSP4 MSP6 Ralp1 RESA Rh5 Ripr Ron2 Sera5 Sera8
VaxiJen score 0.5639 0.5732 0.6903 0.6039 0.8309 1.0076 0.6790 0.6627 0.5626 0.4882 0.4980 0.5071 0.7150 0.6148
AllergenFP No No No No No No No No Yes No No No Yes Yes
AllerTOP Yes Yes No No Yes No No No Yes No Yes No No No
Protein-Sol 0.415 0.545 0.505 0.523 0.806 0.894 0.778 0.613 0.714 0.503 0.445 0.400 0.501 0.302
No. of AA 622 362 1435 1639 394 272 427 677 1073 526 1086 1369 997 690
MW 72009.78 42775.68 167390.05 187618.81 45134.89 30548.52 48448.28 79640.22 104906.84 62995.86 125892.52 158975.66 111768.15 80850.47
pI 5.55 5.39 5.62 5.98 4.55 4.57 4.57 5.9 4.46 8.62 6.36 9.37 5.26 8.46
+ residues (Arg+Lys) 76 43 221 234 58 35 47 105 109 83 127 202 109 96
- residues (Asp+Glu) 96 54 258 251 104 65 91 115 243 76 136 151 141 86
Half-life (mammalian reticulocytes) 30 hours 30 hours 30 hours 30 hours 30 hours 30 hours 30 hours 1.1 hours 30 hours 30 hours 30 hours 30 hours 30 hours 30 hours
Instability index 37.10 (stable) 39.20 (stable) 42.42 (unstable) 39.18 (stable) 52.98 (unstable) 43.52 (unstable) 54.73 (unstable) 48.53 (unstable) 51.86 (unstable) 35.04 (stable) 42.59 (unstable) 45.52 (unstable) 37.89 (stable) 36.08 (stable)
Aliphatic index 62.88 88.23 62.67 85.55 57.82 67.65 63.47 64.02 74.04 83.38 70.87 79.39 65.75 69.04
GRAVY -0.802 -0.330 -1.072 -0.691 -1.354 -0.969 -1.257 -1.302 -0.930 -0.831 -0.607 -0.523 -0.706 -0.757
SignalP 0.9996 (yes) 0.9998 (yes) 0.637 (yes) 0.9987 (yes) 0.693 (yes) 0.266 (no) 0.3255 (no) 0.0062 (no) 0.0001 (no) 0.1967 (no) 0.9997 (yes) 0 (no) 0.9996 (yes) 0.9996 (yes)
TMHMM 1 1
Subcellular localization CM: 0.7860
ER: 0.6861
EX: 0.8793 CM: 0.5714 CM: 0.7836 EX: 0.8742
CM: 0.5912
CM: 0.8955
EX: 0.6376
CM: 0.7187 CM: 0.4710 ER: 0.3461 CM: 0.6154 EX: 0.6184 Mit: 0.5620 EX: 0.7846
CM: 0.6174
EX: 0.8235

3.2. Prediction of Signal Peptide, Transmembrane Domain, and Subcellular Localization

According to the SignalP server output, 8 proteins were demonstrated to possess signal peptide, comprising AMA1, CyRPA, Eba175, MSP1, MSP3, Ripr, Sera5, and Sera8. Based on deep TMHMM server, two proteins (AMA1 and RESA) had potential transmembrane domains. Furthermore, the subcellular localization of each protein was estimated and predicted using DeepLoc online tool. Full details of the results are provided in Table 1.

3.3. Prediction of Potential PTM Sites

Based on NetPhos online tool, MSP1, Eba175, and Ron2 proteins showed abundant phosphorylation sites in their sequences, while lower phosphorylation regions were detected in MSP4 and CyRPA. Palmitoylation sites were predicted in all proteins, except for MSP3, MSP6, and Ron2. Also, the highest number of N- and O-glycosylation sites were found in Eba175 protein. Lysine acetylation was, also, a prominent feature in MSP3 and Ron2 proteins (Table 2).

Table 2.

Prediction of the posttranslational modification sites within 14 P. falciparum erythrocytic stage protein sequences.

PTM AMA1 CyRPA Eba175 MSP1 MSP3 MSP4 MSP6 Ralp1 RESA Rh5 Ripr Ron2 Sera5 Sera8
Phosphorylation
S 28 13 89 103 22 18 27 25 51 19 45 90 87 37
T 12 8 52 45 13 4 16 18 33 19 23 33 39 19
Y 25 10 28 39 9 3 3 14 22 15 38 33 17 25
Palmitoylation 2 1 2 3 1 2 2 1 4 3 5
Lysine acetylation 4 1 27 31 64 35 37 36 33 11 5 44 10 4
N-Glycosylation 4 3 15 11 4 2 2 4 4 2 11 13 2 2
O-Glycosylation 3 120 72 25 22 31 16 15 5 21 12 58 8

S: serine phosphorylation; T: tyrosine phosphorylation; Y: threonine phosphorylation.

3.4. Structural Evaluation of Blood-Stage Proteins

Secondary structure of the blood-stage Pf proteins was evaluated using GOR IV web server. Based on the server output, random coils were the most prominent secondary structure found in 10 proteins (AMA1, CyRPA, Eba175, MSP4, MSP6, Ralp1, Rh5, Ripr, Sera5, and Sera8), while in 4 proteins (MSP1, MSP3, RESA, and Ron2) alpha helix structures were prevalent. Table 3 demonstrates the number and percentage of each predicted secondary structure within submitted Pf proteins. The 3D model of five stable proteins was predicted and illustrated using SWISS-MODEL web server, derived from templates 4r19.2.A, 7pi2.2.A, 6zbj.1.A, 4u0r.1.A, and 6x44.1.A, respectively (Figure). Of note, the sequence identity for above proteins was 99.70%, 99.10%, 62.52%, 99.61%, and 100%, respectively (Figure 2).

Table 3.

Prediction results for secondary structures of 14 selected erythrocytic stage P. falciparum antigens, using Garnier–Osguthorpe–Robson (GOR IV) server.

Secondary structure AMA1 CyRPA Eba175 MSP1 MSP3 MSP4 MSP6 Ralp1 RESA Rh5 Ripr Ron2 Sera5 Sera8
Alpha helix 139 (22.35) 29 (8.01) 428 (29.83) 789 (48.14) 278 (70.56) 100 (36.76) 138 (32.32) 275 (40.62) 544 (50.70) 210 (39.92) 106 (9.76) 667 (48.72) 201 (20.16) 136 (19.71)
Extended strand 91 (14.63) 134 (37.02) 236 (16.45) 179 (10.92) 34 (8.63) 46 (16.91) 55 (12.88) 95 (14.03) 109 (10.16) 74 (14.07) 318 (29.28) 175 (12.78) 224 (22.47) 171 (24.78)
Random coil 392 (63.02) 199 (54.97) 771 (53.73) 671 (40.94) 82 (20.81) 126 (46.32) 234 (54.8) 307 (45.35) 420 (39.14) 242 (46.01) 662 (60.96) 527 (38.5) 572 (57.37) 383 (55.51)

Figure 2.

Figure 2

3D structure of five stable Pf blood-stage vaccine candidates (AMA1, CyRPA, MSP1, Rh5, and Sera5), based on SWISS-MODEL server predictions.

3.5. Prediction of Linear and Conformational B-Cell Epitopes

A robust multistep modality was designed and exerted to predict and screen potential B-cell epitopes in the selected Pf proteins. For this purpose, outputs of three web tools, including ABCpred, BCPRED, and BepiPred, were compared with each other and common epitopic regions were spotted and selected for further screening in terms of antigenicity, allergenicity, and water solubility. Our results showed 60 strictly chosen linear B-cell epitopes from 14 Pf blood-stage vaccine candidates which were highly antigenic and nonallergenic with good water solubility, as presented in Table 4. Moreover, conformational B-cell epitopes predicted for modeled protein structures (AMA1, CyRPA, MSP1, Rh5, and Sera5) are provided in Table 5. Of note, those highly populated noncontinuous B-cell epitopes with highest scores were illustrated (Figure 3).

Table 4.

Prediction of shared continuous B-cell epitopes in 14 selected erythrocytic stage P. falciparum antigens with subsequent screening regarding antigenicity, allergenicity, and water solubility.

Protein Shared epitopes VaxiJen antigenicity AllergenFP allergenicity PepCalc water solubility
AMA1 DHEGAEPAPQEQNL 0.3882 No Good
KMDEPQHYG 1.0432 Yes Good
EEYKDEYADI 0.6827 Yes Good
LYIAAQENNGPRY 0.3357 No Poor
HQEHTYQQED 0.6384 No Good
LPTGAFKADRYKS 1.3353 No Good
FGRGQNYWEHPYQ -0.2076 No Poor
NMIPDNDKNSN 1.1296 No Good
TEYMAKYDIE 0.2234 No Good
CyRPA SPYKFKDDNKKD 1.0096 No Good
DNINNVKNV 0.0707 Yes Good
NDLFKETDLTG 1.2358 No Good
EEFSNRKKDMT 0.8601 No Good
KDNKVLQDVSTL 0.1229 No Good
LKDKLLSSYVSLPL 0.9588 No Poor
Eba175 HHGNRQDRGGNSGN 2.2151 No Good
REDERTLTKEYEDI 0.7318 No Good
GPKGNEQKERDDDS 1.5703 No Good
SRINNGRNTSS 1.5214 No Good
SINNGDDSGSGS 1.3930 No Good
SNNNNFNNIPS -0.4858 No Poor
EKFNELDKKKYGN -0.0866 No Good
YCDCKHTTTLVK 0.9283 No Good
EEYNKQAKQYQEYQ 0.8479 No Good
NTLHLKDIRNEE 0.4600 No Good
GDDSGSGSAT 2.1372 Yes Good
NPEDRNSNTLHLK 0.9643 No Good
NVQQSGGIVN 1.1086 No Poor
KAEEERLSHTDI 0.5411 No Good
MSP1 VPTPPAPVNNKTEN 0.6756 No Good
NPPPANSGNTPNTL 0.1965 No Poor
PPVPVPVPEAK 0.6912 No Good
GCFRHLDEREE -0.0243 No Good
EQLFEKKIT 0.5568 Yes Good
NPSDNSSDSDAK 1.6344 No Good
LEQSQPKKPASTHV 0.7679 No Good
ILKQYKITKEEESK 0.8440 No Good
DKNKKIEEHEKE 1.3583 No Good
LNSLNNPKH 0.2690 Yes Good
SSNYVVKDPYKFLN 0.2960 No Good
VPNSYKQENK 0.6840 No Good
LKHNIHVPNSYKQE 0.6190 No Good
MSP3 YKKAKEASQDAEKA 0.9912 Yes Good
ENVNTPIVGNSM 0.9144 Yes Poor
LGWEFGGGVPEHKK 0.4004 Yes Good
NNNSQIENEEK 1.3218 No Good
MSP4 ASEQGEESHKKE 1.6269 No Good
HVGEEEDHNEGEGE 1.6106 Yes Good
VVHFFIICTINF -0.0159 Yes Poor
KKKTEAIPKKVVQ 0.0166 No Good
SDAAEKKDEKEASE 1.1597 Yes Good
DDDEDDDTYN 1.4465 No Good
MSP6 SDIQATYQFPPTP -0.4445 Yes Poor
GTRGIHTYSGES 0.1113 No Good
AEENSETNKNPT 1.1044 No Good
PPTPGRIINPR 0.8340 Yes Good
EEEKKEEEEKKE 1.8461 No Good
DKKTEYLLEQI 0.4517 Yes Good
Ralp1 IVYNNIQGQG 0.9383 Yes Poor
NNIQGQGELLQ 1.0569 Yes Poor
GNGDNESSQRVD 1.5302 No Good
NVEKKSNMESVNNN 0.5877 Yes Good
NANKVPNVAH -0.2316 Yes Poor
QSDDITDEQKKY 0.8375 No Good
KLDQQGELKNVSVV 0.8150 No Good
KDNTFNFHKN 0.5660 No Good
NKDNTFNFHKN 0.2417 No Good
DENNNTNDKNNC 1.3952 No Good
RESA AEMKKRAQK 1.4690 Yes Good
PQQEEPVQTVQE 0.7672 No Good
PYADSENPIVV 0.6307 Yes Good
NVEENVEENVEENV 1.3997 No Good
NINSNVDNGN 1.6573 No Good
TQANKQELANI 0.1906 No Good
YGYDGIKQV -1.0965 Yes Good
RWYNKYGYDGIKQV -0.4537 No Good
SSSSGVQFTDRCS 0.1913 Yes Good
KDFTGTPQIVTLLR -0.0496 No Good
NLYGETLPVNPY 1.8128 Yes Poor
Rh5 AIKKTKNQEN 0.6552 Yes Good
TEEEKDDIKNGKDI 1.2106 No Good
SCYNNNFCNTNG -0.0212 No Poor
NNKNDDSYRYD 0.7851 No Good
IINDKTKIIQD 0.9855 No Good
SKNLNKDLSD 0.5424 Yes Good
KKLEHPYDINNK -0.5249 No Good
SVFNQINDGMLLN 0.2222 No Poor
KKINETYDKV -0.4121 Yes Good
Ripr TDPHTNSNNI 1.1210 No Good
KEKFYKNNLY 1.3379 Yes Good
CYKKTFCGVVIP 0.9010 No Poor
EIQNEISSHNSNQF 0.4284 No Good
SVLCSQNQVCQ 0.0578 No Poor
HLISRNSR 0.2658 Yes Good
CANDYKMEDGI -0.0054 No Good
Ron2 YASKQTSDSDDSDI 1.1198 No Good
NDSSEESAKKKLQD 0.6400 No Good
WLEFNDNPTNASS 0.5370 No Good
KNDTSEKSSQKN 1.1045 No Good
PKRTTTFYGERRL 0.1554 No Good
DSKGMLARQIFTKG 1.1186 No Good
RPKRTTTFYGE 1.4781 No Good
RNPGMMAI 0.1053 Yes Poor
FSTYMGFDRRSFLP -0.3423 No Poor
REQIENFK 0.0655 Yes Good
Sera5 SSSSSSSSSSSSSE 1.8405 No Good
GASPQGSTG 1.5737 No Poor
PEDKDNKGK 2.1879 Yes Good
TVSVSQTSTSSEKQ 0.7225 No Good
PANGPDSPTVKPP 0.6062 No Good
TKDTTENNKVDV 0.9430 No Good
LPSNGTTGEQ 1.2054 No Good
PMNNKTTKKESKIY 0.8272 No Good
KILHNKNEPNSL 0.1980 No Good
KTNNAISFESNSGS 0.3549 No Good
VNKRGLVLPELNY 0.2452 No Good
EDDDEDDYTEY 1.2934 Yes Good
YNYVKVGEQCPKVE 0.8915 No Good
Sera8 DAYYDNNDDY 0.8582 No Good
NMAHNPIDVPLPND 0.6719 No Good
FSFEKDSDT 1.1152 Yes Good
DKLTFDHDGT -0.0833 No Good
NYKDNYENANNH 0.6804 No Good
QYDKNSNDYDRN 0.8916 Yes Good
SKRKDEYKEPYS 0.8054 No Good
IYHGYFKVSFK 0.9309 Yes Poor
PITGSECPDN 1.2238 No Good
INEENNMEHMKD 0.7345 No Good

Table 5.

Prediction of conformational B-cell epitopes in five modeled erythrocytic stage P. falciparum antigens (AMA1, CyRPA, MSP1, Rh5, and Sera5).

Protein No. Residues No. of Residues Score
AMA1 1 A:H200, A:K203, A:D204 3 0.985
2 A:G107, A:N108, A:P109, A:W110, A:T111, A:E112, A:Y113, A:M114, A:K305, A:N306, A:L307, A:Q308, A:N309, A:A310, A:K311, A:G313, A:L314, A:W315, A:V316, A:D317, A:G318, A:N319, A:C320, A:E321, A:D322, A:I323, A:P324, A:H325, A:E328, A:F329, A:S330, A:A331, A:I332, A:D333, A:Y402, A:N403, A:T404, A:E405, A:T406, A:Q407, A:K408, A:N413, A:V414, A:K415, A:P416, A:T417, A:C418, A:L419, A:I420, A:N421, A:N422, A:S423, A:S424, A:Y425, A:I426, A:E436, A:V437 57 0.731
3 A:P184, A:P185, A:T186, A:E187, A:P188, A:L189, A:M190, A:S191, A:P192, A:M193, A:T194, A:L195, A:D196, A:E197, A:M198, A:R199, A:F201, A:Y202, A:N205, A:K206, A:Y207, A:V208, A:K209, A:N210, A:L211, A:D212, A:D242, A:K243, A:D244, A:K245, A:K246, A:N286 32 0.699
4 A:V169, A:A170, A:T171, A:G172, A:N173, A:Q174 6 0.673
5 A:E136, A:V137, A:A138, A:G139, A:T140, A:Q141, A:N160, A:S161, A:N162, A:T163, A:T164, A:L176, A:K177, A:G179, A:G222, A:N223, A:M224, A:I225, A:P226, A:D227, A:N228, A:D229, A:K230, A:N231, A:S232, A:N233, A:N257, A:N258, A:G259, A:P260, A:R261, A:Y262, A:C263, A:N264, A:K265, A:D266, A:E267, A:S268, A:K269, A:R270, A:N271, A:S272, A:M273, A:F274, A:E354, A:Q355, A:H356, A:L357, A:T358, A:D359, A:Y360, A:E361, A:K368, A:N369, A:K370, A:N371, A:A372, A:S373, A:M374, A:I375, A:K376, A:S377, A:A378, A:F379, A:L380, A:P381, A:T382, A:G383, A:A384, A:F385, A:K386, A:A387, A:D388, A:R389, A:K391 75 0.672
6 A:V326, A:N327, A:E410 3 0.636
CyRPA 1 A:K186, A:K188, A:D189, A:D190, A:N191, A:K192, A:K193, A:D194, A:D195, A:V213, A:K215, A:D217, A:N218, A:Y219, A:K220, A:L221, A:G222, A:V223, A:Q224, A:Y225, A:G244, A:D245, A:N246, A:I247, A:N248, A:N249, A:V250, A:T259, A:H260, A:E261, A:K262, A:D263, A:L264, A:E265, A:V267 35 0.743
2 A:P184, A:Y185, A:F187 3 0.732
3 A:R31, A:H32, A:V33, A:F34, A:R36, A:T37, A:E38, A:R271, A:D272, A:F273, A:L274, A:K275, A:D276, A:N277, A:K278, A:N287, A:D288, A:E289, A:N296, A:D297, A:N298, A:N299, A:F300, A:A301, A:E302, A:Y304, A:N308, A:N309, A:E310, A:N311, A:S312, A:I313, A:L314, A:K316, A:P317, A:E318, A:Y320, A:G321, A:N322, A:T323, A:T324, A:A325, A:G326, A:I335, A:D336, A:E337, A:N338, A:R339, A:T355, A:I356, A:Y357, A:Y358, A:A359, A:N360, A:Y361 55 0.696
4 A:K170, A:I171, A:E172, A:N173, A:N235 5 0.694
5 A:D67, A:L68, A:K69, A:G70, A:E71, A:E72, A:D73, A:E74, A:T75, A:H76, A:I88, A:T89, A:L90, A:N91, A:D92, A:L93, A:F94, A:K95, A:E96, A:T97, A:D98, A:L99, A:T100, A:G101, A:R102, A:D110, A:V111, A:E112, A:E113, A:E120, A:D121, A:E122, A:E123, A:F124, A:S125, A:N126, A:K128, A:K129, A:D130, A:M131, A:T132, A:Y137, A:S138, A:N139, A:D140, A:G141, A:K142, A:E143, A:Y144, A:N145, A:N146, A:S147, A:E148, A:I149, A:T150, A:I151, A:S152, A:D153 58 0.671
6 A:K43, A:N44, A:N45, A:V46, A:P47, A:C48, A:V83, A:K84, A:D85, A:S86, A:S347, A:Q348, A:G349, A:I350, A:Y351 15 0.589
7 A:R174, A:H202, A:D203, A:K204, A:G205, A:E206, A:T207, A:W208 8 0.582
MSP1 1 A:Q720, A:A721, A:G722, A:S723, A:A724, A:L725 6 0.806
2 A:I430, A:N431, A:P432, A:F433, A:D434, A:Y435, A:E438, A:P439, A:S440, A:K441, A:N442, A:I443, A:Y444, A:T445, A:D446, A:N447, A:E448, A:R449, A:K450, A:K451, A:F452, A:I453, A:N454, A:E455, A:I456, A:K457, A:E458, A:K459, A:L547, A:K548, A:M550, A:E551, A:D552, A:Y553, A:S554, A:L555, A:R556, A:N557, A:I558, A:V559, A:V560, A:E561, A:K562, A:E563, A:L564, A:K565, A:Y566, A:Y567, A:K568, A:N569, A:L570, A:I571, A:S572, A:K573, A:I574, A:E575, A:N576, A:E577, A:I578, A:E579, A:T580, A:L581, A:V582, A:E583, A:N584, A:I585, A:K586, A:K587, A:D588, A:Q591, A:L592, A:E594, A:K595, A:K596, A:I597, A:T598, A:K599, A:D600, A:E601, A:N602, A:K603, A:P604, A:D605, A:E606, A:K607, A:I608, A:L609, A:E610, A:V611, A:S612, A:D613, A:I614, A:V615, A:K616, A:V617, A:Q618, A:V619, A:Q620, A:K621, A:V622, A:L623, A:L624, A:M625, A:N626, A:K627, A:I628, A:D629, A:E630, A:L631, A:K632, A:T634, A:Q635, A:I637, A:L638, A:V641, A:E642, A:K644, A:H645, A:N646, A:M852, A:E853, A:I854, A:Y855, A:E856, A:K857, A:E858, A:M859, A:V860 128 0.759
3 A:K689, A:K690, A:N691, A:I692, A:K693, A:T694, A:E695, A:G696, A:Q697, A:S698, A:D699, A:N700, A:S701, A:E702, A:P703, A:S704, A:T705, A:E706, A:G707, A:E708, A:I709, A:T710, A:G711, A:Q712, A:A713, A:T714, A:T715, A:K716, A:P717, A:G718, A:Q719, A:E726, A:G727, A:D728, A:S729, A:V730, A:Q731, A:A732, A:Q733, A:A734, A:Q735, A:E736, A:Q737, A:K738, A:Q739, A:A740, A:Q741, A:P742, A:P743, A:V744, A:P745, A:V746, A:P747, A:V748, A:P749, A:E750, A:A751, A:K752, A:A753, A:Q754, A:V755, A:P756, A:T757, A:P758, A:P759, A:A760, A:P761, A:V762, A:N763, A:N764, A:K765, A:T766, A:E767, A:N768, A:V769 75 0.756
4 A:M51, A:V52, A:L53, A:N54, A:E55, A:G56, A:T57, A:S58, A:G59, A:T60, A:A61, A:V62, A:T63, A:T64, A:S65, A:T66, A:P67, A:G68, A:S69, A:K70, A:G71, A:S72, A:V73, A:A74, A:S75, A:G76, A:G77, A:S78, A:G79, A:G80, A:S81, A:V82, A:A83, A:S84, A:G85, A:G86, A:S87, A:V88, A:A89, A:S90, A:G91, A:G92, A:S93, A:V94, A:A95, A:S96, A:G97, A:G98, A:S99, A:V100, A:A101, A:S102, A:G103, A:G104, A:S105, A:G106, A:N107, A:S108, A:R109, A:R110, A:T111, A:N112, A:P113, A:S114, A:D115, A:N116, A:S117, A:S118, A:D119, A:S120, A:D121, A:A122, A:K123, A:S124, A:Y125, A:T156, A:L157, A:C158, A:D159, A:N160, A:I161, A:H162, A:G163, A:K165, A:Y166, A:D233, A:N234, A:V235, A:G236, A:K237, A:E239, A:D240, A:I242, A:K243, A:K244, A:N245, A:K246, A:K247, A:T248, A:I249, A:E250, A:N251, A:I252, A:N253, A:E254, A:L255, A:I256, A:E257, A:E258, A:S259, A:K260, A:K261, A:T262, A:I263, A:D264, A:K265, A:N266, A:K267, A:N268, A:A269, A:T270, A:K271, A:E272, A:E273, A:E274, A:K275, A:K276, A:K277, A:L278, A:Y279, A:Q280, A:A281, A:Q282, A:D284, A:L285, A:Y288, A:I306, A:L309, A:K311, A:N312, A:E313, A:N314, A:I315, A:K316, A:E317, A:L318, A:L319, A:D320, A:K321, A:I322, A:N323, A:E324, A:I325, A:K326, A:N327, A:P328, A:P329, A:P330, A:A331, A:N332, A:S333, A:G334, A:N335, A:T336, A:P337, A:N338, A:T339, A:L340, A:L341, A:D342, A:K343, A:N344, A:K345, A:K346, A:I347, A:E348, A:E349, A:H350, A:E351, A:K352, A:E353, A:I354, A:E356, A:I357, A:D505 185 0.737
5 A:I460, A:K461, A:I462, A:E463, A:K464, A:K465, A:K466, A:I467, A:E468, A:S469, A:D470, A:K471, A:K472, A:S473, A:Y474, A:E475, A:D476, A:R477, A:S478, A:K479, A:S480, A:N482, A:D483 23 0.62
Rh5 1 A:K247, A:D249, A:S251, A:Y252, A:Y254, A:D255, A:I256, A:S257, A:E258, A:E259, A:I260, A:D261, A:D262, A:K263, A:S264, A:E265, A:E266, A:T267, A:D268, A:D269, A:E270, A:T271, A:E272, A:E273, A:V274, A:E275, A:D276, A:S277, A:I278, A:Q279, A:D280, A:T281, A:D282, A:S283, A:N284, A:H285, A:T286, A:P287, A:S288, A:N289, A:K290, A:K291, A:K292, A:N293, A:D294, A:L295, A:M296, A:N297 48 0.822
2 A:Y242, A:N375, A:N377, A:K378, A:L380, A:S381, A:D382, A:T384, A:N385, A:I386, A:L387, A:Q388, A:Q389, A:S390, A:E391, A:L392, A:L393, A:L394, A:T395, A:N396, A:L397, A:N398, A:K399, A:K400, A:M401, A:F494, A:H495, A:H496, A:L497, A:I498, A:Y499, A:V500, A:L501, A:Q502, A:M503, A:K504 36 0.757
3 A:S192, A:I193, A:Y194, A:H195, A:K196, A:S197, A:S198, A:T199, A:Y200, A:G201, A:K202, A:C203, A:I204, A:A205, A:V206, A:D207, A:A208, A:F209, A:K211, A:K212, A:E215, A:K327, A:M330, A:D331, A:K333, A:N334, A:Y335, A:T337, A:N338, A:L339, A:F340, A:E341, A:Q342, A:L343, A:S344, A:C345, A:Y346, A:N347, A:N348, A:N349, A:F350, A:C351, A:N352, A:T353, A:N354, A:R357, A:Y358, A:E362, A:Y363, A:K436, A:I437, A:Q439, A:D440, A:K441, A:I442, A:K443, A:L444, A:N445, A:I446, A:W447, A:R448, A:T449, A:F450, A:Q451, A:K452, A:D453, A:E454, A:L455, A:L456, A:K457, A:R458 71 0.688
4 A:K316, A:K319, A:N320, A:H321, A:E322, A:N323, A:D324, A:N326 8 0.62
5 A:D361, A:H365, A:L369, A:K372 4 0.592
6 A:G402, A:S403, A:Y404 3 0.55
Sera5 1 A:D393, A:D394, A:D395, A:E396, A:D397, A:D398, A:Y399, A:T400, A:E401 9 0.784
2 A:Y402, A:K403, A:T405, A:E406, A:S407, A:I408, A:D409, A:N410, A:I411, A:L412, A:V413, A:K414, A:M415, A:F416, A:K417, A:T418, A:N419, A:E420, A:N421, A:N422, A:D423, A:K424, A:S425, A:E426, A:L427, A:I428, A:K429, A:L430, A:E431, A:E432, A:V433, A:D434, A:D435, A:S436, A:L437, A:K438, A:L439, A:E440, A:L441, A:M442, A:N443, A:C445, A:S446, A:L447, A:K449, A:D450, A:G461, A:M462, A:G463, A:N464, A:E465, A:M466, A:D467, A:I468, A:F469, A:N470, A:K473, A:F491, A:L498, A:K499 60 0.778
3 A:E515, A:L516, A:N517, A:Y518, A:D519, A:L520, A:E521, A:Y522, A:F523, A:N524, A:E525, A:H526, A:L527, A:Y528, A:N529, A:D530, A:K531, A:N532, A:S533, A:P534, A:E535, A:D536, A:K537, A:D538, A:N539, A:K540, A:G541, A:K542, A:G543, A:V544, A:V545, A:H546, A:V547, A:D548, A:T549, A:T550, A:L551, A:D555, A:T556, A:L557, A:S558, A:Y559, A:D560, A:N561, A:S562, A:D563, A:N564, A:M565, A:F566, A:C567, A:N568, A:K569, A:E570, A:D577, A:E578, A:N579, A:N580, A:M611, A:K612, A:G613, A:Y614, A:E615, A:P616, A:T617, A:S620, A:Y623, A:N626, A:C627, A:Y628, A:K629, A:G630, A:E631, A:H632, A:K633, A:D634, A:R635, A:C636, A:D637, A:E638, A:Q647, A:E650, A:D651, A:Y652, A:G653, A:F654, A:L655, A:P656, A:A657, A:E658, A:S659, A:N660, A:Y661, A:P662, A:N664, A:V666, A:K667, A:V668, A:G669, A:E670, A:Q671, A:C672, A:P673, A:K674, A:V675, A:E676, A:D677, A:H678, A:W679, A:M680, A:N681, A:L682, A:W683, A:D684, A:N685, A:G686, A:K687, A:I688, A:L689, A:H690, A:N691, A:K692, A:N693, A:E694, A:P695, A:N696, A:S697, A:K701, A:R710, A:N714, A:D716, A:K720, A:N771, A:Y772, A:V773, A:N774, A:S775, A:E776, A:G777, A:E778, A:K779, A:K780, A:N821, A:V822, A:D823, A:L824, A:P825, A:M826, A:N827 148 0.692
4 A:N753, A:C755, A:G805, A:P806, A:T807, A:H808, A:C809, A:H810, A:F811 9 0.564
5 A:S480, A:E481, A:E482, A:N483, A:I484 5 0.553

Figure 3.

Figure 3

Illustration of highly populated and top-scored conformational B-cell epitopes in five modeled Pf blood-stage vaccine candidates (AMA1, CyRPA, MSP1, Rh5, and Sera5).

3.6. Prediction, Screening, and Population Coverage Analysis of the Human HTL Epitopes

Based on IEDB HLA reference set, top five HTL epitopes for each submitted protein sequence were predicted and evaluated regarding antigenicity, allergenicity, and IFN-γ induction. Our results demonstrated that 24 epitopes were estimated to be potent IFN-γ inducers, including “GRPHIFAYVDVEEII” (CyRPA); “CNISIYFFASFFVLY, ISIYFFASFFVLYFA, KCNISIYFFASFFVL, and NISIYFFASFFVLYF” (Eba175); “HLYIYINNVASKEIV, LYIYINNVASKEIVK, and YIYINNVASKEIVKK” (MSP3); “CVELLSLASSSLNLI, ECVELLSLASSSLNL, VELLSLASSSLNLIF, and IECVELLSLASSSLN” (MSP4); “NDDSYRYDISEEIDD, DDSYRYDISEEIDDK, and DSYRYDISEEIDDKS” (Rh5); “CQGMYISLRSVHVHT, GMYISLRSVHVHTHN, and QGMYISLRSVHVHTH” (Ripr); “LVRGNYIGNINNIAR and RGNYIGNINNIARND” (Ron2); “MKSYISLFFILCVIF and SYISLFFILCVIFNK” (Sera5); and “VTLYQLKRVHSNMLI and LVTLYQLKRVHSNML” (Sera8). Nevertheless, only 10 epitopes were nominated to possess adequate antigenicity and no allergenicity with the capacity to induce IFN-γ cytokine, as shown in Table 6. In the following, population coverage analysis of all HTL epitopes revealed a high degree of allele coverage in West Africa (99.43%), Central Africa (99.21%), East Africa (99.17%), South America (98.51%), and South Asia (98.92%), with a global coverage rate of 97.17% (Table 7).

Table 6.

Helper T lymphocyte-specific epitope prediction in 14 selected erythrocytic stage P. falciparum antigens and subsequent screening regarding IFN-γ induction, antigenicity, and allergenicity.

Protein Allele HTL epitope Method Percentile rank VaxiJen antigenicity AllerTOP allergenicity IFN-γ inducer
Result Score
AMA1 HLA-DPA102 : 01/DPB114 : 01 KMKIIIASSAAVAVL NetMHCIIpan 0.03 0.7487 No Negative 5
HLA-DPA102 : 01/DPB114 : 01 DKMKIIIASSAAVAV NetMHCIIpan 0.06 0.6712 No Negative 5
HLA-DRB113 : 02 MKIIIASSAAVAVLA NetMHCIIpan 0.07 0.7198 No Negative 7
HLA-DRB109 : 01 YDKMKIIIASSAAVA NetMHCIIpan 0.08 0.6072 Yes Negative 5
HLA-DQA105 : 01/DQB103 : 01 MKIIIASSAAVAVLA Consensus (comb.lib./smm/nn) 0.09 0.7198 No Negative 7
CyRPA HLA-DRB302 : 02 ELSFIKNNVPCIRDM NetMHCIIpan 0.01 0.0131 Yes Negative -0.2933
HLA-DQA105 : 01/DQB102 : 01 GRPHIFAYVDVEEII Consensus (comb.lib./smm/nn) 0.01 -0.2266 No Positive 0.8518
HLA-DQA105 : 01/DQB102 : 01 HIFAYVDVEEIIILL Consensus (comb.lib./smm/nn) 0.01 0.2274 Yes Negative 12
HLA-DRB302 : 02 LSFIKNNVPCIRDMF NetMHCIIpan 0.01 0.1361 Yes Negative -0.7208
HLA-DQA105 : 01/DQB102 : 01 PHIFAYVDVEEIIIL Consensus (comb.lib./smm/nn) 0.01 0.1163 No Negative 3
Eba175 HLA-DPA101 : 03/DPB102 : 01 CNISIYFFASFFVLY Consensus (comb.lib./smm/nn) 0.01 0.9694 Yes Positive 1
HLA-DRB112 : 01 IFKFLITNKIYYYFY Consensus (smm/nn) 0.01 0.1789 Yes Negative 1
HLA-DPA101 : 03/DPB102 : 01 ISIYFFASFFVLYFA Consensus (comb.lib./smm/nn) 0.01 1.5296 No Positive 1
HLA-DPA101 : 03/DPB102 : 01 KCNISIYFFASFFVL Consensus (comb.lib./smm/nn) 0.01 1.1363 No Positive 0.2194
HLA-DPA101 : 03/DPB102 : 01 NISIYFFASFFVLYF Consensus (comb.lib./smm/nn) 0.01 1.5428 No Positive 1
MSP1 HLA-DPA103 : 01/DPB104 : 02 FLGISFLLILMLILY Consensus (comb.lib./smm/nn) 0.01 1.3457 No Negative 64
HLA-DPA103 : 01/DPB104 : 02 NFLGISFLLILMLIL Consensus (comb.lib./smm/nn) 0.01 1.1366 No Negative 60
HLA-DPA103 : 01/DPB104 : 02 LGISFLLILMLILYS Consensus (comb.lib./smm/nn) 0.02 0.9541 No Negative 54
HLA-DPA103 : 01/DPB104 : 02 GISFLLILMLILYSF Consensus (comb.lib./smm/nn) 0.03 0.8777 No Negative 48
HLA-DPA103 : 01/DPB104 : 02 ISFLLILMLILYSFI Consensus (comb.lib./smm/nn) 0.03 1.6407 No Negative 46
MSP3 HLA-DRB302 : 02 HLYIYINNVASKEIV NetMHCIIpan 0.01 0.2830 Yes Positive 4
HLA-DRB302 : 02 LHLYIYINNVASKEI NetMHCIIpan 0.01 0.6264 Yes Negative 4
HLA-DRB302 : 02 LYIYINNVASKEIVK NetMHCIIpan 0.01 0.1614 Yes Positive 4
HLA-DRB302 : 02 YIYINNVASKEIVKK NetMHCIIpan 0.02 -0.2207 Yes Positive 1
HLA-DRB302 : 02 LLHLYIYINNVASKE NetMHCIIpan 0.09 0.6712 Yes Negative -0.3417
MSP4 HLA-DRB101 : 01 CVELLSLASSSLNLI Consensus (comb.lib./smm/nn) 0.1 -0.0621 No Positive 1
HLA-DRB101 : 01 ECVELLSLASSSLNL Consensus (comb.lib./smm/nn) 0.1 0.1481 Yes Positive 1
HLA-DRB101 : 01 VELLSLASSSLNLIF Consensus (comb.lib./smm/nn) 0.1 0.0252 Yes Positive 1
HLA-DRB101 : 01 IECVELLSLASSSLN Consensus (comb.lib./smm/nn) 0.16 0.2052 Yes Positive 1
HLA-DPA101 : 03/DPB102 : 01 LNLIFNSFITIFVVI Consensus (comb.lib./smm/nn) 0.22 1.0058 No Negative 8
MSP6 HLA-DPA101 : 03/DPB102 : 01 MNKIYNITFLFILLN Consensus (comb.lib./smm/nn) 0.14 0.4987 No Negative 11
HLA-DPA101 : 03/DPB102 : 01 NKIYNITFLFILLNL Consensus (comb.lib./smm/nn) 0.14 0.7500 No Negative 13
HLA-DRB113 : 02 ILLNLYINENNFIRN Consensus (smm/nn/sturniolo) 0.22 1.5255 No Negative -0.2297
HLA-DRB113 : 02 LLNLYINENNFIRNE Consensus (smm/nn/sturniolo) 0.23 1.0849 Yes Negative -0.2188
HLA-DRB113 : 02 LNLYINENNFIRNEL Consensus (smm/nn/sturniolo) 0.27 1.2208 Yes Negative -0.4038
Ralp1 LA-DRB302 : 02 NKKFKLNESMKNHFY NetMHCIIpan 0.04 0.7270 No Negative -0.5034
HLA-DPA101 : 03/DPB102 : 01 FIIVYCFISSFYLIK Consensus (comb.lib./smm/nn) 0.06 0.7382 Yes Negative 4
LA-DRB302 : 02 KKFKLNESMKNHFYN NetMHCIIpan 0.06 0.4953 No Negative -0.5117
HLA-DPA101 : 03/DPB102 : 01 IIVYCFISSFYLIKS Consensus (comb.lib./smm/nn) 0.07 0.5982 Yes Negative 1
HLA-DPA101 : 03/DPB102 : 01 FFIIVYCFISSFYLI Consensus (comb.lib./smm/nn) 0.08 1.1158 Yes Negative 6
RESA HLA-DPA101 : 03/DPB102 : 01 IVTLLRFFFEKRLSM Consensus (comb.lib./smm/nn) 0.24 0.7305 No Negative -0.1734
HLA-DRB107 : 01 ESLRWIFKHVAKTHL Consensus (comb.lib./smm/nn) 0.28 -0.2477 No Negative -0.1925
HLA-DRB107 : 01 LRWIFKHVAKTHLKK Consensus (comb.lib./smm/nn) 0.28 0.2922 Yes Negative -0.1144
HLA-DRB107 : 01 RWIFKHVAKTHLKKS Consensus (comb.lib./smm/nn) 0.28 0.3480 Yes Negative -0.2612
HLA-DRB107 : 01 SLRWIFKHVAKTHLK Consensus (comb.lib./smm/nn) 0.28 0.0077 Yes Negative -0.3372
Rh5 HLA-DRB301 : 01 NDDSYRYDISEEIDD Consensus (comb.lib./smm/nn) 0.06 0.5481 Yes Positive 0.1695
HLA-DRB301 : 01 DDSYRYDISEEIDDK Consensus (comb.lib./smm/nn) 0.09 0.6564 No Positive 0.1793
HLA-DRB301 : 01 DSYRYDISEEIDDKS Consensus (comb.lib./smm/nn) 0.11 0.7195 Yes Positive 0.1783
HLA-DRB301 : 01 KMGSYIYIDTIKFIH Consensus (comb.lib./smm/nn) 0.11 0.3265 No Negative -0.3428
HLA-DRB301 : 01 KNDDSYRYDISEEID Consensus (comb.lib./smm/nn) 0.11 0.3230 No Negative -0.3932
Ripr HLA-DRB101 : 01 CQGMYISLRSVHVHT Consensus (comb.lib./smm/nn) 0.1 0.4897 No Positive 0.2683
HLA-DRB101 : 01 GMYISLRSVHVHTHN Consensus (comb.lib./smm/nn) 0.1 0.6017 No Positive 0.1345
HLA-DRB101 : 01 NCQGMYISLRSVHVH Consensus (comb.lib./smm/nn) 0.1 0.4426 No Negative -0.1838
HLA-DRB101 : 01 QGMYISLRSVHVHTH Consensus (comb.lib./smm/nn) 0.1 0.7164 No Positive 0.0831
HLA-DRB401 : 01 IFFTLLIIILIKKTS Consensus (comb.lib./smm/nn) 0.12 1.1012 No Negative 116
Ron2 HLA-DRB101 : 01 GTKSFYSLPTILTAN Consensus (comb.lib./smm/nn) 0.01 -0.5149 No Negative -0.8120
HLA-DRB101 : 01 KSFYSLPTILTANSD Consensus (comb.lib./smm/nn) 0.01 -0.0287 No Negative -0.4571
HLA-DRB302 : 02 LVRGNYIGNINNIAR NetMHCIIpan 0.01 0.8144 No Positive 0.4925
HLA-DRB302 : 02 RGNYIGNINNIARND NetMHCIIpan 0.01 0.8171 Yes Positive 0.2910
HLA-DRB101 : 01 TGTKSFYSLPTILTA Consensus (comb.lib./smm/nn) 0.01 -0.6603 No Negative -0.8987
Sera5 HLA-DQA101 : 01/DQB105 : 01 KSYISLFFILCVIFN Consensus (comb.lib./smm/nn) 0.11 1.0472 No Negative -0.086
HLA-DQA101 : 01/DQB105 : 01 MKSYISLFFILCVIF Consensus (comb.lib./smm/nn) 0.11 1.1703 No Positive 0.1021
HLA-DRB111 : 01 MDIFNNLKRLLIYHS Consensus (smm/nn/sturniolo) 0.12 -0.1486 No Negative 1
HLA-DQA101 : 01/DQB105 : 01 SYISLFFILCVIFNK Consensus (comb.lib./smm/nn) 0.12 0.7201 No Positive 0.050
HLA-DRB111 : 01 EMDIFNNLKRLLIYH Consensus (smm/nn/sturniolo) 0.18 -0.1137 No Negative -0.2916
Sera8 HLA-DRB107 : 01 TLYQLKRVHSNMLIN Consensus (comb.lib./smm/nn) 0.03 -0.0784 Yes Negative -0.0028
HLA-DRB107 : 01 VTLYQLKRVHSNMLI Consensus (comb.lib./smm/nn) 0.03 -0.0198 Yes Positive 0.1241
HLA-DRB107 : 01 LYQLKRVHSNMLINC Consensus (comb.lib./smm/nn) 0.06 0.2755 Yes Negative 1
HLA-DRB107 : 01 LVTLYQLKRVHSNML Consensus (comb.lib./smm/nn) 0.07 -0.1590 Yes Positive 0.1447
HLA-DRB107 : 01 YQLKRVHSNMLINCF Consensus (comb.lib./smm/nn) 0.09 -0.3701 No Negative 1

Table 7.

Regional and global population coverage analysis of predicted HTL epitopes in 14 selected erythrocytic stage P. falciparum antigens.

Area Class II MHC allele coverage
Coverage Average hita pc90b
Central Africa 99.21% 13.28 5.74
East Africa 99.17% 13.87 5.74
West Africa 99.43% 12.0 5.0
North Africa 72.9% 5.14 0.37
South Africa 7.65% 0.25 0.11
Central America 77.45% 4.23 0.44
North America 99.98% 17.77 11.7
South America 98.51% 13.54 5.51
West Indies 78.33% 5.49 0.46
Europe 99.83% 17.37 11.43
East Asia 76.66% 5.09 0.43
Northeast Asia 93.635 11.45 2.47
South Asia 98.92% 15.51 8.4
Southeast Asia 69.41% 3.08 0.33
Southwest Asia 70.01% 4.07 0.33
Oceania 93.69% 11.03 2.63
World 97.17% 14.21 4.57
Average 84.23 9.88 3.86

aAverage number of epitope hits/HLA combinations recognized by the population. bMinimum number of epitope hits/HLA combinations recognized by 90% of the population.

3.7. Immune Simulation

The major finding of the immune simulation was that Sera5 elicited the highest antibody titers, in particular IgM+IgG, IgM alone, and IgG1+IgG2, among other examined proteins. In the following, MSP1 and AMA-1 produced considerable specific antibodies. Such trend was observed regarding raised cytokines, with the predominance of IFN-γ, and memory T helper cells (Supplementary File 1).

4. Discussion

Generally said, routine vaccination programs annually protect the living of millions of people, whether residents or travelers, against several infectious diseases. Since the establishment of the germ theory, vaccination approaches have developed, from live-attenuated (rabies), killed (cholera, plague), and toxoid (diphtheria and tetanus) vaccines, to cell culture-based (polio) and recombinant (hepatitis B) vaccines [50]. Nevertheless, such conventional vaccinology modalities entail some drawbacks, so that they are costly and time-consuming, requiring well-equipped laboratories and a considerable labor demand [51]. Outstanding advances in the genomics and proteomics during last decades have improved our knowledge on their interconnected network and caused the emergence of a computer-based interdisciplinary branch of science, Bioinformatics, to finely categorize such a vast amount of information, which could be a major driving force towards research and development on next-generation vaccine design [52]. Using this method, the whole genome/proteome data of a given infectious agent and/or particular protein sequences involved in eliciting the immune responses, so-called immunogenic epitope, can be easily accessed, explored, and screened only using web-based servers and specialized computer programs. The outputs of such a fast and relatively reliable procedure could be utilized to construct rational vaccine candidates against various life-threatening infectious agents and subsequently validated through experimental approaches [53].

Malaria is a noxious parasitic disease among children and adults in the tropics and subtropics, and P. falciparum is the most pernicious species causing severe morbidity and mortality every year [54]. There is a robust pipeline of malaria vaccine candidates, being tested in preclinical and clinical trials, and most of which are recombinant-based vaccines that employed a single antigen [55]. However, development of a successful human malaria vaccine is a disputable issue, possibly due to the following [56]: (i) considerably large genome (23 mega base) consisting of 14 chromosomes, which encodes about 5300 genes; (ii) complex malaria life cycle, involving mosquito and human hosts; and (iii) remarkable genetic diversity and expression patterns within genomic and proteomic elements. To overcome such obstacles, utilization of bioinformatics tools is beneficial to specifically identify those epitopic regions with potential immunogenic capacity (immunodominant), in a rapid and authentic manner. In malaria, the major clinical sequelae and subsequent immune responses are attributed to the blood-stage parasites infecting and disrupting erythrocytes. Therefore, antigens expressed at this phase are important regarding malaria vaccine studies. Since RBCs do not express MHC-I molecules on their surface, a cytotoxic response could not be triggered via antigen presentation to T CD8+ cells [1]. However, antigens are actively transported by the parasite through the parasitophorous vacuole to the erythrocyte surface, where recognition by specialized B-cells occurs, leading to the production of high-affinity, class-switched anti-Plasmodia antibodies as the fundamental immune response against blood-stage parasites [57].

In present study, 14 blood-stage vaccine candidate antigens of Pf were enrolled in order to assess their primary structural and biochemical functions and to discover finely screened epitopic regions with potential affinity to B-cells and human MHC-II. In this sense, AMA1 is an interspecies common vaccine candidate in both liver and blood phases, with conserved function and structure among orthologs. This protein is expressed on merozoite surface in the blood-stage and play a role in RBC invasion [58]. Another significant protein, CyRPA, is a part of a conserved erythrocyte invasion complex along with Rh5 and Ripr and is a potential target for cross-strain neutralizing antibodies [59]. Another erythrocyte-binding protein is Eba175, which matches to its receptor, glycophorin A, as the major glycoprotein on human RBCs [60]. In vitro studies have shown that upon Eba175 inhibition, invasion of merozoites has been blocked [61]. Proteins of the MSP superfamily are another important antigens on merozoites; among these, MSP1 is a glycosylphosphatidylinositol-anchored protein and the most abundant member, whereas MSP3 and MSP6 are a distinct group without glycosylphosphatidylinositol anchor or transmembrane domain [62]. The ralp1 protein is especially expressed in schizonts stages, being localized to rhoptries and first evidenced as a vaccine candidate in 2013 [63]. RESA protein, previously known as Pf155, is secreted from dense granules to the parasitophorous vacuole and thereafter transferred to the inner RBC membrane. Reactive antibodies to RESA inhibit merozoite invasion [64] and RESA-based recombinant vaccines were shown to be protective in monkeys [65]. Currently, the most advanced blood-stage candidate is the rhoptry-based Rh5 which binds to basigin and this complex is vital for RBC invasion in all tested strains of Pf [66]. The Ripr is localized to the micronemes being composed of 10 epidermal growth factor-like domains. It is highly conserved, capable of inducing cross-strain neutralizing antibodies [67]. Moreover, Ron2, a bridging protein between AMA1 and moving junction [68], and Sera proteins have been recognized as potential vaccine candidates [69]. Altogether, targeted recognition of aforementioned antigens by antibodies should relatively or completely block merozoite invasion and lead to rapid phagocytosis of the parasites [70].

In the first step of this study, the amino acid sequences of 14 blood-stage Pf vaccine candidate antigens (AMA1, CyRPA, Eba175, MSP1, MSP3, MSP4, MSP6, Ralp1, RESA, Rh5, Ripr, Ron2, Sera5, and Sera8) were retrieved through UniProt KB and their antigenicity was assessed using VaxiJen v2.0 server. Pertinent to a 0.45 threshold score, all blood-stage proteins were shown to possess adequate antigenicity, and the highest scores belonged to two MSP proteins, i.e., MSP4 (1.0076) and MSP3 (0.8309). MSP3 is a soluble protein that forms a protein complex with MSP1, MSP6, and MSP7. Since 1994, it was discovered that MSP3-protective antibodies could be discovered in animals and humans. Later in 2003 and 2009, promising findings were obtained in preclinical and phase I clinical trial of the GMZ2 recombinant vaccine (containing MSP3 and glutamate-rich protein, GLURP), and further studies more emphasized on the potency of this MSP3-based vaccine candidates [71]. Previously, MSP4 was found to be immunogenic in nature both during natural infection and in laboratory animals, with limited gene polymorphism which simplifies the vaccine formulations [72]. A good vaccine candidate should not elicit allergenic reactions; hence, we performed allergenicity prediction for all 14 proteins using two web servers. Our results showed that half of the proteins, such as Eba175, MSP1, MSP4, MSP6, Ralp1, Rh5, and Ron2, were nonallergens based on AllergenFP and AllerTOP servers. All of the proteins had relatively high thermostability and hydrophilic in nature, based on aliphatic scores and negative GRAVY. Other significant biophysical features required for designing peptide-based vaccines are protein stability and solubility. Accordingly, Protein-Sol server demonstrated that all proteins are soluble, except of AMA1, Ripr, Ron2, and Sera8, and all molecules were unstable with the exception of AMA1, CyRPA, MSP1, Rh5, Sera5, and Sera8 [73].

In the second step, the presence of a signal peptide was predicted using SignalP online tool in all proteins but not in MSP4, MSP6, Ralp1, RESA, Rh5, and Ron2. Signal peptides destine a protein towards a secretory route and for different functions including secretory-excretory antigen, structural molecule, and/or as a virulence factor [7476]. Based on deep TMHMM tool, only AMA1 and RESA had a single transmembrane domain. In the following, PTM prediction was accomplished for all proteins, displaying a varied number of PTM sites, including phosphorylation mostly in MSP1, Eba175, and Ron2 as well as N- and O-glycosylation as prominent PTMs in Eba175. Of note, palmitoylation was present in all blood-stage vaccine candidates, except of MSP3, MSP6, and Ron2. Recognition of PTM sites is of utmost importance when recombinant production of these proteins is of interest, since appropriate eukaryotic machineries (e.g., yeast, insect, or mammalian) should be preferred as a replacement for bacterial expression systems [77].

Structural analysis of the proteins is a critical step regarding multiepitope vaccine design. In this study, the secondary structure was determined for each submitted protein sequence, rendering random coils as the most frequent secondary structure, followed by alpha helix. Random coils are mostly located at the surface of a protein as protruding structures and such flexible regions may provide possible evidence of epitope identification [78]. Inner structures like alpha helices, also, maintain the whole conformation of a protein while interacting with other molecules [79]. Furthermore, the 3D structure of those stable proteins were predicted using SWISS-MODEL homology modeling server.

Humoral immune responses are the principal tool to combat the blood-stage merozoites of malaria [57]. Although it is said that produced antibody titers are only transiently present in the circulation of affected individuals and decline by next transmission season [80], serological evidences imply that there exists inverse correlation between elevated breadth of antibody specificity and a lower chance of experiencing clinical episodes and a subsequent hospital admission in severe Pf infection [81]. Protective malaria-specific antibodies may ignite effector functions such as merozoite opsonization, phagocytosis, inhibition of cell invasion, respiratory burst activation, and complement-dependent parasite killing [82]. Due to the importance of antibody responses in malaria infection, as the final and effector products of B-cell responses, we predicted potential B-cell epitopes in 14 blood-stage Pf vaccine candidates and screened those shared epitopes in terms of antigenicity, allergenicity, and water solubility. Based on our results, potential B-cell epitopes that were highly antigenic, water soluble, and without allergenicity were predicted in all proteins, most frequently in MSP1, Eba175, Ralp1, Ron2, and Sera proteins, which could be further utilized to construct multiepitope vaccine candidates. The predicted linear B-cell epitopes for AMA1 embedded in its pro-domain24-97 (HQEHTYQQED56-65), DI domain98-305 (NMIPDNDKNSN223-233), and DII domain305-442 (LPTGAFKADRYKS380-392). Our finding is in line with previous studies that remark major targets for malaria inhibitory responses present in DI and DII domains of AMA1 [83]. Also, the serine-rich region of Sera5 antigen is intrinsically unstructured, and it was shown to possess strong antigenicity with protective epitopes [84], as evidenced here in our study (SSSSSSSSSSSSSE221-234). Altogether, Pf blood-stage development can be inhibited in multiple ways by specific antibodies, including direct inhibition of merozoite invasion and/or intraerythrocytic development or through recalling immune effector cells [85].

In the following, CD4+ T-cell responses have been shown to be associated with control of blood-stage parasites; also, IFN-γ has been demonstrated as a potent modulator in harnessing acute infections in rodent models [86]. In the current in silico study, 24 out of 70 predicted epitopes were capable to induce IFN-γ; however, only 10 epitopes were actually antigenic in nature, without allergenicity, and were potent IFN-γ inducers, mostly in Sera5, Ripr, and Eba175 proteins. Additionally, we performed population coverage analysis for the predicted 70 HTL epitopes for blood-stage Pf proteins and showed that a high degree of allele coverage presents in West Africa (99.43%), Central Africa (99.21%), East Africa (99.17%), South America (98.51%), and South Asia (98.92%), with a global coverage rate of 97.17%. Such a good rate of allele coverage is beneficial in future vaccine design strategies in such populations. Notably, Sera5 showed considerable antibody, cytokine, and memory T helper cell production, as shown by in silico simulation; high-level antibody titers against Sera5 have been detected in those individuals inhabiting malaria-endemic areas [87]. This protein is the most robustly expressed antigen among family members in both trophozoite and schizonts stages [88]. Agglutination of merozoites and ruptured schizonts have shown to be enhanced by such antibodies in vitro [87]. Immunization using AMA1 has shown good protection against the infection in in vitro growth inhibition assays and experimental animal models through production of specific antibodies [83]. Moreover, MSP1 could significantly elicit the immune responses, as evidenced in previous studies [8991].

5. Conclusion

In a nutshell, malaria is a devastating parasitic infection with global prevalence, mostly in tropics and subtropics. Despite huge efforts in the field of vaccination, a successful human malaria vaccine is yet to be elucidated. Computer-aided advances have led to the credible and reproducible in silico methods for rational vaccine design in a time- and cost-effective manner. We predicted some preliminary biochemical features along with carefully screened HTL and B-cell epitopes of 14 blood-stage vaccine candidate antigens of Pf. Such information is critically required for subunit (DNA/protein vaccines) and multiepitope vaccine design, which can be further formulated and evaluated using different delivery platforms. It is, also, noteworthy that three steps must be considered in such processes, including (1) choosing appropriate modality for protein/peptide analysis, (2) multiserver prediction using different machine learning techniques for a more robust analysis, and (3) wet lab experiments to validate the output of in silico analysis. Here, we demonstrated different bioinformatics features of blood-stage antigens, mostly in those stable proteins (AMA1, CyRPA, Rh5, MSP1, and Sera5), and showed that among stable proteins Sera5 possessed the dramatically highest antibody titer production, cytokine increase (in particular IFN-γ), and helper memory cell elevation among others. Since AMA1 is a key molecule for merozoite invasion of erythrocytes [92] and sporozoite penetration in hepatocytes [93], targeting this protein, mostly those epitopes in the DI and DII domains, may be beneficial in prevention of preerythrocytic and intraerythrocytic stages. Also, PfMSP1 is a highly antigenic vaccine candidate with promising results based on partial or complete protein sequences. According to the findings represented here, future studies on the multiepitope vaccine design should particularly emphasize on the Sera5, along with MSP1 and AMA-1 vaccine candidates, which have shown potential antigenicity and immunogenicity.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Authors' Contributions

M. Azimi-Resketi and M. Shams conceived the study protocol. M. Azimi-Resketi, N. Kumar, and A. Takalou performed the bioinformatics analyses. S. Heydaryan and R. Esmaeelzadeh Dizaji drafted the manuscript. B. Noroozi Gorgani prepared the revised version of the manuscript. M. Azimi-Resketi and M. Shams read and confirmed the final manuscript draft. All authors read and approved the final version of the manuscript.

Supplementary Materials

Supplementary Materials

Supplementary Figure 1: comparative in silico simulation of elicited antibody titers, based on AMA1, CyRPA, Rh5, MSP1, and Sera5 proteins, using C-ImmSim web server. Supplementary Figure 2: comparative in silico simulation of elicited cytokines, based on AMA1, CyRPA, Rh5, MSP1, and Sera5 proteins, using C-ImmSim web server. Supplementary Figure 3: comparative in silico simulation of T helper cell population state, based on AMA1, CyRPA, Rh5, MSP1, and Sera5 proteins, using C-ImmSim web server.

References

  • 1.Pritam M., Singh G., Swaroop S., Singh A. K., Pandey B., Singh S. P. A cutting-edge immunoinformatics approach for design of multi-epitope oral vaccine against dreadful human malaria. International Journal of Biological Macromolecules . 2020;158:159–179. doi: 10.1016/j.ijbiomac.2020.04.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Singh S. P., Srivastava D., Mishra B. N. Genome-wide identification of novel vaccine candidates for Plasmodium falciparum malaria using integrative bioinformatics approaches. Biotech . 2017;7(5):1–13. doi: 10.1007/s13205-017-0947-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Talapko J., Škrlec I., Alebić T., Jukić M., Včev A. Malaria: the past and the present. Microorganisms . 2019;7(6):p. 179. doi: 10.3390/microorganisms7060179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Nkumama I. N., O’Meara W. P., Osier F. H. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends in Parasitology . 2017;33(2):128–140. doi: 10.1016/j.pt.2016.11.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.von Seidlein L., Peto T. J., Tripura R., et al. Novel approaches to control malaria in forested areas of Southeast Asia. Trends in Parasitology . 2019;35(6):388–398. doi: 10.1016/j.pt.2019.03.011. [DOI] [PubMed] [Google Scholar]
  • 6.Milner D. A. Malaria pathogenesis. Cold Spring Harbor Perspectives in Medicine . 2018;8(1, article a025569) doi: 10.1101/cshperspect.a025569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Cohee L. M., Opondo C., Clarke S. E., et al. Preventive malaria treatment among school-aged children in sub-Saharan Africa: a systematic review and meta-analyses. The Lancet Global Health . 2020;8(12):e1499–e1511. doi: 10.1016/S2214-109X(20)30325-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Ouji M., Augereau J.-M., Paloque L., Benoit-Vical F. Plasmodium falciparum resistance to artemisinin-based combination therapies: a sword of Damocles in the path toward malaria elimination. Parasite . 2018;25:p. 24. doi: 10.1051/parasite/2018021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Pazhayam N. M., Chhibber-Goel J., Sharma A. New leads for drug repurposing against malaria. Drug Discovery Today . 2019;24(1):263–271. doi: 10.1016/j.drudis.2018.08.006. [DOI] [PubMed] [Google Scholar]
  • 10.Price R. I., Van Vugt M., Phaipun L., et al. Adverse effects in patients with acute falciparum malaria treated with artemisinin derivatives. The American Journal of Tropical Medicine and Hygiene . 1999;60(4):547–555. doi: 10.4269/ajtmh.1999.60.547. [DOI] [PubMed] [Google Scholar]
  • 11.Moorthy V. S., Newman R. D., Okwo-Bele J.-M. Malaria vaccine technology roadmap. The Lancet . 2013;382(9906):1700–1701. doi: 10.1016/S0140-6736(13)62238-2. [DOI] [PubMed] [Google Scholar]
  • 12.Ouattara A., Laurens M. B. Vaccines against malaria. Clinical Infectious Diseases . 2015;60(6):930–936. doi: 10.1093/cid/ciu954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Duffy P. E., Sahu T., Akue A., Milman N., Anderson C. Pre-erythrocytic malaria vaccines: identifying the targets. Expert Review of Vaccines . 2012;11(10):1261–1280. doi: 10.1586/erv.12.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Richards J. S., Beeson J. G. The future for blood-stage vaccines against malaria. Immunology and Cell Biology . 2009;87(5):377–390. doi: 10.1038/icb.2009.27. [DOI] [PubMed] [Google Scholar]
  • 15.Sagara I., Healy S. A., Assadou M. H., et al. Safety and immunogenicity of Pfs25H-EPA/Alhydrogel, a transmission-blocking vaccine against _Plasmodium falciparum_ : a randomised, double-blind, comparator-controlled, dose-escalation study in healthy Malian adults. The Lancet Infectious Diseases . 2018;18(9):969–982. doi: 10.1016/S1473-3099(18)30344-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Barry A. E., Arnott A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Frontiers in Immunology . 2014;5:p. 359. doi: 10.3389/fimmu.2014.00359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Mideo N., Reece S. E., Smith A. L., Metcalf C. J. E. The Cinderella syndrome: why do malaria-infected cells burst at midnight? Trends in Parasitology . 2013;29(1):10–16. doi: 10.1016/j.pt.2012.10.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Cohen S., McGregor I., Carrington S. Gamma-globulin and acquired immunity to human malaria. Nature . 1961;192(4804):733–737. doi: 10.1038/192733a0. [DOI] [PubMed] [Google Scholar]
  • 19.Richards J. S., Arumugam T. U., Reiling L., et al. Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. The Journal of Immunology . 2013;191(2):795–809. doi: 10.4049/jimmunol.1300778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Bagai U., Pawar A. A blood stage fraction of _Plasmodium berghei_ induces protective and long lasting immune response in BALB/c mice. Parasitology International . 2013;62(3):329–336. doi: 10.1016/j.parint.2012.10.002. [DOI] [PubMed] [Google Scholar]
  • 21.Kamali A. N., Marín-García P., Azcárate I. G., Puyet A., Diez A., Bautista J. M. Experimental Immunization Based onPlasmodiumAntigens Isolated by Antibody Affinity. Journal of Immunology Research . 2015;2015:11. doi: 10.1155/2015/723946.723946 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Narum D. L., Ogun S. A., Thomas A. W., Holder A. A. Immunization with parasite-derived apical membrane antigen 1 or passive immunization with a specific monoclonal antibody protects BALB/c mice against lethal Plasmodium yoelii yoelii YM blood-stage infection. Infection and Immunity . 2000;68(5):2899–2906. doi: 10.1128/IAI.68.5.2899-2906.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Petritus P. M., Burns J. M. Suppression of lethal Plasmodium yoelii malaria following protective immunization requires antibody-, IL-4-, and IFN-γ-dependent responses induced by vaccination and/or challenge infection. The Journal of Immunology . 2008;180(1):444–453. doi: 10.4049/jimmunol.180.1.444. [DOI] [PubMed] [Google Scholar]
  • 24.Genton B., Betuela I., Felger I., et al. A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1-2b trial in Papua New Guinea. The Journal of Infectious Diseases . 2002;185(6):820–827. doi: 10.1086/339342. [DOI] [PubMed] [Google Scholar]
  • 25.Menon V., Kapulu M. C., Taylor I., et al. Assessment of antibodies induced by multivalent transmission-blocking malaria vaccines. Frontiers in Immunology . 2018;8:p. 1998. doi: 10.3389/fimmu.2017.01998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Olugbile S., Villard V., Bertholet S., et al. Malaria vaccine candidate: design of a multivalent subunit α-helical coiled coil poly-epitope. Vaccine . 2011;29(40):7090–7099. doi: 10.1016/j.vaccine.2011.06.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Naung M. T., Martin E., Munro J., et al. Global diversity and balancing selection of 23 leading Plasmodium falciparum candidate vaccine antigens. PLoS Computational Biology . 2022;18(2, article e1009801) doi: 10.1371/journal.pcbi.1009801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.McCullers J. A., Dunn J. D. Advances in vaccine technology and their impact on managed care. Pharmacy and Therapeutics . 2008;33(1):35–41. [PMC free article] [PubMed] [Google Scholar]
  • 29.Skwarczynski M., Chandrudu S., Rigau-Planella B., et al. Progress in the development of subunit vaccines against malaria. Vaccines . 2020;8(3):p. 373. doi: 10.3390/vaccines8030373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Kardani K., Bolhassani A., Namvar A. An overview of in silico vaccine design against different pathogens and cancer. Expert Review of Vaccines . 2020;19(8):699–726. doi: 10.1080/14760584.2020.1794832. [DOI] [PubMed] [Google Scholar]
  • 31.Consortium U. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research . 2019;47(D1):D506–D515. doi: 10.1093/nar/gky1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Doytchinova I. A., Flower D. R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics . 2007;8(1):p. 4. doi: 10.1186/1471-2105-8-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Magnan C. N., Zeller M., Kayala M. A., et al. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics . 2010;26(23):2936–2943. doi: 10.1093/bioinformatics/btq551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Dimitrov I., Naneva L., Doytchinova I., Bangov I. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics . 2014;30(6):846–851. doi: 10.1093/bioinformatics/btt619. [DOI] [PubMed] [Google Scholar]
  • 35.Dimitrov I., Bangov I., Flower D. R., Doytchinova I. AllerTOP v. 2—a server for in silico prediction of allergens. Journal of Molecular Modeling . 2014;20(6):p. 2278. doi: 10.1007/s00894-014-2278-5. [DOI] [PubMed] [Google Scholar]
  • 36.Hebditch M., Carballo-Amador M. A., Charonis S., Curtis R., Warwicker J. Protein–Sol: a web tool for predicting protein solubility from sequence. Bioinformatics . 2017;33(19):3098–3100. doi: 10.1093/bioinformatics/btx345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R. D., Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research . 2003;31(13):3784–3788. doi: 10.1093/nar/gkg563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Teufel F., Almagro Armenteros J. J., Johansen A. R., et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature biotechnology . 2022;9(6):1–3. doi: 10.1038/s41587-021-01156-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Hallgren J., Tsirigos K. D., Pedersen M. D., et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks . bioRxiv; 2022. [Google Scholar]
  • 40.Thumuluri V., Almagro Armenteros J. J., Johansen A. R., Nielsen H., Winther O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Research . 2022;50(W1):W228–W234. doi: 10.1093/nar/gkac278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Garnier J., Gibrat J.-F., Robson B. [32] GOR method for predicting protein secondary structure from amino acid sequence. Methods in Enzymology . 1996;266:540–553. doi: 10.1016/S0076-6879(96)66034-0. [DOI] [PubMed] [Google Scholar]
  • 42.Biasini M., Bienert S., Waterhouse A., et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research . 2014;42(W1):W252–W258. doi: 10.1093/nar/gku340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Saha S., Raghava G. P. S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Function, and Bioinformatics . 2006;65(1):40–48. doi: 10.1002/prot.21078. [DOI] [PubMed] [Google Scholar]
  • 44.El-Manzalawy Y., Dobbs D., Honavar V. Predicting linear B-cell epitopes using string kernels. Journal of Molecular Recognition . 2008;21(4):243–255. doi: 10.1002/jmr.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Jespersen M. C., Peters B., Nielsen M., Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research . 2017;45(W1):W24–W29. doi: 10.1093/nar/gkx346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Lear S., Cobb S. L. Pep-Calc. com: a set of web utilities for the calculation of peptide and peptoid properties and automatic mass spectral peak assignment. Journal of Computer-Aided Molecular Design . 2016;30(3):271–277. doi: 10.1007/s10822-016-9902-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Rapin N., Lund O., Bernaschi M., Castiglione F. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS One . 2010;5(4, article e9862) doi: 10.1371/journal.pone.0009862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Singh G., Pritam M., Banerjee M., Singh A. K., Singh S. P. Genome based screening of epitope ensemble vaccine candidates against dreadful visceral leishmaniasis using immunoinformatics approach. Microbial Pathogenesis . 2019;136, article 103704 doi: 10.1016/j.micpath.2019.103704. [DOI] [PubMed] [Google Scholar]
  • 49.Matz J. M., Beck J. R., Blackman M. J. The parasitophorous vacuole of the blood-stage malaria parasite. Nature Reviews Microbiology . 2020;18(7):379–391. doi: 10.1038/s41579-019-0321-3. [DOI] [PubMed] [Google Scholar]
  • 50.Delany I., Rappuoli R., De Gregorio E. Vaccines for the 21st century. EMBO Molecular Medicine . 2014;6(6):708–720. doi: 10.1002/emmm.201403876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.D’Amico C., Fontana F., Cheng R., Santos H. A. J. D. Development of vaccine formulations: past, present, and future. Drug Delivery and Translational Research . 2021;11(2):353–372. doi: 10.1007/s13346-021-00924-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Luscombe N. M., Greenbaum D., Gerstein M. What is bioinformatics? An introduction and overview. Yearbook of Medical Informatics . 2001;10(1):83–100. doi: 10.1055/s-0038-1638103. [DOI] [PubMed] [Google Scholar]
  • 53.Parvizpour S., Pourseif M. M., Razmara J., Rafi M. A., Omidi Y. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches. Drug Discovery Today . 2020;25(6):1034–1042. doi: 10.1016/j.drudis.2020.03.006. [DOI] [PubMed] [Google Scholar]
  • 54.Tuteja R. Malaria − an overview. The FEBS Journal . 2007;274(18):4670–4679. doi: 10.1111/j.1742-4658.2007.05997.x. [DOI] [PubMed] [Google Scholar]
  • 55.Delany I., Rappuoli R., Seib K. L. Vaccines, reverse vaccinology, and bacterial pathogenesis. Cold Spring Harbor Perspectives in Medicine . 2013;3(5, article a012476) doi: 10.1101/cshperspect.a012476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Heide J., Vaughan K. C., Sette A., Jacobs T., Schulze zur Wiesch J. Comprehensive review of human Plasmodium falciparum-specific CD8+ T cell epitopes. Frontiers in Immunology . 2019;10:p. 397. doi: 10.3389/fimmu.2019.00397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Silveira E. L., Dominguez M. R., Soares I. S. To B or not to B: understanding B cell responses in the development of malaria infection. Frontiers in immunology . 2018;9:p. 2961. doi: 10.3389/fimmu.2018.02961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Asghari A., Nourmohammadi H., Majidiani H., Shariatzadeh S. A., Shams M., Montazeri F. _In silico_ analysis and prediction of immunogenic epitopes for pre- erythrocytic proteins of the deadly _Plasmodium falciparum_. Infection, Genetics and Evolution . 2021;93, article 104985 doi: 10.1016/j.meegid.2021.104985. [DOI] [PubMed] [Google Scholar]
  • 59.Mian S. Y., Somanathan A., Chaddha K., et al. Plasmodium falciparum cysteine-rich protective antigen (CyRPA) elicits detectable levels of invasion-inhibitory antibodies during natural infection in humans. Immunity . 2022;90(1):p. e00377. doi: 10.1128/IAI.00377-21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Tolia N. H., Enemark E. J., Sim B. K. L., Joshua-Tor L. Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite _Plasmodium falciparum_. Cell . 2005;122(2):183–193. doi: 10.1016/j.cell.2005.05.033. [DOI] [PubMed] [Google Scholar]
  • 61.Sim B., Orlandi P. A., Haynes J. D., et al. Primary structure of the 175K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoite invasion. The Journal of Cell Biology . 1990;111(5):1877–1884. doi: 10.1083/jcb.111.5.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Lin C. S., Uboldi A. D., Marapana D., et al. The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by _Plasmodium falciparum_. Journal of Biological Chemistry . 2014;289(37):25655–25669. doi: 10.1074/jbc.M114.586495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Ito D., Hasegawa T., Miura K., et al. RALP1 is a rhoptry neck erythrocyte-binding protein of Plasmodium falciparum merozoites and a potential blood-stage vaccine candidate antigen. Infection and Immunity . 2013;81:4290–4298. doi: 10.1128/iai.00690-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Siddique A., Ahlborg N., Flyg B. W., Perlmann P., Berzins K. Antibodies to sequences in a non-repeat region of Plasmodium falciparum antigen Pf155/RESA inhibit either cytoadherence or parasite growth in vitro. Parasitology . 1998;117(3):209–216. doi: 10.1017/S0031182098003023. [DOI] [PubMed] [Google Scholar]
  • 65.Collins W. E., Anders R. F., Pappaioanou M., et al. Immunization of _Aotus_ monkeys with recombinant proteins of an erythrocyte surface antigen of _Plasmodium falciparum_. Nature . 1986;323(6085):259–262. doi: 10.1038/323259a0. [DOI] [PubMed] [Google Scholar]
  • 66.Ord R. L., Caldeira J. C., Rodriguez M., et al. A malaria vaccine candidate based on an epitope of the Plasmodium falciparum RH5 protein. Malaria Journal . 2014;13(1):1–9. doi: 10.1186/1475-2875-13-326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Ragotte R. J., Higgins M. K., Draper S. J. The RH5-CyRPA-Ripr complex as a malaria vaccine target. Trends in Parasitology . 2020;36(6):545–559. doi: 10.1016/j.pt.2020.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Hossain M. E., Dhawan S., Mohmmed A. The cysteine-rich regions of Plasmodium falciparum RON2 bind with host erythrocyte and AMA1 during merozoite invasion. Parasitology Research . 2012;110(5):1711–1721. doi: 10.1007/s00436-011-2690-z. [DOI] [PubMed] [Google Scholar]
  • 69.Miller S. K., Good R. T., Drew D. R., et al. A subset of _Plasmodium falciparum SERA_ genes are expressed and appear to play an important role in the erythrocytic cycle. Journal of Biological Chemistry . 2002;277(49):47524–47532. doi: 10.1074/jbc.M206974200. [DOI] [PubMed] [Google Scholar]
  • 70.McColl D. J., Anders R. F. Conservation of structural motifs and antigenic diversity in the Plasmodium falciparum merozoite surface protein-3 (MSP-3)1Note: Nucleotide sequence data reported in this manuscript are available in the EMBL, GenBank™ and DDJB data bases under the accession numbers L07944, L28825, U08851 and U08852.1. Molecular and Biochemical Parasitology . 1997;90(1):21–31. doi: 10.1016/S0166-6851(97)00130-8. [DOI] [PubMed] [Google Scholar]
  • 71.Alves K. C. S., Guimarães J. M., Almeida M. E. M., Mariúba L. A. M. Plasmodium falciparum merozoite surface protein 3 as a vaccine candidate: a brief review. Revista do Instituto de Medicina Tropical de São Paulo . 2022;64 doi: 10.1590/s1678-9946202264023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Wang L., Marshall V. M., Coppel R. L. Limited polymorphism of the vaccine candidate merozoite surface protein 4 of Plasmodium falciparum. Molecular and biochemical parasitology . 2002;120(2):301–303. doi: 10.1016/S0166-6851(01)00457-1. [DOI] [PubMed] [Google Scholar]
  • 73.Nourmohammadi H., Javanmardi E., Shams M., et al. Multi-epitope vaccine against cystic echinococcosis using immunodominant epitopes from EgA31 and EgG1Y162 antigens. Informatics in Medicine Unlocked . 2020;21, article 100464 doi: 10.1016/j.imu.2020.100464. [DOI] [Google Scholar]
  • 74.Asghari A., Majidiani H., Fatollahzadeh M., et al. Insights into the biochemical features and immunogenic epitopes of common bradyzoite markers of the ubiquitous _Toxoplasma gondii_. Infection, Genetics and Evolution . 2021;95, article 105037 doi: 10.1016/j.meegid.2021.105037. [DOI] [PubMed] [Google Scholar]
  • 75.Can H., Alak S. E., Köseoğlu A. E., Döşkaya M., Ün C. Do _Toxoplasma gondii_ apicoplast proteins have antigenic potential? An _in silico_ study. Computational Biology and Chemistry . 2020;84, article 107158 doi: 10.1016/j.compbiolchem.2019.107158. [DOI] [PubMed] [Google Scholar]
  • 76.Jafari E., Mahmoodi S. Design, expression, and purification of a multi-epitope vaccine against Helicobacter pylori based on Melittin as an adjuvant. Microbial Pathogenesis . 2021;157, article 104970 doi: 10.1016/j.micpath.2021.104970. [DOI] [PubMed] [Google Scholar]
  • 77.Hansson M., Nygren P. A., Ståhl S. Design and production of recombinant subunit vaccines. Biotechnology and Applied Biochemistry . 2000;32(2):95–107. doi: 10.1042/BA20000034. [DOI] [PubMed] [Google Scholar]
  • 78.Wang Y. Bioinformatics analysis of NetF proteins for designing a multi-epitope vaccine against Clostridium perfringens infection. Genetics and Evolution . 2020;85, article 104461 doi: 10.1016/j.meegid.2020.104461. [DOI] [PubMed] [Google Scholar]
  • 79.Enayatkhani M., Hasaniazad M., Faezi S., et al. Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: an in silico study. Journal of Biomolecular Structure and Dynamics . 2021;39(8):2857–2872. doi: 10.1080/07391102.2020.1756411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Hviid L., Barfod L., Fowkes F. J. Trying to remember: immunological B cell memory to malaria. Trends in Parasitology . 2015;31(3):89–94. doi: 10.1016/j.pt.2014.12.009. [DOI] [PubMed] [Google Scholar]
  • 81.Osier F. H., Fegan G., Polley S. D., et al. Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. Infection and Immunity . 2008;76(5):2240–2248. doi: 10.1128/IAI.01585-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Hill D. L., Schofield L., Wilson D. W. IgG opsonization of merozoites: multiple immune mechanisms for malaria vaccine development. International Journal for Parasitology . 2017;47(10-11):585–595. doi: 10.1016/j.ijpara.2017.05.004. [DOI] [PubMed] [Google Scholar]
  • 83.Remarque E. J., Faber B. W., Kocken C. H., Thomas A. W. Apical membrane antigen 1: a malaria vaccine candidate in review. Trends in Parasitology . 2008;24(2):74–84. doi: 10.1016/j.pt.2007.12.002. [DOI] [PubMed] [Google Scholar]
  • 84.Yagi M., Bang G., Tougan T., et al. Protective epitopes of the Plasmodium falciparum SERA5 malaria vaccine reside in intrinsically unstructured N-terminal repetitive sequences. PLoS One . 2014;9, article e98460 doi: 10.1371/journal.pone.0098460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Miura K. Progress and prospects for blood-stage malaria vaccines. Expert Review of Vaccines . 2016;15(6):765–781. doi: 10.1586/14760584.2016.1141680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Perez-Mazliah D., Langhorne J. CD4 T-cell subsets in malaria: TH1/TH2 revisited. Frontiers in Immunology . 2015;5:p. 671. doi: 10.3389/fimmu.2014.00671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Palacpac N. M. Q., Arisue N., Tougan T., Ishii K. J., Horii T. Plasmodium falciparum serine repeat antigen 5 (SE36) as a malaria vaccine candidate. Vaccine . 2011;29(35):5837–5845. doi: 10.1016/j.vaccine.2011.06.052. [DOI] [PubMed] [Google Scholar]
  • 88.Aoki S., Li J., Itagaki S., et al. Serine repeat antigen (SERA5) is predominantly expressed among the SERA multigene family of _Plasmodium falciparum_ , and the acquired antibody titers correlate with serum inhibition of the parasite growth. Journal of Biological Chemistry . 2002;277(49):47533–47540. doi: 10.1074/jbc.M207145200. [DOI] [PubMed] [Google Scholar]
  • 89.Blank A., Fürle K., Jäschke A., et al. Immunization with full-length _Plasmodium falciparum_ merozoite surface protein 1 is safe and elicits functional cytophilic antibodies in a randomized first-in-human trial. npj Vaccines . 2020;5(1):1–15. doi: 10.1038/s41541-020-0160-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Sheehy S. H., Duncan C. J., Elias S. C., et al. Phase Ia clinical evaluation of the _Plasmodium falciparum_ blood-stage antigen MSP1 in ChAd63 and MVA vaccine vectors. 2011;19(12):2269–2276. doi: 10.1038/mt.2011.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Xue X., Ding F., Zhang Q., Pan X., Qu L., Pan W. Stability and potency of the Plasmodium falciparum MSP1-19/AMA-1(III) chimeric vaccine candidate with Montanide ISA720 adjuvant. Vaccine . 2010;28:3152–3158. doi: 10.1016/j.vaccine.2010.02.054. [DOI] [PubMed] [Google Scholar]
  • 92.Triglia T., Healer J., Caruana S. R., et al. Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Molecular Microbiology . 2000;38(4):706–718. doi: 10.1046/j.1365-2958.2000.02175.x. [DOI] [PubMed] [Google Scholar]
  • 93.Silvie O., Franetich J. F., Charrin S., et al. A role for apical membrane antigen 1 during invasion of hepatocytes by _Plasmodium falciparum_ sporozoites. The Journal of Biological Chemistry . 2004;279(10):9490–9496. doi: 10.1074/jbc.M311331200. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary Materials

Supplementary Figure 1: comparative in silico simulation of elicited antibody titers, based on AMA1, CyRPA, Rh5, MSP1, and Sera5 proteins, using C-ImmSim web server. Supplementary Figure 2: comparative in silico simulation of elicited cytokines, based on AMA1, CyRPA, Rh5, MSP1, and Sera5 proteins, using C-ImmSim web server. Supplementary Figure 3: comparative in silico simulation of T helper cell population state, based on AMA1, CyRPA, Rh5, MSP1, and Sera5 proteins, using C-ImmSim web server.

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon request.


Articles from BioMed Research International are provided here courtesy of Wiley

RESOURCES