Skip to main content
Journal of Extracellular Vesicles logoLink to Journal of Extracellular Vesicles
. 2022 Oct 22;11(10):e12270. doi: 10.1002/jev2.12270

EV‐ADD, a database for EV‐associated DNA in human liquid biopsy samples

Thupten Tsering 1, Mingyang Li 1, Yunxi Chen 1, Amélie Nadeau 1, Alexander Laskaris 1, Mohamed Abdouh 1, Prisca Bustamante 1, Julia V Burnier 1,2,3,
PMCID: PMC9587709  PMID: 36271888

Abstract

Extracellular vesicles (EVs) play a key role in cellular communication both in physiological conditions and in pathologies such as cancer. Emerging evidence has shown that EVs are active carriers of molecular cargo (e.g. protein and nucleic acids) and a powerful source of biomarkers and targets. While recent studies on EV‐associated DNA (EV‐DNA) in human biofluids have generated a large amount of data, there is currently no database that catalogues information on EV‐DNA. To fill this gap, we have manually curated a database of EV‐DNA data derived from human biofluids (liquid biopsy) and in‐vitro studies, called the Extracellular Vesicle‐Associated DNA Database (EV‐ADD). This database contains validated experimental details and data extracted from peer‐reviewed published literature. It can be easily queried to search for EV isolation methods and characterization, EV‐DNA isolation techniques, quality validation, DNA fragment size, volume of starting material, gene names and disease context. Currently, our database contains samples representing 23 diseases, with 13 different types of EV isolation techniques applied on eight different human biofluids (e.g. blood, saliva). In addition, EV‐ADD encompasses EV‐DNA data both representing the whole genome and specifically including oncogenes, such as KRAS, EGFR, BRAF, MYC, and mitochondrial DNA (mtDNA). An EV‐ADD data metric system was also integrated to assign a compliancy score to the MISEV guidelines based on experimental parameters reported in each study. While currently available databases document the presence of proteins, lipids, RNA and metabolites in EVs (e.g. Vesiclepedia, ExoCarta, ExoBCD, EVpedia, and EV‐TRACK), to the best of our knowledge, EV‐ADD is the first of its kind to compile all available EV‐DNA datasets derived from human biofluid samples. We believe that this database provides an important reference resource on EV‐DNA‐based liquid biopsy research, serving as a learning tool and to showcase the latest developments in the EV‐DNA field. EV‐ADD will be updated yearly as newly published EV‐DNA data becomes available and it is freely available at www.evdnadatabase.com.

Keywords: cfDNA, database, EV‐ADD, EV‐DNA, extracellular vesicles, liquid biopsy

1. BACKGROUND

Extracellular material, such as extracellular vesicles (EVs), proteins and nucleic acids, emitted from cells are now recognized as important mediators in normal physiology and in disease states. Such molecules can be easily isolated and purified from biofluids, such as amniotic fluid, ascites fluid, bile, blood, breast milk, cerebrospinal fluid, pleural effusion, saliva, semen, and urine, making them important candidates as biomarkers in many contexts, including cellular homeostasis, infectious diseases, neonatal screening, and most studied: cancer. Cell‐free DNA (cfDNA) (Bustamante et al., 2021; Keller et al., 2021; Osumi et al., 2019) has been identified and isolated from liquid biopsies, and shows great potential to screen, detect and monitor various cancers. This is reflected in the growing number of liquid biopsy tests approved by the Food and Drug Administration (FDA), (i.e. Epi proColon (Nian et al., 2017), cobas EGFR test v2 (Kwapisz, 2017)). cfDNA is emitted during senescence, necrosis, cell death (Rostami et al., 2020), and recently evidence has emerged of active secretion (Bronkhorst et al., 2016; Jeppesen et al., 2019; Stroun et al., 2001; Yokoi et al., 2019). Moreover, studies have shown that DNA can be associated with EVs, which has also garnered a lot of attention in the field of liquid biopsy biomarkers (Malkin & Bratman, 2020).

EVs are a highly heterogeneous group of nanosized phospholipid bilayered membrane entities emitted by virtually all tissue cells. Aside from being isolated from the tissue of origin, these particles are shed and can be isolated with relatively high purity from various human biofluids (Crescitelli et al., 2021; Raposo & Stoorvogel, 2013; Yáñez‐Mó et al., 2015). They act as messengers between cells and tissues by carrying molecular cargo, such as RNA, DNA, membrane‐anchored and cytosolic proteins, lipids, and metabolites inside and on the surface of the vesicle (Colombo et al., 2014; Neuberger et al., 2021). EVs are categorized as large/medium and small structures based on their biogenesis, size and cargo. Large/medium EVs include oncosomes, apoptotic bodies, exopheres, migrasomes, and microvesicles, while small EVs include exosomes (exosome‐large, 90–120 nm and exosome‐small, 60–80 nm) and small EV clusters (sEVC) (Ma et al., 2015; Malkin & Bratman, 2020; Théry et al., 2018; Valcz et al., 2019; Witwer & Théry, 2019; Zhang et al., 2018). The list of EV subtypes continues to grow as the field progresses and the above list is not exhaustive, but it provides evidence of EV heterogeneity. Recently, distinct nanoparticles named ‘exomeres’ (size < 50 nm), have been discovered using asymmetric‐flow field‐flow fractionation (AF4) (Zhang et al., 2018, 2019). Exomeres are not the only small non‐EV nanoparticles. More recently, supermeres (Clancy et al., 2021; Zhang et al., 2021) and chromatimeres were also discovered (Choi et al., 2019). More comprehensive review articles on EV subtypes are reported elsewhere (Doyle & Wang, 2019; György et al., 2011; Margolis & Sadovsky, 2019; Yáñez‐Mó et al., 2015; Zaborowski et al., 2015). In this manuscript, we will use EVs as a generic terminology for any nano‐sized particles emitted naturally from cells (Théry et al., 2018).

EVs can entrap biomolecules and mediate intercellular communication under various physiological and pathological conditions (Yáñez‐Mó et al., 2015). While much of the literature has focused on proteins and RNA cargo in EVs, numerous studies have reported the presence of DNA either associated with the surface of EVs or within their lumen. To our knowledge, the first report of EV carrying genomic DNA and mitochondrial DNA (mtDNA) in human plasma was published in 2013 (Cai et al., 2013), followed by another report describing the presence of mutant KRAS and TP53 DNA in exosomes from cancer patient serum (Kahlert et al., 2014). Since then, numerous studies have published on EV‐associated DNA (EV‐DNA) in cell culture (Lee et al., 2014; Thakur et al., 2014) and biological fluids (Allenson et al., 2017; Fernando et al., 2018; Garcia‐Silva et al., 2019; Jin et al., 2016; San Lucas et al., 2016), the latter making EV‐DNA a promising candidate for liquid biopsy (Chang et al., 2020; Garcia‐Silva et al., 2021; Malkin & Bratman, 2020). EVs are ubiquitously present in biological fluids and carry large fragments of intact DNA due to lipid encapsulation providing protection against DNase‐induced degradation (Cai et al., 2013; Degli Esposti et al., 2021; Fernando et al., 2018; Kahlert et al., 2014; Vagner et al., 2018). This suggests that EV‐DNA presents advantages compared to cfDNA (Garcia‐Silva et al., 2021), therefore the combination of EV‐DNA and cfDNA analysis may improve assay sensitivity and specificity (Castellanos‐rizaldos et al., 2018; Zocco et al., 2020). EV‐DNA is being investigated in a number of applications. Recent studies suggested that exosome DNA isolated from maternal plasma can be used to predict fetal sex and Rhesus D (RHD) genotype (Yaşa et al., 2021). In cancer patients, bioactive DNA from EVs is being investigated as a biomarker, as a means to monitor disease and treatment response in liquid biopsy (Choi et al., 2019; Yokoi et al., 2019) and to detect mutations to differentiate cancer patients from non‐cancer patients (Allenson et al., 2017; Bernard et al., 2019; Yang et al., 2017). Data has shown that DNA contained in human serum‐derived EVs spans the entire genome and reflects the mutational status of the parental tumor (Bart et al., 2021; Degli Esposti et al., 2021; Kahlert et al., 2014; Wang et al., 2018). Moreover, studies have demonstrated the utility of EV‐DNA as a biomarker in cancer. Indeed, next‐generation sequencing of EV‐DNA for common hotspot mutations (BRAF, EGFR and KRAS) has shown higher sensitivity compared to tumor and cfDNA derived from plasma. Fernando et al., reported that more than 93% of total cfDNA in plasma is located in exosomes (Fernando et al., 2017). In another study, ddPCR of EV‐DNA outperformed cfDNA for the detection of KRAS mutant copies in pancreatic cancer patients (Allenson et al., 2017). Moreover, EVs isolated from early‐stage pancreatic cancer plasma demonstrated that KRAS mutant copies were significantly higher in small EVs compared to the other seven fractions of blood (red blood cells, white blood cells, platelets, apoptotic bodies, large EVs, soluble proteins, and flowthrough/EV free‐supernatant) (Hagey et al., 2021). Lastly, studies have shown that as little as 0.2–1 ml of plasma can be used for the detection of hotspot mutations in EV‐DNA (Allenson et al., 2017; Möhrmann et al., 2018). EV‐DNA, therefore, allows promising liquid biopsy approaches for diagnosis (Castellanos‐rizaldos et al., 2018; Helmig et al., 2015; Keserű et al., 2019; Sansone et al., 2017), prognosis (Allenson et al., 2017; Bernard et al., 2019) and monitoring of treatment response in many cancers (Möhrmann et al., 2018), as well as real‐time evaluation of disease development (Wang et al., 2021).

The topology of EV‐DNA is also under investigation, and the true nature of DNA packaging and localization is not yet known (Malkin & Bratman, 2020). While the early EV studies mainly reported EV‐DNA inside EV lumens (Kahlert et al., 2014; Lazaro‐Ibanez et al., 2014; Lee et al., 2014; Takahashi et al., 2017; Thakur et al., 2014), recent studies found EV‐DNA was predominantly on the surface of EVs, particularly in the small EVs (Lázaro‐Ibáñez et al., 2019; Liu et al., 2022; Maire et al., 2021), and internal DNA was mainly in large EVs (Vagner et al., 2018). Using high‐resolution iodixanol density fractionation, Lázaro‐Ibáñez and colleagues divided small EVs into high density (HD) and low density (LD) and found that most of the DNA was associated with the HD fraction (Lázaro‐Ibáñez et al., 2019), which was considered as non‐canonical exosomes or non‐vesicular materials that originated from subcellular organelles (Liu et al., 2022). HD fractions also contained larger DNA fragments than LD fractions. Whether the majority of EV‐DNA is ssDNA or dsDNA is still under debate (Balaj et al., 2011; Lázaro‐Ibáñez et al., 2019; Liu et al., 2022; Thakur et al., 2014). Atomic force microscopy or specific enzymatic treatment are recommended for more precise determination of ssDNA vs dsDNA ratio (Lázaro‐Ibáñez et al., 2019; Liu et al., 2022). Furthermore, genotoxic drug treatment (Choi et al., 2019; Liu et al., 2022) and antibiotics may influence EV‐DNA emission. For example, in‐vitro studies showed that Jurkat and MiaPaCa cell lines treated with antibiotics (ciprofloxacin) emit chromosomal DNA and mtDNA on the surface of exosomes (CD63+ and floating density 1.09 g/ml) (Németh et al., 2017). The surface‐bound chromosomal DNA and DNA binding proteins (histones H2A and H3) mediate exosomal adhesion to extracellular matrix protein (fibronectin) (Németh et al., 2017) and binding to the recipient cell surface (Gladys et al., 2014). The topology of EV‐DNA is associated with specific EV origin, EV size, EV nomenclature, DNA size, DNA type, histone and DNA‐binding proteins. Therefore, taking EV‐DNA topology into account and protecting EV surface DNA from nucleases during EV isolation and characterization is fundamental for yielding accurate results in EV‐DNA research (Lázaro‐Ibáñez et al., 2019; Liu et al., 2022). Finally, a consensus‐building approach is necessary (Malkin & Bratman, 2020) in order to achieve standardization of the above‐mentioned techniques to guarantee the reproducibility of EV cargo characterization, which is especially important in the clinical setting.

Despite the growing interest in EV‐DNA based liquid biopsy, the functional significance of EV‐DNA derived from biofluids is largely unknown. As EV‐DNA is largely a result of cell death mechanisms, it potentially plays a role in maintaining physiological hemostasis by acting as a mechanism to expel damaged DNA (Takahashi et al., 2017). Studies from our group and others have suggested that cancer EVs can exert effects on recipient cells through transfer of cargo (Abdouh et al., 2019; Cai et al., 2013). Reports have shown DNA integration into the genomes of recipient cells. Lee et al. demonstrated the transfer of full‐length double‐stranded oncogenic H‐RAS DNA via EVs, resulting in changes to recipient cell behaviour (Lee et al., 2014). However, the biological role of EVs is still under investigation. A seminal work from the David Lyden group demonstrated that exosomes derived from pancreatic cancer cells induce pre‐metastatic niche formation in an in‐vivo model and facilitate tumor progression (Costa‐Silva et al., 2015).

The potential of EV‐based liquid biopsy is still being explored, and the number of review articles and experimental data published on EVs has increased in multiple scientific fields, particularly in the field of cancer biology (Supplementary Figure 1). EV‐associated miRNA, mRNA and proteins are already established and considered as promising candidates to serve as biomarkers (reviewed in (Janas et al., 2015; Shen et al., 2020; Tamura et al., 2021)). This has led to the development of EV databases such as ExoCarta (Keerthikumar et al., 2016), Vesiclepedia (Kalra et al., 2012; Pathan et al., 2018), EVpedia (Kim et al., 2013), and EV‐TRACK (EV‐TRACK Consortium et al., 2017) that have been developed to uniformize and facilitate research on EV‐associated proteins, RNA, lipids, and metabolites. In contrast, EV‐DNA experimental data remains buried in published literature. As more data is generated on EV‐DNA, it will be ever more imperative that available datasets are rendered computer indexable, to allow for rapid tracking and facilitate access to users. Currently, there are no online resources on the collection of EV‐DNA information based on manually curated literature. To address this need, we have compiled all currently published EV‐DNA data from human liquid biopsy samples into a publicly available online database, named the Extracellular Vesicle ‐ Associated DNA Database (EV‐ADD), which will serve as a repository of EV‐associated DNA data derived from human biofluids. The database was complemented with studies addressing the presence of EV‐DNA in in‐vitro set‐ups. Data were collected using Web of Science and NCBI's PubMed system and literature reviews published in the EV‐DNA field to assure adequate and efficient coverage, and then manually curated into EV‐ADD. Currently, EV‐ADD comprises 13 different types of EV isolation techniques and more than 10 methods of DNA isolation, five assays for EV‐DNA quantification, eight human biofluids types, 23 diseases and healthy control data (Table 1). The database will be expanded as more data is added by EV communities.

TABLE 1.

Data summary of EV‐DNA samples currently included in EV‐ADD

Diseases Acute myeloid leukemia (AML)
Autism spectrum disorder (ASD)
Bladder cancer
Breast cancer
Coronary artery disease
Colorectal cancer
Dermatomyositis
Glioma
Hepatocellular carcinoma
Human Immunodeficiency Virus (HIV)
Late‐stage ovarian cancer
Lung adenocarcinoma
Metastatic colorectal cancer (mCRC)
Metastatic melanoma
Multiple sclerosis
Neuroblastoma
Non‐small cell lung cancer (NSCLC)
Osteosarcoma
Pancreatic ductal adenocarcinoma (PDAC)
Prostate cancer
Sepsis
Squamous cell carcinoma
Urothelial bladder carcinoma (UBC)
Human biofluids Ascites
Bronchoalveolar lavage fluid (BALF)
Lymphatic drainage
Plasma
Pleural effusion
Serum
Sweat
Urine
EV isolation techniques exoEasy kit
ExoLutionTM Plus
ExoQuick Exosome Precipitation Solution
Immunocapture
Lipid nanoprobe functionalized nanostructured silica platform
miRCURY™ Exosome isolation kit
MITEV (Microfluidic Isolation of Tumor‐derived Extracellular Vesicles)
Rapid magnetic beads isolation with lipids based nanoprobes
Size exclusion chromatography
Sucrose density gradient
Total Exosome isolation kit
Ultracentrifugation
Vn96 ME Kit
EV‐DNA isolation methods DNeasy blood & Tissue Kit
ExoLution PlusTM
MagAttract High Molecular Weight DNA kit
Maxwell® RSC ccfDNA Plasma Kit
miRNeasy Micro kit
Phenol‐choloroform, ethanol precipitation
QIAamp Circulating Nucleic Acid Kit
QIAamp DNA Mini Kit
SeleCTEV™ DNA sample‐prep kit 
TIANamp Genomic DNA Kit
DNA detection methods Bioanalyzer
Droplet digital PCR
Nanodrop
Next‐generation sequencing
Quantitative PCR
Qubit
Taqman Copy Number RNase P Detection kit

2. METHODS

2.1. Database content compilation

To obtain comprehensive information on EV‐DNA isolated from in‐vitro (cell culture supernatants) and biofluids of patients and healthy controls, a combination of keywords (Supplementary Table 1) ‘(((extracellular vesicles) OR (exosomes)) OR (microvesicles)) AND (DNA)’ derived from Medical Subject Headings (MeSH) and non‐MeSH terms were searched in the Web of Science and PubMed from January 1980 until June 2022. Of note, human biofluid samples including ascites, bronchoalveolar lavage fluid, cerebrospinal fluids, lymphatic drainage, plasma, pleural effusion, saliva, sweat, and urine were searched individually in both search engines. This filter returned 734 and 428 (total = 963) search results from Web of Science and PubMed, respectively, for the biofluids database. Articles with duplicated PubMed IDs were excluded, and the remaining articles were carefully examined using the title, abstract and full text of each publication. A total of 887 publications were eliminated because they were reviews or did not address human biofluids samples. Finally, we also eliminated an article that was not published in the English language (Figure 1). The list of articles obtained was manually verified, and only those reporting EV‐DNA in human biofluids were included (total = 76 studies). We then manually extracted critical information, particularly the reported methods and variables that may affect the experimental outcome, including volume of biofluids, EV isolation method, EV characterization strategy, EV‐DNA isolation and detection technique, assays used to determine EV‐DNA fragment size, genes used for EV‐DNA detection, enzymatic and detergent treatments (if any), DNA type, disease type and reference to the original paper. These data are then provided as tabular archives in EV‐ADD. If the data was not reported or is missing, EV‐ADD reports ‘Not reported’ or ‘Not tested’, respectively. Moreover, if exosomes were not purified and characterized as per MISEV guidelines, EV‐ADD reports ‘unspecified’ under the EV subtypes column. For the in‐vitro data mining, we used the same keywords ‘(((extracellular vesicles) OR (exosomes)) OR (microvesicles)) AND (DNA)’ without biofluids, and we obtained 1844 (PubMed) and 2152 (Web of Science) articles. To date, we have reviewed 500 in‐vitro studies. From these, we identified 52 eligible studies on EV‐DNA from cell culture supernatant, and these 52 studies have been added to EV‐ADD. In the next update (January 2023), in‐vitro studies will be updated, and in‐vivo studies will be added into the EV‐ADD platform. Lastly, we have integrated a metric system in our database in order to validate and report experimental parameters (EV‐TRACK Consortium et al., 2017), as well as compliancy to the MISEV guidelines (Théry et al., 2018). This system calculates and assigns a percentage designed to score a study on its reporting of experimental procedures and EV characterizations. This system is intended to help the user identify the level of compliance with MISEV 2018 guidelines (Théry et al., 2018). A percentage is generated by assigning different weights to several binary categories (yes/no) that include experimental procedures recommended by MISEV 2018 (Théry et al., 2018). In brief, each study is scored on the reporting of biofluid processing, EV purification and EV‐DNA isolation, and EV characterization. The greater the compliance with the experimental recommendations, the higher the score. A table with the experimental parameters and their weight on the overall score is shown in Supplementary Tables 2, Table 3A and B. Parameters were chosen based on their potential influence on experimental results. We believe that the EV‐ADD scoring system will allow users with an additional screening tool for transparency on EV isolation and characterization protocols. In the future, the EV‐ADD scoring system will continue to evolve and be adapted to the most recent and updated MISEV guidelines (Witwer et al., 2021) (for example, MISEV 2022).

FIGURE 1.

FIGURE 1

Simplified schematic workflow of EV‐ADD. Workflow is presented in three steps: (1) identification of studies on EV‐DNA isolated from in‐vitro and human biofluids samples; (2) screening of data for eligibility in EV‐ADD; and finally (3) inclusion and upload of EV‐DNA data to EV‐ADD. As the EV‐ADD relies on publications from the EV community, clear communication and feedback between researchers and database curators is essential to maintain the EV‐DNA lifecycle.

2.2. Website design

The EV‐ADD website is hosted on an Amazon Web Services (AWS) Lightsail server and it was built using WordPress (WP) as the frontend, and an open‐source content management system written in PHP. MySQL serves as the database to store EV‐DNA information at the backend. The connection between the frontend and the backend is through React.js (an open‐source JavaScript library for graphic components) and WP Data Access. The former provides a user‐friendly graphical search menu and sends user requests to WP Data Access. Upon user request, WP Data Access will filter the database and show the result as a downloadable table. Summarized studies and search results can be downloaded to registered users.

3. RESULTS

3.1. The EV‐ADD user interface allows for searchable criteria of all published EV‐DNA data

EV‐ADD displays data extracted from peer‐reviewed publications on EV‐DNA. Manually extracted from these publications and included in the database are data on the following experimental criteria: type of disease, number of patients enrolled in the study, volume of biofluids, EV isolation method, EV characterization, EV‐DNA isolation technique, EV‐DNA type, EV‐DNA detection method, EV‐DNA fragment size, targeted gene(s), enzymatic treatment, results, applications of the EV‐DNA, and an EV‐ADD score based on the compliancy with MISEV guidelines. These appear on the user interface as filterable and searchable columns (example shown in Figure 2). Moreover, EV‐ADD offers search tools based on keywords such as authors, gene symbols and mutations. We have also included a linked reference to the original paper for each entry.

FIGURE 2.

FIGURE 2

Search results on EV‐ADD. (A) An example of a query for “KRAS gene” as a search criterion in EV‐ADD. (B) The database retrieves data on type of diseases, number of patients, EV‐ADD data score system (% score), type of EV‐DNA detected, source of biofluids, EV‐DNA fragment size, methods of EV isolation, EV purification and characterization, subtypes of EVs, EV‐DNA isolation techniques, EV‐DNA quantification methods, volume of biofluids, enzymatic treatments, reference (Möhrmann et al., 2018), method of DNA detections, results, application, PubMed ID, EV‐TRACK ID and score (if any). NTA = nanoparticle tracking analysis, SEM = scanning electron microscopy, WB = western blot

All the data contained in EV‐ADD are available for free to download to a spreadsheet in Excel or CSV file format. In addition, users can also upload their published data in the database by submitting a form. https://www.evdnadatabase.com/form/. The Form page provides an interactive way of contributing to our datasets by submitting any newly published studies or missing studies. Importantly, before submission of EV‐DNA data, users are encouraged to follow the ISEV and MISEV guidelines and their study should meet the minimum requirements, which include EV biophysical characterization (transmission electron microscope) and EV biochemical characterization (Alix and TSG101), surface tetraspanin marker expression analysis (CD63, CD9 and CD81)), EV quantification (NanoSight), EV negative markers (plasma/serum; APOA1/2, APO B and albumin, urine, Tamm‐Horsfall Protein) (Théry et al., 2018), enzymatic treatment (DNase, RNase and proteinase) and detergent (Triton X‐100 and NP‐40).

3.2. The EV‐ADD currently houses data extracted from 76 papers from eight types of biofluids, spanning 23 different diseases and 52 in‐vitro papers

Up to June 2022, evidence of EV‐DNA from 76 studies performed on human biofluids were deposited in EV‐ADD. Moreover, we have expanded our database with 52 in‐vitro studies and additional studies will be added in the next update (January 2023). Of the more than 50 genes used to detect cfDNA, BRAF, EGFR, KRAS, and TP53 mutations were the most commonly observed gene mutations identified in EV‐DNA isolated from patient liquid biopsy samples (Supplementary Figure 2). This may be explained by the association between hot spot mutations in these genes and various common cancer types (colon cancer, lung cancer and pancreatic cancer). Furthermore, the majority of gene mutations studied are acquired mutations and are involved in cell signalling, oncogenes, tumor suppressors and DNA damage repair. EV‐DNA was detected in ascites, bronchoalveolar lavage fluid (BALF), lymphatic drainage, plasma, pleural effusion, serum, sweat and urine and quantified using Bioanalyzer, NanoDrop, quantitative PCR (qPCR), Qubit and Reverse Transcription PCR (RT‐PCR). Finally, single nucleotide polymorphism, copy number variation and genomic DNA was detected using droplet digital PCR (ddPCR), qPCR, RT‐PCR, targeted tumor gene panel sequencing and next‐generation sequencing (NGS) (Figure 3).

FIGURE 3.

FIGURE 3

(A) An overview of the main functions in the EV‐ADD. Published data on EV‐DNA isolated from human biofluids is manually curated and annotated in a web‐based application in the EV‐ADD which can be searched and sorted based on various categories. (B) EVs can be isolated from human biofluids using (C) various EV purification techniques and (D) EV‐DNA can then be isolated using commercial kits or in‐house protocols. (E) Lastly, EV‐DNA mutations, SNPs and CNVs can be detected using various PCR and sequencing techniques. UC = ultracentrifugation, ddPCR = Droplet Digital PCR, qPCR = Quantitative PCR, RT‐PCR = Reverse Transcription PCR

3.3. EV‐DNA fragment size profile

Studies have shown distinct cfDNA fragmentation patterns between healthy people and cancer patients (Cristiano et al., 2019). Moreover, cfDNA fragment size has emerged as an important tool to increase the sensitivity for detecting circulating tumor DNA (Mouliere et al., 2018) and it may have prognostic (Chen et al., 2021) and diagnostic (Mathios et al., 2021) value in advanced cancer patients. EV‐DNA size distribution profile is reported in 24 of the 76 studies in the EV‐ADD with high fragment size variance between studies (Supplementary Table 4). For example, a study demonstrated that the length of urine EV‐DNA (1593–16,295 bp) and serum EV‐DNA (1508–29,640 bp) are significantly larger than that reported for cfDNA (Zhou et al., 2021). Similar studies have indicated the presence of larger DNA fragments within EVs (Mao et al., 2019; Nguyen et al., 2020; Ruhen et al., 2021). It has been reported that longer EV‐DNA fragments may improve the detection of single nucleotide variations, copy number variations (San Lucas et al., 2016) and insertions/deletions during NGS sequencing performance and bioinformatic analysis (Waldenmaier et al., 2022).

However, other studies reported the presence of shorter DNA fragments (152.4 bp, 160 bp) within EVs, with larger DNA fragments possibly resulting from contamination with apoptotic bodies (Sun et al., 2021; Zhang et al., 2019). The comparison between the above‐mentioned studies is difficult due to different EV isolation methods resulting in purification of various EV subtypes. This problem is further confounded by the use of different biofluids from various cancer types. Moreover, anti‐cancer treatment may also impact EV‐DNA fragment length. In one study captured in EV‐ADD, EV‐DNA from the plasma of an acute myeloid leukemia (AML) patient showed four distinct peaks at 188 bp, 377 bp, 561 bp, and 705 bp before treatment. These peaks disappeared following treatment, with the EV‐DNA length profile resembling that of healthy donors (Kontopoulou et al., 2020). Overall, the above findings demonstrate the potential importance of the new field of EV‐DNA fragmentomics.

3.4. EV‐ADD data scoring system

There has been a great effort from the ISEV community to provide sample preparation and EV isolation standards through the development of the MISEV guidelines. Using this as a reference, we aimed to include a compliance metric based on the reporting of sample preparation, EV isolation and characterization (Supplementary Table 2). This scoring system indicated that the majority of studies (60%) scored > 50%. In terms of EV isolation techniques, more than 50% of the studies reported the use of ultracentrifugation, while only 5% used size exclusion chromatography, despite its many advantages such as reproducibility, scalability, and low cost (Sidhom et al., 2020). Moreover, despite using ultracentrifugation for EV isolation, 83% of reported studies failed to report non‐EV markers, indicating a lack of EV purity. It is noteworthy that relatively pure EVs can be obtained with the sequential use of three isolation techniques (size exclusion chromatography, sucrose density gradient centrifugation and ultracentrifugation) (Brennan et al., 2020). However, EV yield is significantly reduced, and various combinations of EV isolation techniques may lower the likelihood of detecting EV‐DNA. Thus, starting human biofluid volume and isolation techniques will greatly influence the downstream applications. Finally, EV‐ADD includes all the published EV‐associated DNA studies without any restrictions based on the EV‐ADD score.

4. DISCUSSION

EV‐DNA holds tremendous promise as both a biomarker and in understanding fundamental processes underlying cell‐cell communication via EV cargo. As this field continues to grow, standardization of isolation, purification and analysis tools are needed. In this paper, we introduce EV‐ADD, a dedicated knowledgebase for the research community to access data and methodologies on EV‐DNA.

One of the goals of our database is to include all data that impacts EV isolation yield, quality and downstream analysis of EV‐DNA. During the building of EV‐ADD, we identified variations regarding many of these parameters. Differential ultracentrifugation was the conventional EV isolation method used, with approximately 50% of all reported studies using this technique. Surprisingly, the majority of these publications report different g‐forces, rotor types and durations of ultracentrifugation (Allenson et al., 2017; Bart et al., 2021; Lazaro‐Ibanez et al., 2014; San Lucas et al., 2016), all factors that significantly influence EV yield and cargo, in particular protein, DNA and RNA quantity and purity (Cvjetkovic et al., 2014; Théry et al., 2018). Consistency is needed in terms of isolation protocols when pelleting objects with similar sedimentation coefficients such as EVs. Differences were also noted in the types of EVs derived from human biofluids. For instance, studies reported the presence of cfDNA within the lumen of exosomes (Fernando et al., 2017; Kahlert et al., 2014). Another study demonstrated that the majority of large fragments of DNA, including tumor DNA are enriched in large‐EVs compared to small‐EVs (exosomes) (Vagner et al., 2018). Interestingly, only low to negligible amounts of DNA were reported within EVs under normal physiological conditions and after acute physical exercise, with the emission of cfDNA being shown to be independent of EVs (Helmig et al., 2015; Lazaro‐Ibanez et al., 2014; Neuberger et al., 2021).

However, it should be noted that the above‐mentioned studies used ultracentrifugation and precipitation methods (Invitrogen) to isolate EVs. These crude and traditional ultracentrifugation methods are known to co‐isolate impurities of non‐vesicular aggregates, albumin, as well as heterogenous EV populations (Ludwig et al., 2019; Patel et al., 2019). Recent studies have shown a formation of complex biomolecule corona around the surface of EVs. For example, low density lipoprotein (LDL) corona was spontaneously formed as soon as LDL particles were mixed with the EVs (Sódar et al., 2016) and under genotoxic stress condition, mtDNA is observed on the surface of small EVs (Németh et al., 2017). Protein corona was also formed spontaneously on the surface of EVs derived from blood (Tóth et al., 2021). Moreover, various studies have shown that the Invitrogen precipitation method leads to polyethylene glycol (PEG) contamination, microvesicles as well as additional protein aggregates, which may give the false impression of isolating exosomes (Abramowicz et al., 2016; Patel et al., 2019). Finally, a lack of standardized terminology of EVs throughout the literature has resulted in inconsistent nomenclature in the cited literature. Therefore, the International Society of Extracellular Vesicle (ISEV) endorses the term ‘extracellular vesicle’ because currently there are no specific protein markers that have been established to identify exosomes and ectosomes (microvesicles/microparticles) (Théry et al., 2018; Witwer & Théry, 2019). DNA fragment sizes and quantity may also vary depending on the EV population isolated, emphasizing the importance of these considerations (Chang et al., 2020; Vagner et al., 2018). Variations may also reflect different sources of EVs (Jeppesen et al., 2019; Németh et al., 2017; Yokoi et al., 2019), EV isolation and DNA detection methods (Neuberger et al., 2021), and EV heterogeneity (Théry et al., 2018). Currently, EV‐DNA isolation methods are not standardized, and are based on either commercially available kits (i.e. silica filtration and magnetic beads‐based approach) or phenol chloroform method which can affect isolation efficiency and DNA fragment size (Sorber et al., 2017; Tagliaferro et al., 2021). Downstream analysis methods were also reported, such as Qubit fluorometer, nanodrop, Agilent bioanalyzer and qPCR, which present different levels of sensitivity and specificity.

Approximately 72% of EV‐DNA studies reported in EV‐ADD were performed on plasma, which contains a complex mixture of biomolecules (Leeman et al., 2018; Psychogios et al., 2011). Therefore, extensive pre‐analytical steps are generally required before the EV isolation and purification steps. However, these pre‐treatment aspects such as choice of blood collection tubes (Berckmans et al., 2019; Palviainen et al., 2020), centrifugation conditions (Vila‐Liante et al., 2016), filtration, extraction method and blood processing time likely contribute to divergent results within the EV field (Bæk et al., 2016; Heatlie et al., 2020). We observed that ethylenediaminetetraacetic acid (EDTA)‐containing plastic tubes were widely used for EV‐DNA isolated from plasma. In addition, different centrifugation speeds and time have been applied to obtain platelet‐poor plasma (PPP) and platelet‐free plasma (PFP). Centrifugation of whole blood at 4°C may activate platelet and release platelet‐activated particles (Arraud et al., 2014; Coumans et al., 2017; Witwer et al., 2013). Only five studies have reported filtration steps after the centrifugation procedure. One report suggested that 0.8 μm filter reduces the platelet contamination (Baranyai et al., 2015). Thus, measurement of residual platelets using CD41 and CD31 markers was recommended in the EV preparation (Aatonen et al., 2014; Cappellano et al., 2021; Venturella et al., 2019). To address these issues, an automated exosome isolation approach from undiluted whole‐blood sample called ‘acoustofluidic platform’ has been developed, eliminating biofluid preprocessing steps and increasing exosome purity, yield and reproducibility with a shorter experimental time (Wu et al., 2017). The ISEV taskforce has recognized the importance of preprocessing of biofluids and provided a roadmap for blood preprocessing procedure for EV analysis (Clayton et al., 2019; Witwer et al., 2013). Importantly, ISEV blood workshops and symposiums (uEV 2022) are also being held to bring together EV researchers to provide updates, bringing us closer to the standardization of protocols. Extensive reviews on the standardization of blood collection and processing have been reported elsewhere (Coumans et al., 2017; Venturella et al., 2019). Taken together, these variations among studies introduce variabilities in analysis outputs, limiting inter‐study comparisons of EV‐DNA (EV‐TRACK Consortium, 2017; Théry et al., 2018; Cvjetkovic et al., 2014). EV‐ADD provides a repository of these experimental variables, aiding researchers to determine appropriate EV‐DNA methodologies that are relevant to their research context (Supplementary Table 3A and B).

While liquid biopsy‐based EV‐DNA analysis may offer important advantages over cfDNA isolation, such as DNA protection from degradation, the clinical biomarker utility of EVs remains limited due to the complexity of isolating pure EV subtypes from biological fluids (Théry et al., 2006). Large volumes of plasma, ranging from 10 to 20 ml, are required for nucleic acid isolation from tumor‐derived EVs, rendering it impractical for clinical use (Bernard et al., 2019; Cai et al., 2015; Castillo et al., 2018; San Lucas et al., 2016). Thus, ultrasensitive, efficient and state‐of‐the‐art on‐chip‐based EV isolation assays are being tested in these settings (Chiriacò et al., 2018; Liang et al., 2017). These assays require very low amounts of plasma and can capture specific populations of EVs (tumor‐specific EVs) based on surface markers, thus improving the sensitivity and specificity of detecting mutant molecules. In addition, single‐EV‐based liquid biopsy using a high‐throughput Nano‐bio Chip Integrated System for Liquid Biopsy (HNCIB) has shown promising results in detecting tumor‐derived EV surface proteins (PDL1+) and internal cargo (mRNA/miRNA). A proof‐of‐concept study demonstrated that Glypican‐1 (GPC1) is specifically enriched on cancer‐derived exosome surface and only GPC1+ exosomes carry mutant KRAS transcript (G12D) (Melo et al., 2015). Simultaneous analysis of multiple cargos in a single EV will improve the accuracy and sensitivity of disease markers that single parametric approaches may miss (Zhou et al., 2020).

While studies have reported the presence of EV‐associated DNA in cell culture (Lee et al., 2014; Thakur et al., 2014) and biological fluids (Allenson et al., 2017; Fernando et al., 2018; Garcia‐Silva et al., 2019; Jin et al., 2016; San Lucas et al., 2016), these observations have been challenged. Researchers have demonstrated that classical exosomes and small EVs do not carry double‐stranded DNA and DNA‐binding histones in specific cancer cell lines, and that active DNA emission is independent of exosome emission pathways, rather relying on the amphisome pathway (Jeppesen et al., 2019). However, simultaneous work demonstrated a mechanism whereby genomic DNA is loaded into exosomes via micronuclei. In the latter, authors demonstrated dsDNA spanning the entire human genome, thus reflecting the patient's genomic signature (Yokoi et al., 2019). A more recent study demonstrated that dsDNA recruitment into tumor‐derived vesicles (TMV) occurs by activation of ADP ribosylation factor 6 (ARF6) with the cytosolic DNA sensor, cGAS and independent of amphisome pathway and micronuclei (Clancy et al., 2022). Taken together, data suggest that the loading of DNA into EVs may be context specific. The growing number of studies on EV‐DNA will help to clarify the mechanisms of loading, biological role and research utility of EV‐DNA.

While the EV research community is thriving, little consensus exists on optimal isolation and purification techniques for EVs and their cargo (EV‐TRACK Consortium, 2017; Cvjetkovic et al., 2014; Lotvall et al., 2014). MISEV guidelines and other publications have reported the importance of pre‐analytic parameters for human biofluids and EV isolation standardization (Lacroix et al., 2012; Muller et al., 2014; Mullier et al., 2013; Théry et al., 2018; Witwer et al., 2013; Yuana et al., 2015). Over the past decade, comprehensive and pure EV isolation techniques have been a major challenge in the EV field (Kalluri & Lebleu, 2020; Keerthikumar et al., 2016). Slight variations in isolation methods or within protocols lead to enrichment of certain EV subtypes and cargo, hindering reproducibility and large meta‐analyses (EV‐TRACK Consortium, 2017; Théry et al., 2018). A crowdsourcing knowledgebase named EV‐TRACK, screens and compiles EV‐focused publications to encourage standardization and advance the EV community (EV‐TRACK Consortium, 2017). EV‐ADD seeks to reach that same goal, providing a platform for users to find methodologies that have been successful in identifying EV‐DNA. EV‐ADD and EV‐TRACK reveal a wide range of different protocols and reagents for EV and EV‐DNA isolation within EV publications (EV‐TRACK Consortium, 2017) (Table 1), highlighting the need to consider processing and analytical variables when interpreting data. Therefore, we have integrated an EV‐ADD data metric system to validate experimental parameters and to ensure that relevant captured data in each article deposited in our database is reliable (EV‐TRACK Consortium, 2017; Keerthikumar, S. 2016). Altogether, the EV‐ADD metric highlighted a lack of standardization and data reporting in the EV‐DNA field. Future studies following MISEV recommendations are critical for developing EV‐DNA biomarker discovery and validation.

5. CONCLUSION

Taken together, the field of EV‐DNA is in its early stages, and as it grows, limitations persist, especially in the standardization of validated protocols, consistent data and interpretation of clinical correlations in disease. With exponential growth in EV‐related publications, especially with the introduction of next‐generation sequencing for EV‐DNA‐based liquid biopsy research (Castillo et al., 2018; Kahlert et al., 2014; San Lucas et al., 2016), a massive accumulation of experimental data will be generated and will require efforts to organize and continuously update databases. EV‐ADD provides a knowledgebase of manually curated published EV‐DNA data. Publicly and freely available, it begins to address many of the challenges in the EV field, providing a one‐stop repository of experimental EV‐DNA data across the literature. The current version of EV‐ADD includes data from 76 published articles based on EVs isolated from human biofluids covering varying diseases. In the future, it will include EV‐DNA data derived from in‐vitro and in‐vivo animal model systems. Additionally, EV researchers can register for free and deposit published EV‐DNA findings directly into EV‐ADD, thus centralizing experimental procedures, findings and interpretation into one platform. With its simplicity and easy accessibility, we hope that EV‐ADD propels EV‐DNA research forward and becomes an important resource for researchers in the EV field.

AUTHOR CONTRIBUTIONS

Mingyang Li, Thupten Tsering, Yunxi Chen, Prisca Bustamante and Julia V. Burnier participated in designing the EV‐ADD website. Thupten Tsering, Amélie Nadeau, Alexander Laskaris, Mohamed Abdouh and Julia V. Burnier involved in drafting and reviewing the manuscript.

Supporting information

Supporting Information

Supporting Information

Supporting Information

ACKNOWLEDGEMENTS

Authors would like to thank Dr. Francesco Tordini for his guidance on database intellectual property. We would like to thank Dr. Tenzin Gayden for the help in editing and reviewing the manuscript. Thank you to Dr. Kyle Dickinson for helping with the final review of the manuscript. The authors acknowledge McGill initiative in Computational Medicine program for the support (M.L.). This research was supported by a grant from the Experimental Pathology Unit of McGill University (to J.V.B.).

Tsering, T. , Li, M. , Chen, Y. , Nadeau, A. , Laskaris, A. , Abdouh, M. , Bustamante, P. , & Burnier, J. V. (2022). EV‐ADD, a database for EV‐associated DNA in human liquid biopsy samples. Journal of Extracellular Vesicles, 11, e12270. 10.1002/jev2.12270

REFERENCES

  1. Aatonen, M. T. , ÖHman, T. , Nyman, T. A. , Laitinen, S. , Grönholm, M. , & Siljander, P. R.‐M. (2014). Isolation and characterization of platelet‐derived extracellular vesicles. Journal Extracellular Vesicles, 3, 1–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abdouh, M. , Floris, M. , Gao, Z.‐H. , Arena, V. , Arena, M. , & Arena, G. O. (2019). Colorectal cancer‐derived extracellular vesicles induce transformation of fibroblasts into colon carcinoma cells. Journal of Experimental & Clinical Cancer Research, 38, 257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abramowicz, A. , Widlak, P. , & Pietrowska, M. (2016). Proteomic analysis of exosomal cargo: The challenge of high purity vesicle isolation. Molecular Biosystems, 12, 1407–1419. [DOI] [PubMed] [Google Scholar]
  4. Allenson, K. , Castillo, J. , San Lucas, F. A. , Scelo, G. , Kim, D. U. , Bernard, V. , Davis, G. , Kumar, T. , Katz, M. , Overman, M. J. , Foretova, L. , Fabianova, E. , Holcatova, I. , Janout, V. , Meric‐Bernstam, F. , Gascoyne, P. , Wistuba, I. , Varadhachary, G. , Brennan, P. , … Alvarez, H. (2017). High prevalence of mutant KRAS in circulating exosome‐derived DNA from early‐stage pancreatic cancer patients. Annals of Oncology, 28, 741–747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arraud, N. , Linares, R. , Tan, S. , Gounou, C. , Pasquet, J. M. , Mornet, S. , & Brisson, A. R. (2014). Extracellular vesicles from blood plasma: Determination of their morphology, size, phenotype and concentration. Journal of Thrombosis and Haemostasis, 12, 614–627. [DOI] [PubMed] [Google Scholar]
  6. Bæk, R. , SøNdergaard, E. K. L. , Varming, K. , & JøRgensen, M. M. (2016). The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray. Journal of Immunological Methods, 438, 11–20. [DOI] [PubMed] [Google Scholar]
  7. Balaj, L. , Lessard, R. , Dai, L. , Cho, Y. J. , Pomeroy, S. L. , Breakefield, X. O. , & Skog, J. (2011). Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nature Communications, 2, 180–189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Baranyai, T. S. , Herczeg, K. , Onodi, Z. , Voszka, I. N. , Mados, K. , Marton, N. , Nagy, G. R. , Mager, I. , Wood, M. J. , El Andaloussi, S. , Palinkas, Z. N. , Kumar, V. , Nagy, P. T. , Kittel, G. , Buzas, E. I. , Ferdinandy, T. , & Giricz, Z. . (2015). Isolation of exosomes from blood plasma: Qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. Plos One, 10, 1–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bart, G. , Fischer, D. , Samoylenko, A. , Zhyvolozhnyi, A. , Stehantsev, P. , Miinalainen, I. , Kaakinen, M. , Nurmi, T. , Singh, P. , Kosamo, S. , Rannaste, L. , Viitala, S. , Hiltunen, J. , & Vainio, S. J. (2021). Characterization of nucleic acids from extracellular vesicle‐enriched human sweat. BMC Genomics [Electronic Resource], 22, 1–29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Berckmans, R. J. , Lacroix, R. , Hau, C. M. , Sturk, A. , & Nieuwland, R. (2019). Extracellular vesicles and coagulation in blood from healthy humans revisited. Journal Extracellular Vesicles, 8, 1688936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bernard, V. , Kim, D. U. , San Lucas, F. A. , Castillo, J. , Allenson, K. , Mulu, F. C. , Stephens, B. M. , Huang, J. , Semaan, A. , Guerrero, P. A. , Kamyabi, N. , Zhao, J. , Hurd, M. W. , Koay, E. J. , Taniguchi, C. M. , Herman, J. M. , Javle, M. , Wolff, R. , Katz, M. , … Alvarez, H. A. (2019). Circulating nucleic acids are associated with outcomes of patients with pancreatic cancer. Gastroenterology, 156, 108–118.e4.e4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brennan, K. , Martin, K. , Fitzgerald, S. P. , O'ullivan, J. , Wu, Y. , Blanco, A. , Richardson, C. , & Mc Gee, M. M. (2020). A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Science Reports, 10, 1–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bronkhorst, A. J. , Wentzel, J. F. , Aucamp, J. , Van Dyk, E. , Du Plessis, L. , & Pretorius, P. J. (2016). Characterization of the cell‐free DNA released by cultured cancer cells. Biochimica et Biophysica Acta ‐ Molecular Cell Research, 1863, 157–165. [DOI] [PubMed] [Google Scholar]
  14. Bustamante, P. , Tsering, T. , Coblentz, J. , Mastromonaco, C. , Abdouh, M. , Fonseca, C. , Proenca, R. P. , Blanchard, N. , Duge, C. L. , Andujar, R. A. S. , Youhnovska, E. , Burnier, M. N. , Callejo, S. A. , & Burnier, J. V. (2021). Circulating tumor DNA tracking through driver mutations as a liquid biopsy‐based biomarker for uveal melanoma. Journal of Experimental & Clinical Cancer Research, 40, 1–16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cai, J. , Guan, W. , Tan, X. , Chen, C. , Li, L. , Wang, N. , Zou, X. , Zhou, F. , Wang, J. , Pei, F. , Chen, X. , Luo, H. , Wang, X. , He, D. , Zhou, L. , Jose, P. A. , & Zeng, C. (2015). SRY gene transferred by extracellular vesicles accelerates atherosclerosis by promotion of leucocyte adherence to endothelial cells. Clinical Science, 129, 259–269. [DOI] [PubMed] [Google Scholar]
  16. Cai, J. , Han, Y. , Ren, H. , Chen, C. , He, D. , Zhou, L. , Eisner, G. M. , Asico, L. D. , Jose, P. A. , & Zeng, C. (2013). Extracellular vesicle‐mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. Journal of Molecular Cell Biology, 5, 227–238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cappellano, G. , Raineri, D. , Rolla, R. , Giordano, M. , Puricelli, C. , Vilardo, B. , Manfredi, M. , Cantaluppi, V. , Sainaghi, P. P. , Castello, L. , De Vita, N. , Scotti, L. , Vaschetto, R. , Dianzani, U. , & Chiocchetti, A. (2021). Communication circulating platelet‐derived extracellular vesicles are a hallmark of sars‐cov‐2 infection. Cells, 10, 1–10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Castellanos‐rizaldos, E. , Grimm, D. G. , Tadigotla, V. , Hurley, J. , Healy, J. , Neal, P. L. , Sher, M. , Venkatesan, R. , Karlovich, C. , Raponi, M. , Krug, A. , Noerholm, M. , Tannous, J. , Tannous, B. A. , Raez, L. E. , & Skog, J. K. (2018). Exosome‐based detection of EGFR T790M in plasma from non – small cell lung cancer patients. Clinical Cancer Research, 24, 2944–2951. [DOI] [PubMed] [Google Scholar]
  19. Castillo, J. , Bernard, V. , San Lucas, F. A. , Allenson, K. , Capello, M. , Kim, D. U. , Gascoyne, P. , Mulu, F. C. , Stephens, B. M. , Huang, J. , Wang, H. , Momin, A. A. , Jacamo, R. O. , Katz, M. , Wolff, R. , Javle, M. , Varadhachary, G. , Wistuba, I. I. , Hanash, S. , … Alvarez, H. (2018). Surfaceome profiling enables isolation of cancerspecific exosomal cargo in liquid biopsies from pancreatic cancer patients. Annals of Oncology, 29, 223–229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Chang, X. , Fang, L. , Bai, J. , & Wang, Z. (2020). Characteristics and changes of DNA in extracellular vesicles. DNA and Cell Biology, 39, 1486–1493. [DOI] [PubMed] [Google Scholar]
  21. Chen, E. , Cario, C. L. , Leong, L. , Lopez, K. , Márquez, C. P. , Chu, C. , Li, P. S. , Oropeza, E. , Tenggara, I. , Cowan, J. , Simko, J. P. , Chan, J. M. , Friedlander, T. , Wyatt, A. W. , Aggarwal, R. , Paris, P. L. , Carroll, P. R. , Feng, F. , & Witte, J. S. (2021). Cell‐free DNA concentration and fragment size as a biomarker for prostate cancer. Science Reports, 11, 5040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Chiriacò, M. , Bianco, M. , Nigro, A. , Primiceri, E. , Ferrara, F. , Romano, A. , Quattrini, A. , Furlan, R. , Arima, V. , & Maruccio, G. (2018). Lab‐on‐chip for exosomes and microvesicles detection and characterization. Sensors (Switzerland), 18, 3175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Choi, D. , Montermini, L. , Jeong, H. , Sharma, S. , Meehan, B. , & Rak, J. (2019). Mapping subpopulations of cancer cell‐derived extracellular vesicles and particles by nano‐flow cytometry. ACS Nano, 13, 10499–10511. 10.1021/acsnano.9b04480 [DOI] [PubMed] [Google Scholar]
  24. Clancy, J. W. , Boomgarden, A. C. , & D'Souza‐Schorey, C. (2021). Profiling and promise of supermeres. Nature Cell Biology, 23, 1217–1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Clancy, J. W. , Sheehan, C. S. , Boomgarden, A. C. , & D'Souza‐Schorey, C. (2022). Recruitment of DNA to tumor‐derived microvesicles. Cell reports, 38, 110443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Clayton, A. , Boilard, E. , Buzas, E. I. , Cheng, L. , Falcón‐Perez, J. M. , Gardiner, C. , Gustafson, D. , Gualerzi, A. , Hendrix, A. , Hoffman, A. , Jones, J. , Lasser, C. , Lawson, C. , Lenassi, M. , Nazarenko, I. , O'Driscoll, L. , Pink, R. , Siljander, P. R.‐M. , Soekmadji, C. , … Nieuwland, R. (2019). Considerations towards a roadmap for collection, handling and storage of blood extracellular vesicles. Journal Extracellular Vesicles, 8, 1647027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Colombo, M. , Raposo, G. A. , & Théry, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 30, 255–289. [DOI] [PubMed] [Google Scholar]
  28. Costa‐Silva, B. , Aiello, N. M. , Ocean, A. J. , Singh, S. , Zhang, H. , Thakur, B. K. , Becker, A. , Hoshino, A. , Mark, M. T. , Molina, H. , Xiang, J. , Zhang, T. , Theilen, T. M. , Garcia‐Santos, G. , Williams, C. , Ararso, Y. , Huang, Y. , Rodrigues, G. A. , Shen, T. L. , … Lyden, D. (2015). Pancreatic cancer exosomes initiate pre‐metastatic niche formation in the liver. Nature Cell Biology, 17, 816–826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Coumans, F. A. W. , Brisson, A. R. , Buzas, E. I. , Dignat‐George, F. O. , Drees, E. E. E. , El‐Andaloussi, S. , Emanueli, C. , Gasecka, A. , Hendrix, A. , Hill, A. F. , Lacroix, R. , Lee, Y. , Van Leeuwen, T. G. , Mackman, N. , Mager, I. , Nolan, J. P. , Van Der Pol, E. , Pegtel, D. M. , Sahoo, S. , … Nieuwland, R. (2017). Methodological guidelines to study extracellular vesicles. Circulation Research, 120, 1632–1648. [DOI] [PubMed] [Google Scholar]
  30. Crescitelli, R. , Lässer, C. , & Lötvall, J. (2021). Isolation and characterization of extracellular vesicle subpopulations from tissues. Nature Protocols, 16, 1548–1580. [DOI] [PubMed] [Google Scholar]
  31. Cristiano, S. , Leal, A. , Phallen, J. , Fiksel, J. , Adleff, V. , Bruhm, D. C. , Jensen, S. O. , Medina, J. E. , Hruban, C. , White, J. R. , Palsgrove, D. N. , Niknafs, N. , Anagnostou, V. , Forde, P. , Naidoo, J. , Marrone, K. , Brahmer, J. , Woodward, B. D. , Husain, H. , … Velculescu, V. E. (2019). Genome‐wide cell‐free DNA fragmentation in patients with cancer. Nature, 570, 385–389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Cvjetkovic, A. , Lotvall, J. , & LäSser, C. (2014). The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. Journal of Extracellular Vesicles, 3, 1–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Degli Esposti, C. , Iadarola, B. , Maestri, S. , Beltrami, C. , Lavezzari, D. , Morini, M. , De Marco, P. , Erminio, G. , Garaventa, A. , Zara, F. , Delledonne, M. , Ognibene, M. , & Pezzolo, A. (2021). Exosomes from plasma of neuroblastoma patients contain doublestranded dna reflecting the mutational status of parental tumor cells. International Journal of Molecular Sciences, 22, 3667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Doyle, L. , & Wang, M. (2019). Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 8, 727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Fernando, M. R. , Jiang, C. , Krzyzanowski, G. D. , & Ryan, W. L. (2017). New evidence that a large proportion of human blood plasma cell‐free DNA is localized in exosomes. Plos One, 12, 1–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Fernando, M. R. , Jiang, C. , Krzyzanowski, G. D. , & Ryan, W. L. (2018). Analysis of human blood plasma cell‐free DNA fragment size distribution using evagreen chemistry based droplet digital PCR assays. Clinica Chimica Acta, 483, 39–47. [DOI] [PubMed] [Google Scholar]
  37. Garcia‐Silva, S. , Benito‐Martin, A. , Sanchez‐Redondo, S. , Hernández‐Barranco, A. , Ximénez‐Embún, P. , Nogués, L. , Mazariegos, M. S. , Brinkmann, K. , Amor López, A. , Meyer, L. , Rodríguez, C. , Garcia‐Martin, C. , Boskovic, J. , Leton, R. O. , Montero, C. , Robledo, M. , Santambrogio, L. , Sue Brady, M. , Szumera‐Ciećkiewicz, A. , … Peinado, H. (2019). Use of extracellular vesicles from lymphatic drainage as surrogate markers of melanoma progression and BRAFV600E mutation. Journal of Experimental Medicine, 216, 1061–1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Garcia‐Silva, S. , Gallardo, M. , & Peinado, H. (2021). DNA‐Loaded extracellular vesicles in liquid biopsy: Tiny players with big potential? Frontiers in Cell and Developmental Biology, 8, 1–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Gladys, N. , Koumangoye, R. , Shawn Goodwin, J. , Sakwe, A. M. , Marshall, D. , Higginbotham, J. , & Ochieng, J. (2014). Fetuin‐A associates with histones intracellularly and shuttles them to exosomes to promote focal adhesion assembly resulting in rapid adhesion and spreading in breast carcinoma cells. Experimental Cell Research, 328, 388–400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. György, B. , Szabo, T. S. G. , Pásztói, M. R. , Pal, Z. , Misjak, P. , Aradi, B. L. , Lazlo, V. R. , Palinger, A. V. , Pap, E. , Kittel, A. G. , Nagy, G. R. , Falus, A. S. , & Buzas, E. I. (2011). Membrane vesicles, current state‐of‐the‐art: Emerging role of extracellular vesicles. Cellular and Molecular Life Sciences, 68, 2667–2688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Hagey, D. W. , Kordes, M. , Garnes, A. , Mowoe, M. O. , Nordin, J. Z. , Moro, C. F. , Lahr, J. A. M. , & El Andaloussi, S. (2021). Extracellular vesicles are the primary source of blood‐borne tumour‐derived mutant KRAS DNA early in pancreatic cancer. Journal of Extracellular Vesicles, 10, e12142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Heatlie, J. , Chang, V. , Fitzgerald, S. , Nursalim, Y. , Parker, K. , Lawrence, B. , Print, C. G. , & Blenkiron, C. (2020). Specialized cell‐free DNA blood collection tubes can be repurposed for extracellular vesicle isolation: A pilot study. Biopreserv. Biobank., 18, 462–470. [DOI] [PubMed] [Google Scholar]
  43. Helmig, S. , Frahbeis, C. , Kramer‐Albers, E. M. , Simon, P. , & Tug, S. (2015). Release of bulk cell free DNA during physical exercise occurs independent of extracellular vesicles. European Journal of Applied Physiology, 115, 2271–2280. [DOI] [PubMed] [Google Scholar]
  44. Janas, T. , Janas, M. M. , Sapon, K. , & Janas, T. (2015). Mechanisms of RNA loading into exosomes. Febs Letters, 589, 1391–1398. [DOI] [PubMed] [Google Scholar]
  45. Jeppesen, D. K. , Fenix, A. M. , Franklin, J. L. , Higginbotham, J. N. , Zhang, Q. , Zimmerman, L. J. , Liebler, D. C. , Ping, J. , Liu, Q. , Evans, R. , Fissell, W. H. , Patton, J. G. , Rome, L. H. , Burnette, D. T. , & Coffey, R. J. (2019). Reassessment of exosome composition. Cell, 177, 428–445.e18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Jin, Y. , Chen, K. , Wang, Z. , Wang, Y. , Liu, J. , Lin, L. , Shao, Y. , Gao, L. , Yin, H. , Cui, C. , Tan, Z. , Liu, L. , Zhao, C. , Zhang, G. , Jia, R. , Du, L. , Chen, Y. , Liu, R. , Xu, J. , … Wang, Y. (2016). DNA in serum extracellular vesicles is stable under different storage conditions. BMC Cancer, 16, 1–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Kahlert, C. , Melo, S. A. , Protopopov, A. , Tang, J. , Seth, S. , Koch, M. , Zhang, J. , Weitz, J. , Chin, L. , Futreal, A. , & Kalluri, R. (2014). Identification of doublestranded genomic dna spanning all chromosomes with mutated KRAS and P53 DNA in the serum exosomes of patients with pancreatic cancer. Journal of Biological Chemistry, 289, 3869–3875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kalluri, R. , & Lebleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367, eaau6977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Kalra, H. , Simpson, R. J. , Ji, H. , Aikawa, E. , Altevogt, P. , Askenase, P. , Bond, V. C. , Borras, F. E. , Breakefield, X. , Budnik, V. , Buzas, E. , Camussi, G. , Clayton, A. , Cocucci, E. , Falcon‐Perez, J. M. , Gabrielsson, S. , Gho, Y. S. , Gupta, D. , Harsha, H. C. , … Mathivanan, S. (2012). Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. Plos Biology, 10, e1001450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Keerthikumar, S. , Chisanga, D. , Ariyaratne, D. , Al Saffar, H. , Anand, S. , Zhao, K. , Samuel, M. , Pathan, M. , Jois, M. , Chilamkurti, N. , Gangoda, L. , & Mathivanan, S. (2016). ExoCarta: A web‐based compendium of exosomal cargo. Journal of Molecular Biology, 428, 688–692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Keller, L. , Belloum, Y. , Wikman, H. , & Pantel, K. (2021). Clinical relevance of blood‐based ctDNA analysis: Mutation detection and beyond. British Journal of Cancer, 124, 345–358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Keserű, J. S. , Soltsz, B. , Lukas, J. , Marton, A. V. , Szilágyi‐Bónizs, M. , Penyige, A. S. , Paka, R. , & Nagy, B. (2019). Detection of cell‐free, exosomal and whole blood mitochondrial DNA copy number in plasma or whole blood of patients with serous epithelial ovarian cancer. Journal of Biotechnology, 298, 76–81. [DOI] [PubMed] [Google Scholar]
  53. Kim, D. K. , Kang, B. , Kim, O. Y. , Choi, D. S. , Lee, J. , Kim, S. R. , Go, G. , Yoon, Y. J. , Kim, J. H. , Jang, S. C. , Park, K.‐S. , Choi, E. J. , Kim, K. P. , Desiderio, D. M. , Kim, Y. K. , Lotvall, J. , Hwang, D. , & Gho, Y. S. (2013). EVpedia: An integrated database of high‐throughput data for systemic analyses of extracellular vesicles. Journal of Extracellular Vesicles, 2, 1–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Kontopoulou, E. , Strachan, S. , Reinhardt, K. , Kunz, F. , Walter, C. , Walkenfort, B. , Jastrow, H. , Hasenberg, M. , Giebel, B. , Von Neuhoff, N. , Reinhardt, D. , & Thakur, B. K. (2020). Evaluation of dsDNA from extracellular vesicles (EVs) in pediatric AML diagnostics. Annal of Hematology, 99, 459–475. [DOI] [PubMed] [Google Scholar]
  55. Kwapisz, D. (2017). The first liquid biopsy test approved. Is it a new era of mutation testing for non‐small cell lung cancer? Annals of translational medicine, 5, 46–46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Lacroix, R. , Judicone, C. , Poncelet, P. , Robert, S. , Arnaud, L. , Sampol, J. , & Dignat‐George, F. (2012). Impact of pre‐analytical parameters on the measurement of circulating microparticles: Towards standardization of protocol. Journal of Thrombosis and Haemostasis, 10, 437–446. [DOI] [PubMed] [Google Scholar]
  57. Lázaro‐Ibáñez, E. , Lässer, C. , Shelke, G. V. , Crescitelli, R. , Jang, S. C. , Cvjetkovic, A. , García‐Rodríguez, A. , & Lotvall, J. (2019). DNA analysis of low‐ and high‐density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology. Journal of Extracellular Vesicles, 8, 1656993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Lazaro‐Ibanez, E. , Sanz‐Garcia, A. , Visakorpi, T. , Escobedo‐Lucea, C. , Siljander, P. , Ayuso‐Sacido, A. N. , & Yliperttula, M. (2014). Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: Apoptotic bodies, microvesicles, and exosomes. Prostate, 74, 1379–1390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Lee, T. H. , Chennakrishnaiah, S. , Audemard, E. , Montermini, L. , Meehan, B. , & Rak, J. (2014). Oncogenic ras‐driven cancer cell vesiculation leads to emission of double‐stranded DNA capable of interacting with target cells. Biochemical and Biophysical Research Communications, 451, 295–301. [DOI] [PubMed] [Google Scholar]
  60. Leeman, M. , Choi, J. , Hansson, S. , Storm, M. U. , & Nilsson, L. (2018). Proteins and antibodies in serum, plasma, and whole blood—size characterization using asymmetrical flow field‐flow fractionation (AF4). Anal. Bioanal. Chem., 410, 4867–4873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Liang, K. , Liu, F. , Fan, J. , Sun, D. , Liu, C. , Lyon, C. J. , Bernard, D. W. , Li, Y. , Yokoi, K. , Katz, M. H. , Koay, E. J. , Zhao, Z. , & Hu, Y. (2017). Nanoplasmonic quantification of tumour‐derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nature Biomedical Engineering, 1, 0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Liu, H. , Tian, Y. , Xue, C. , Niu, Q. , Chen, C. , & Yan, X. (2022). Analysis of extracellular vesicle DNA at the single‐vesicle level by nano‐flow cytometry. Journal of Extracellular Vesicles, 11, e12206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Lotvall, J. , Hill, A. F. , Hochberg, F. , Buzass, E. , Di Vizio, D. , Gardiner, C. , Gho, Y. S. , Kurochkin, I. V. , Mathivanan, S. , Quesenberry, P. , Sahoo, S. , Tahara, H. , Wauben, M. H. , Witwer, K. W. , & Théry, C. (2014). Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the international society for extracellular vesicles. Journal of Extracellular Vesicles, 3, 1–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Ludwig, N. , Whiteside, T. L. , & Reichert, T. E. (2019). Challenges in exosome isolation and analysis in health and disease. International Journal of Molecular Sciences, 20, 4684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Ma, L. , Li, Y. , Peng, J. , Wu, D. , Zhao, X. , Cui, Y. , Chen, L. , Yan, X. , Du, Y. , & Yu, L. (2015). Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Research, 25, 24–38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Maire, C. L. , Fuh, M. M. , Kaulich, K. , Fita, K. D. , Stevic, I. , Heiland, D. H. , Welsh, J. A. , Jones, J. C. , Görgens, A. , Ricklefs, T. , Dührsen, L. , Sauvigny, T. , Joosse, S. A. , Reifenberger, G. , Pantel, K. , Glatzel, M. , Miklosi, A. G. , Felce, J. H. , Caselli, M. , … Ricklefs, F. L. (2021). Genome‐wide methylation profiling of glioblastoma cell‐derived extracellular vesicle DNA allows tumor classification. Neuro‐Oncology, 23, 1087–1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Malkin, E. Z. , & Bratman, S. V. (2020). Bioactive DNA from extracellular vesicles and particles. Cell Death & Disease, 11, 1–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Mao, W. , Wen, Y. , Lei, H. , Lu, R. , Wang, S. , Wang, Y. , Chen, R. , Gu, Y. , Zhu, L. , Abhange, K. K. , Quinn, Z. J. , Chen, Y. , Xue, F. , Zheng, M. , & Wan, Y. (2019). solation and Retrieval of extracellular vesicles for liquid biopsy of malignant ground‐glass opacity. Analytical Chemistry, 91, 13729–13736. [DOI] [PubMed] [Google Scholar]
  69. Margolis, L. , & Sadovsky, Y. (2019). The biology of extracellular vesicles: The known unknowns. Plos Biology, 17, 1–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Mathios, D. , Johansen, J. S. , Cristiano, S. , Medina, J. , Phallen, J. , Richter Larsen, K. , Bruhm, D. , Niknafs, N. , Nielsen, H. J. , Meijer, G. A. , Andersen, C. L. , Bojesen, S. E. , Scharpf, R. , & Velculescu, V. E. (2021). Early detection of lung cancer using cfDNA fragmentation. Journal of Clinical Oncology, 39, 8519. [Google Scholar]
  71. Melo, S. A. , Luecke, L. B. , Kahlert, C. , Fernandez, A. F. , Gammon, S. T. , Kaye, J. , Lebleu, V. S. , Mittendorf, E. A. , Weitz, J. , Rahbari, N. , Reissfelder, C. , Pilarsky, C. , Fraga, M. F. , Piwnica‐Worms, D. , & Kalluri, R. (2015). Glypican1 identifies cancer exosomes and facilitates early detection of cancer. Nature, 523, 177–182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Möhrmann, L. , Huang, H. J. , Hong, D. S. , Tsimberidou, A. M. , Fu, S. , Piha‐Paul, S. A. , Subbiah, V. , Karp, D. D. , Naing, A. , Krug, A. , Enderle, D. , Priewasser, T. , Noerholm, M. , Eitan, E. , Coticchia, C. , Stoll, G. , Jordan, L. M. , Eng, C. , Kopetz, E. S. , … Janku, F. (2018). Liquid biopsies using plasma exosomal nucleic acids and plasma cell‐free DNA compared with clinical outcomes of patients with advanced cancers. Clinical Cancer Research, 24, 181–188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Mouliere, F. , Chandrananda, D. , Piskorz, A. M. , Moore, E. K. , Morris, J. , Ahlborn, L. B. , Mair, R. , Goranova, T. , Marass, F. , Heider, K. , Wan, J. C. M. , Supernat, A. , Hudecova, I. , Gounaris, I. , Ros, S. , Jimenez‐Linan, M. , Garcia‐Corbacho, J. , Patel, K. , Østrup, O. , … Rosenfeld, N. (2018). Enhanced detection of circulating tumor DNA by fragment size analysis. Science Translational Medicine, 10, eaat4921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Muller, L. , Hong, C. S. , Stolz, D. B. , Watkins, S. C. , & Whiteside, T. L. (2014). Isolation of biologically‐active exosomes from human plasma. Journal of Immunological Methods, 411, 55–65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Mullier, F. , Bailly, N. , Chatelain, C. , Chatelain, B. , & Dogne, J. M. (2013). Pre‐analytical issues in the measurement of circulating microparticles: Current recommendations and pending questions. Journal of Thrombosis and Haemostasis, 11, 693–696. [DOI] [PubMed] [Google Scholar]
  76. Németh, A. , Orgovan, N. , Sadar, B. W. , Osteikoetxea, X. , Palczi, K. , Szabo‐Taylor, K. , Vukman, K. V. , Kittel, A. G. , Turik, L. , Wiener, Z. N. , Tath, S. R. , Drahos, L. S. , Vackey, K. R. , Horvath, R. , & Buzas, E. I. (2017). Antibiotic‐induced release of small extracellular vesicles (exosomes) with surface‐associated DNA. Science Reports, 7, 1–16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Neuberger, E. W. I. , Hillen, B. , Mayr, K. , Simon, P. , Krã¤Mer‐Albers, E. M. , & Brahmer, A. (2021). Kinetics and topology of dna associated with circulating extracellular vesicles released during exercise. Genes (Basel), 12, 8–10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Nguyen, B. , Meehan, K. , Pereira, M. R. , Mirzai, B. , Lim, S. H. , Leslie, C. , Clark, M. , Sader, C. , Friedland, P. , Lindsay, A. , Tang, C. , Millward, M. , Gray, E. S. , & Lim, A. M. (2020). A comparative study of extracellular vesicle‐associated and cell‐free DNA and RNA for HPV detection in oropharyngeal squamous cell carcinoma. Science Reports, 10, 6083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Nian, J. , Sun, X. , Ming, S. , Yan, C. , Ma, Y. , Feng, Y. , Yang, L. , Yu, M. , Zhang, G. , & Wang, X. (2017). Diagnostic accuracy of methylated SEPT9 for blood‐based colorectal cancer detection: A systematic review and meta‐analysis. Clinical and Translational Gastroenterology, 8, e216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Osumi, H. , Shinozaki, E. , Yamaguchi, K. , & Zembutsu, H. (2019). Early change in circulating tumor DNA as a potential predictor of response to chemotherapy in patients with metastatic colorectal cancer. Science Reports, 9, 1–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Palviainen, M. , Saraswat, M. , Varga, Z. N. , Kitka, D. , Neuvonen, M. , Puhka, M. , Joenväärä, S. , Renkonen, R. , Nieuwland, R. , Takatalo, M. , & Siljander, P. R. M. (2020). Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo—Implications for biomarker discovery. Plos One, 15, 1–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Patel, G. K. , Khan, M. A. , Zubair, H. , Srivastava, S. K. , Khushman, M. D. , Singh, S. , & Singh, A. P. (2019). Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Science Reports, 9, 1–10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Pathan, M. , Fonseka, P. , Chitti, S. V. , Kang, T. , Sanwlani, R. , Van Deun, J. , Hendrix, A. , & Mathivanan, S. (2018). Vesiclepedia 2019: A compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Research, 47, D516–D519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Psychogios, N. , Hau, D. D. , Peng, J. , Guo, A. C. , Mandal, R. , Bouatra, S. , Sinelnikov, I. , Krishnamurthy, R. , Eisner, R. , Gautam, B. , Young, N. , Xia, J. , Knox, C. , Dong, E. , Huang, P. , Hollander, Z. , Pedersen, T. L. , Smith, S. R. , Bamforth, F. , … Wishart, D. S. (2011). The human serum metabolome. Plos One, 6, e16957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Raposo, G. A. , & Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. Journal of Cell Biology, 200, 373–383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Rostami, A. , Lambie, M. , Yu, C. W. , Stambolic, V. , Waldron, J. N. , & Bratman, S. V. (2020). Senescence, necrosis, and apoptosis govern circulating cell‐free DNA release kinetics. Cell reports, 31, 107830. [DOI] [PubMed] [Google Scholar]
  87. Ruhen, O. , Qu, X. , Jamaluddin, M. F. B. , Salomon, C. , Gandhi, A. , Millward, M. , Nixon, B. , Dun, M. D. , & Meehan, K. (2021). Comparison of circulating tumour dna and extracellular vesicle dna by low‐pass whole‐genome sequencing reveals molecular drivers of disease in a breast cancer patient. Biomedicines, 9, 1–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. San Lucas, F. A. , Allenson, K. , Bernard, V. , Castillo, J. , Kim, D. U. , Ellis, K. , Ehli, E. A. , Davies, G. E. , Petersen, J. L. , Li, D. , Wolff, R. , Katz, M. , Varadhachary, G. , Wistuba, I. , Maitra, A. , & Alvarez, H. (2016). Minimally invasive genomic and transcriptomic profiling of visceral cancers by next‐generation sequencing of circulating exosomes. Annals of Oncology, 27, 635–641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Sansone, P. , Savini, C. , Kurelac, I. , Chang, Q. , Amato, L. B. , Strillacci, A. , Stepanova, A. , Iommarini, L. , Mastroleo, C. , Daly, L. , Galkin, A. , Thakur, B. K. , Soplop, N. , Uryu, K. , Hoshino, A. , Norton, L. , Bonafé, M. , Cricca, M. , Gasparre, G. , … Bromberg, J. (2017). Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy‐resistant breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 114, E9066–E9075. 10.1073/pnas.1704862114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Shen, M. , Di, K. , He, H. , Xia, Y. , Xie, H. , Huang, R. , Liu, C. , Yang, M. , Zheng, S. , He, N. , & Li, Z. (2020). Progress in exosome associated tumor markers and their detection methods. Mol. Biomed., 1, 1–25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Sidhom, K. , Obi, P. O. , & Saleem, A. (2020). A review of exosomal isolation methods: Is size exclusion chromatography the best option? International Journal of Molecular Sciences, 21, 1–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Sódar, B. W. , Kittel, A. G. , Paloczi, K. , Vukman, K. V. , Osteikoetxea, X. , Szabo‐Taylor, K. , Nemeth, A. , Sperlagh, B. , Baranyai, T. S. , Giricz, Z. N. , Wiener, Z. N. , Turiak, L. , Drahos, L. , Pallinger, E. , Vekey, K. , Ferdinandy, P. , Falus, A. S. , & Buzas, E. I. (2016). Low‐density lipoprotein mimics blood plasma‐derived exosomes and microvesicles during isolation and detection. Science Reports, 6, 1–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Sorber, L. , Zwaenepoel, K. , Deschoolmeester, V. , Roeyen, G. , Lardon, F. , Rolfo, C. , & Pauwels, P. (2017). A comparison of cell‐free DNA isolation kits: Isolation and quantification of cell‐free DNA in plasma. The Journal of Molecular Diagnostics, 19, 162–168. [DOI] [PubMed] [Google Scholar]
  94. Stroun, M. , Lyautey, J. , Lederrey, C. , Olson‐Sand, A. , & Anker, P. (2001). About the possible origin and mechanism of circulating DNA: Apoptosis and active DNA release. Clinica Chimica Acta, 313, 139–142. [DOI] [PubMed] [Google Scholar]
  95. Sun, L. , Du, M. , Kohli, M. , Huang, C. C. , Chen, X. , Xu, M. , Shen, H. , Wang, S. , & Wang, L. (2021). An improved detection of circulating tumor DNA in extracellular vesicles‐depleted plasma. Frontiers in oncology, 11, 1–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Tagliaferro, S. S. , Zejnelagic, A. , Farrugia, R. , & Wettinger, S. B. (2021). Comparison of DNA extraction methods for samples from old blood collections. Biotechniques, 70, 243–250. [DOI] [PubMed] [Google Scholar]
  97. Takahashi, A. , Okada, R. , Nagao, K. , Kawamata, Y. , Hanyu, A. , Yoshimoto, S. , Takasugi, M. , Watanabe, S. , Kanemaki, M. T. , Obuse, C. , & Hara, E. (2017). Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nature Communication, 8, 1–14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Tamura, T. , Yoshioka, Y. , Sakamoto, S. , Ichikawa, T. , & Ochiya, T. (2021). Extracellular vesicles as a promising biomarker resource in liquid biopsy for cancer. Extracellular Vesicles and Circulating Nucleic Acids, 10.20517/evcna.2021.06 [DOI] [Google Scholar]
  99. Thakur, B. K. , Zhang, H. , Becker, A. , Matei, I. , Huang, Y. , Costa‐Silva, B. , Zheng, Y. , Hoshino, A. , Brazier, H. , Xiang, J. , Williams, C. , Rodriguez‐Barrueco, R. , Silva, J. M. , Zhang, W. , Hearn, S. , Elemento, O. , Paknejad, N. , Manova‐Todorova, K. , Welte, K. , … Lyden, D. (2014). Double‐stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Research, 24, 766–769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Théry, C. , Amigorena, S. , Raposo, G. , & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, 30, 3.22.1‐3.22.29. [DOI] [PubMed] [Google Scholar]
  101. Théry, C. , Witwer, K. W. , Aikawa, E. , Alcaraz, M. J. , Anderson, J. D. , Andriantsitohaina, R. , Antoniou, A. , Arab, T. , Archer, F. , Atkin‐Smith, G. K. , Ayre, D. C. , Bach, J. M. , Bachurski, D. , Baharvand, H. , Balaj, L. , Baldacchino, S. , Bauer, N. N. , Baxter, A. A. , Bebawy, M. , … Zuba‐Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. Journal of Extracellula Vesicles, 7, 1535750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Toth, E. , Turik, L. , Visnovitz, T. I. , Cserap, C. , Mazlo, A. , Sodar, B. W. , Forsonitis, A. I. , Petovari, G. , Sebestyen, A. , Komlosi, Z. , Drahos, L. , Kittel, A. , Nagy, G. R. , Bacsii, A. , Denes, A. , Gho, Y. S. , Szabo‐Taylor, K. , & Buzas, E. I. (2021). Formation of a protein corona on the surface of extracellular vesicles in blood plasma. Journal of Extracellular. Vesicles, 10, e12140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Vagner, T. , Spinelli, C. , Minciacchi, V. R. , Balaj, L. , Zandian, M. , Conley, A. , Zijlstra, A. , Freeman, M. R. , Demichelis, F. , De, S. , Posadas, E. M. , Tanaka, H. , & Di Vizio, D. (2018). Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. Journal of Extracellula Vesicles, 7, 1505403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Valcz, G. B. , Buzas, E. I. , Kittel, A. G. , Krenács, T. , Visnovitz, T. S. , Spisák, S. , Török, G. R. , Homolya, L. S. , Zsigrai, S. R. , Kiszler, G. B. , Antalffy, G. Z. , Pálóczi, K. , Szállási, Z. N. , Szabó, V. , Sebestyén, A. , Solymosi, N. , Kalmár, A. , Dede, K. , Lőrincz, P. T. , … Molnar, B. (2019). En bloc release of MVB‐like small extracellular vesicle clusters by colorectal carcinoma cells. Journal of Extracellula Vesicles, 8, 1596668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Van Deun, J. , Mestdagh, P. , Agostinis, P. , Akay, Ö. , Anand, S. , Anckaert, J. , Martinez, Z. A. , Baetens, T. , Beghein, E. , Bertier, L. , Berx, G. , Boere, J. , Boukouris, S. , Bremer, M. , Buschmann, D. , Byrd, J. B. , Casert, C. , Cheng, L. , Cmoch, A. , … Hendrix, A. , EV‐TRACK Consortium . (2017). EV‐TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research. Nature Methods, 14, 228–232. [DOI] [PubMed] [Google Scholar]
  106. Venturella, M. , Carpi, F. M. , & Zocco, D. (2019). Standardization of blood collection and processing for the diagnostic use of extracellular vesicles. Current Pathobiology Reports, 7, 1–8. [Google Scholar]
  107. Vila‐Liante, V. , Sánchez‐López, V. , Martínez‐Sales, V. , Ramon‐Nunez, L. A. , Arellano‐Orden, E. , Cano‐Ruiz, A. , Rodrã­Guez‐Martorell, F. J. , Gao, L. , & Otero‐Candelera, R. (2016). Impact of sample processing on the measurement of circulating microparticles: Storage and centrifugation parameters. Clinical Chemistry and Laboratory Medicine, 54, 1759–1767. [DOI] [PubMed] [Google Scholar]
  108. Waldenmaier, M. , Schulte, L. , Schönfelder, J. , Fürstberger, A. , Kraus, J. M. , Daiss, N. , Seibold, T. , Morawe, M. , Ettrich, T. J. , Kestler, H. A. , Kahlert, C. , Seufferlein, T. , & Eiseler, T. (2022). Comparative panel sequencing of DNA variants in cf‐, ev‐and tumorDNA for pancreatic ductal adenocarcinoma patients. Cancers (Basel), 14, 1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Wang, L. , Li, Y. , Guan, X. , Zhao, J. , Shen, L. , & Liu, J. (2018). Exosomal double‐stranded DNA as a biomarker for the diagnosis and preoperative assessment of pheochromocytoma and paraganglioma. Molecular Cancer, 17, 1–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Wang, X. , Chai, Z. , Pan, G. , Hao, Y. , Li, B. , Ye, T. , Li, Y. , Long, F. , Xia, L. , & Liu, M. (2021). ExoBCD: A comprehensive database for exosomal biomarker discovery in breast cancer. Briefings in Bioinformatics, 22, bbaa088. [DOI] [PubMed] [Google Scholar]
  111. Witwer, K. W. , Buzas, E. I. , Bemis, L. T. , Bora, A. , Lasser, C. , Lotvall, J. , Nolte‐'t Hoen, E. N. , Piper, M. G. , Sivaraman, S. , Skog, J. , Théry, C. , Wauben, M. H. , & Hochberg, F. (2013). Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal Extracellular Vesicles, 2, 1–25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Witwer, K. W. , Goberdhan, D. C. , O'driscoll, L. , Théry, C. , Welsh, J. A. , Blenkiron, C. , Buzas, E. I. , Di Vizio, D. , Erdbrugger, U. , Falcon‐Perez, J. M. , Fu, Q. L. , Hill, A. F. , Lenassi, M. , Lotvall, J. , Nieuwland, R. , Ochiya, T. , Rome, S. , Sahoo, S. , & Zheng, L. (2021). Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. Journal of Extracellular Vesicles, 10, e12182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Witwer, K. W. , & Théry, C. (2019). Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. Journal of Extracellula Vesicles, 8, 1648167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Wu, M. , Ouyang, Y. , Wang, Z. , Zhang, R. , Huang, P.‐H. , Chen, C. , Li, H. , Li, P. , Quinn, D. , Dao, M. , Suresh, S. , Sadovsky, Y. , & Huang, T. J. (2017). Isolation of exosomes from whole blood by integrating acoustics and microfluidics. PNAS, 114, 10584–10589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Yáñez‐Mó, M. , Siljander, P. R.‐M. , Andreu, Z. , Bedina Zavec, A. , Borras, F. E. , Buzas, E. I. , Buzas, K. , Casal, E. , Cappello, F. , Carvalho, J. , Colas, E. , Cordeiro‐Da Silva, A. , Fais, S. , Falcon‐Perez, J. M. , Ghobrial, I. M. , Giebel, B. , Gimona, M. , Graner, M. , Gursel, I. , … De Wever, O. (2015). Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 4, 27066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Yang, S. , Che, S. P. Y. , Kurywchak, P. , Tavormina, J. L. , Gansmo, L. B. , Correa De Sampaio, P. , Tachezy, M. , Bockhorn, M. , Gebauer, F. , Haltom, A. R. , Melo, S. A. , Lebleu, V. S. , & Kalluri, R. (2017). Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biology & Therapy, 18, 158–165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Yaşa, B. , Sahin, O. , Öcüt, E. , Seven, M. , & Sözer, S. (2021). Assessment of fetal rhesus d and gender with cell‐free DNA and exosomes from maternal blood. Reproductive Sciences, 28, 562–569. [DOI] [PubMed] [Google Scholar]
  118. Yokoi, A. , Villar‐Prados, A. , Oliphint, P. A. , Zhang, J. , Song, X. , De Hoff, P. , Morey, R. , Liu, J. , Roszik, J. , Clise‐Dwyer, K. , Burks, J. K. , O'Halloran, T. J. , Laurent, L. C. , & Sood, A. K. (2019). Mechanisms of nuclear content loading to exosomes. Science Advances, 5, 1–17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Yuana, Y. , Boing, A. N. , Grootemaat, A. E. , Van Der Pol, E. , Hau, C. M. , Cizmar, P. , Buhr, E. , Sturk, A. , & Nieuwland, R. (2015). Handling and storage of human body fluids for analysis of extracellular vesicles. Journal of Extracellular Vesicles, 4, 29260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Zaborowski, M. P. , Balaj, L. , Breakefield, X. O. , & Lai, C. P. (2015). Extracellular vesicles: Composition, biological relevance, and methods of study. Bioscience, 65, 783–797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Zhang, H. , Freitas, D. , Kim, H. S. , Fabijanic, K. , Li, Z. , Chen, H. , Mark, M. T. , Molina, H. , Martin, A. B. , Bojmar, L. , Fang, J. , Rampersaud, S. , Hoshino, A. , Matei, I. , Kenific, C. M. , Nakajima, M. , Mutvei, A. P. , Sansone, P. , Buehring, W. , … Lyden, D. (2018). Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field‐flow fractionation. Nature Cell Biology, 20, 332–343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Zhang, Q. , Higginbotham, J. N. , Jeppesen, D. K. , Yang, Y. ‐ P. , Li, W. , Mckinley, E. T. , Graves‐Deal, R. , Ping, J. , Britain, C. M. , Dorsett, K. A. , Hartman, C. L. , Ford, D. A. , Allen, R. M. , Vickers, K. C. , Liu, Q. , Franklin, J. L. , Bellis, S. L. , & Coffey, R. J. (2019). Transfer of functional cargo in exomeres. Cell Reports, 27, 940–954.e6.e6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Zhang, Q. , Jeppesen, D. K. , Higginbotham, J. N. , Graves‐Deal, R. , Trinh, V. Q. , Ramirez, M. A. , Sohn, Y. , Neininger, A. C. , Taneja, N. , Mckinley, E. T. , Niitsu, H. , Cao, Z. , Evans, R. , Glass, S. E. , Ray, K. C. , Fissell, W. H. , Hill, S. , Rose, K. L. , Huh, W. J. , … Coffey, R. J. (2021). Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nature Cell Biology, 23, 1240–1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Zhang, W. , Lu, S. , Pu, D. , Zhang, H. , Yang, L. , Zeng, P. , Su, F. , Chen, Z. , Guo, M. , Gu, Y. , Luo, Y. , Hu, H. , Lu, Y. , Chen, F. , & Gao, Y. (2019). Detection of fetal trisomy and single gene disease by massively parallel sequencing of extracellular vesicle DNA in maternal plasma: A proof‐of‐concept validation. BMC Med. Genomics, 12, 1–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Zhou, J. , Wu, Z. , Hu, J. , Yang, D. , Chen, X. , Wang, Q. , Liu, J. , Dou, M. , Peng, W. , Wu, Y. , Wang, W. , Xie, C. , Wang, M. , Song, Y. , Zeng, H. , & Bai, C. (2020). High‐throughput single‐EV liquid biopsy: Rapid, simultaneous, and multiplexed detection of nucleic acids, proteins, and their combinations. Science Advances, 6, 1–14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Zhou, X. , Kurywchak, P. , Wolf‐Dennen, K. , Che, S. P. Y. , Sulakhe, D. , D'Souza, M. , Xie, B. , Maltsev, N. , Gilliam, T. C. , Wu, C. C. , Mcandrews, K. M. , Lebleu, V. S. , Mcconkey, D. J. , Volpert, O. V. , Pretzsch, S. M. , Czerniak, B. A. , Dinney, C. P. , & Kalluri, R. (2021). Unique somatic variants in the DNA from urine exosomes of bladder cancer patients. Molecular Therapy ‐ Methods and Clinical Development, 22, 360–376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Zocco, D. , Bernardi, S. , Novelli, M. , Astrua, C. , Fava, P. , Zarovni, N. , Carpi, F. M. , Bianciardi, L. , Malavenda, O. , Quaglino, P. , Foroni, C. , Russo, D. , Chiesi, A. , & Fierro, M. T. (2020). Isolation of extracellular vesicles improves the detection of mutant DNA from plasma of metastatic melanoma patients. Science Reports, 10, 1–12. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supporting Information

Supporting Information

Supporting Information


Articles from Journal of Extracellular Vesicles are provided here courtesy of Wiley

RESOURCES