In the original publication [1], there was an error in Table 4 as published. The positive predicted value was listed as 0, when it is undefined (“-”). The corrected Table 4 appears below. The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.
Table 4.
Test Dataset | ||||||||
---|---|---|---|---|---|---|---|---|
Osteoporosis | Training/ Validation Dataset CT Attenuation Threshold |
AUC | Sensitivity | Specificity | AUC | Accuracy | Positive Predictive Value (PPV) | Negative Predictive Value (NPV) |
Radius | 90.179 | 0.708 | 0.500 | 0.639 | 0.569 | 0.600 | 0.350 | 0.767 |
Radius UD | 154.998 | 0.725 | 0.607 | 0.625 | 0.616 | 0.620 | 0.386 | 0.804 |
Radius 33% | −13.717 | 0.705 | 0.500 | 0.653 | 0.576 | 0.610 | 0.359 | 0.770 |
Ulna | 67.121 | 0.719 | 0.750 | 0.667 | 0.708 | 0.690 | 0.467 | 0.873 |
Ulna UD | 98.446 | 0.732 | 0.500 | 0.806 | 0.653 | 0.720 | 0.500 | 0.806 |
Ulna 33% | 3.872 | 0.669 | 0.750 | 0.611 | 0.681 | 0.650 | 0.429 | 0.863 |
Scaphoid | 247.592 | 0.763 | 0.571 | 0.583 | 0.577 | 0.580 | 0.348 | 0.778 |
Lunate | 248.387 | 0.762 | 0.00 | 1.00 | 0.365 | 0.720 | - | 0.720 |
Triquetrum | 207.882 | 0.730 | 0.00 | 1.00 | 0.390 | 0.720 | - | 0.720 |
Pisiform | 162.298 | 0.753 | 0.714 | 0.653 | 0.684 | 0.670 | 0.444 | 0.855 |
Trapezium | 141.824 | 0.734 | 0.00 | 1.00 | 0.383 | 0.720 | - | 0.720 |
Trapezoid | 231.070 | 0.699 | 0.500 | 0.722 | 0.611 | 0.660 | 0.412 | 0.788 |
Capitate | 248.039 | 0.763 | 0.536 | 0.736 | 0.636 | 0.680 | 0.441 | 0.803 |
Hamate | 170.166 | 0.769 | 0.00 | 1.00 | 0.393 | 0.720 | - | 0.720 |
1 MC | −7.772 | 0.752 | 0.500 | 0.778 | 0.639 | 0.700 | 0.467 | 0.800 |
2 MC | 16.023 | 0.686 | 0.00 | 1.00 | 0.415 | 0.720 | - | 0.720 |
3 MC | 61.555 | 0.565 | 0.00 | 1.00 | 0.466 | 0.720 | - | 0.720 |
4 MC | 50.837 | 0.600 | 0.00 | 1.00 | 0.415 | 0.720 | - | 0.720 |
5 MC | −34.860 | 0.566 | 0.00 | 1.00 | 0.408 | 0.720 | - | 0.720 |
Linear kernel SVM | 0.894 | 0.883 | 0.435 | 0.680 | 0.780 | 0.840 | 0.526 | |
Radial basis function kernel SVM | 0.987 | 0.584 | 0.957 | 0.818 | 0.670 | 0.978 | 0.407 | |
Sigmoid kernel SVM | 0.627 | 0.844 | 0.739 | 0.818 | 0.820 | 0.915 | 0.586 | |
Random Forest classifier | 0.502 | 0.987 | 0.087 | 0.537 | 0.780 | 0.784 | 0.667 | |
Osteopenia/Osteoporosis |
Training/
Validation Dataset CT Attenuation Threshold |
AUC | Sensitivity | Specificity | AUC | Accuracy | Positive Predictive Value (PPV) | Negative Predictive Value (NPV) |
Radius | 149.199 | 0.635 | 0.262 | 0.778 | 0.520 | 0.329 | 0.889 | 0.135 |
Radius UD | 160.496 | 0.528 | 0.00 | 1.00 | 0.472 | 0.129 | - | 0.129 |
Radius 33% | 10.942 | 0.716 | 0.459 | 0.667 | 0.563 | 0.486 | 0.903 | 0.154 |
Ulna | 117.259 | 0.736 | 0.00 | 1.00 | 0.432 | 0.129 | - | 0.129 |
Ulna UD | 162.088 | 0.643 | 0.705 | 0.556 | 0.630 | 0.686 | 0.915 | 0.217 |
Ulna 33% | 73.365 | 0.708 | 0.00 | 1.00 | 0.454 | 0.129 | - | 0.129 |
Scaphoid | 250.749 | 0.773 | 0.525 | 0.778 | 0.651 | 0.557 | 0.941 | 0.194 |
Lunate | 258.091 | 0.768 | 0.00 | 1.00 | 0.433 | 0.129 | - | 0.129 |
Triquetrum | 213.998 | 0.610 | 0.00 | 1.00 | 0.392 | 0.129 | - | 0.129 |
Pisiform | 220.041 | 0.754 | 0.00 | 1.00 | 0.423 | 0.129 | - | 0.129 |
Trapezium | 183.738 | 0.717 | 0.00 | 1.00 | 0.310 | 0.129 | - | 0.129 |
Trapezoid | 269.594 | 0.726 | 0.656 | 0.778 | 0.717 | 0.671 | 0.952 | 0.250 |
Capitate | 294.058 | 0.755 | 0.623 | 0.889 | 0.756 | 0.657 | 0.974 | 0.258 |
Hamate | 171.503 | 0.673 | 0.00 | 1.00 | 0.423 | 0.129 | - | 0.129 |
1 MC | 27.779 | 0.823 | 0.00 | 1.00 | 0.445 | 0.129 | - | 0.129 |
2 MC | 30.584 | 0.752 | 0.721 | 0.889 | 0.805 | 0.743 | 0.978 | 0.320 |
3 MC | 31.197 | 0.529 | 0.00 | 1.00 | 0.409 | 0.129 | - | 0.129 |
4 MC | 55.376 | 0.579 | 0.770 | 0.556 | 0.663 | 0.743 | 0.922 | 0.263 |
5 MC | 52.112 | 0.615 | 0.00 | 1.00 | 0.407 | 0.390 | - | 0.390 |
Linear kernel SVM | 0.856 | 0.443 | 0.889 | 0.674 | 0.620 | 0.871 | 0.507 | |
Radial basis function kernel SVM | 0.969 | 0.885 | 0.667 | 0.805 | 0.800 | 0.806 | 0.788 | |
Sigmoid kernel SVM | 0.542 | 0.607 | 0.778 | 0.716 | 0.670 | 0.804 | 0.556 | |
Random Forest classifier | 0.511 | 0.967 | 0.222 | 0.595 | 0.680 | 0.663 | 0.818 | |
Femoral Neck BMD ≤ −2.5 |
Training/
Validation Dataset CT Attenuation Threshold |
AUC | Sensitivity | Specificity | AUC | Accuracy | Positive Predictive Value (PPV) | Negative Predictive Value (NPV) |
Radius | 132.495 | 0.569 | 0.00 | 1.00 | 0.394 | 0.810 | - | 0.810 |
Radius UD | 184.154 | 0.618 | 0.789 | 0.531 | 0.660 | 0.580 | 0.283 | 0.915 |
Radius 33% | 20.908 | 0.625 | 0.00 | 1.00 | 0.426 | 0.810 | - | 0.810 |
Ulna | 67.121 | 0.603 | 0.789 | 0.556 | 0.673 | 0.600 | 0.294 | 0.918 |
Ulna UD | 82.730 | 0.581 | 0.526 | 0.790 | 0.658 | 0.740 | 0.370 | 0.877 |
Ulna 33% | 35.520 | 0.621 | 0.00 | 1.00 | 0.375 | 0.810 | - | 0.810 |
Scaphoid | 202.916 | 0.657 | 0.632 | 0.679 | 0.655 | 0.670 | 0.316 | 0.887 |
Lunate | 224.838 | 0.684 | 0.526 | 0.864 | 0.695 | 0.800 | 0.476 | 0.886 |
Triquetrum | 208.334 | 0.667 | 0.632 | 0.728 | 0.680 | 0.710 | 0.353 | 0.894 |
Pisiform | 121.626 | 0.736 | 0.00 | 1.00 | 0.415 | 0.810 | - | 0.810 |
Trapezium | 149.597 | 0.627 | 0.632 | 0.691 | 0.661 | 0.680 | 0.324 | 0.889 |
Trapezoid | 207.953 | 0.663 | 0.632 | 0.679 | 0.655 | 0.670 | 0.316 | 0.887 |
Capitate | 248.039 | 0.647 | 0.737 | 0.667 | 0.702 | 0.680 | 0.341 | 0.915 |
Hamate | 185.743 | 0.600 | 0.842 | 0.568 | 0.705 | 0.620 | 0.314 | 0.939 |
1 MC | 0.530 | 0.710 | 0.579 | 0.642 | 0.610 | 0.630 | 0.275 | 0.867 |
2 MC | −7.273 | 0.681 | 0.526 | 0.630 | 0.578 | 0.610 | 0.250 | 0.850 |
3 MC | −47.251 | 0.609 | 0.895 | 0.136 | 0.515 | 0.280 | 0.195 | 0.846 |
4 MC | −13.146 | 0.672 | 0.00 | 1.00 | 0.458 | 0.810 | - | 0.810 |
5 MC | 24.690 | 0.737 | 0.00 | 1.00 | 0.398 | 0.810 | - | 0.810 |
Linear kernel SVM | 0.915 | 0.947 | 0.593 | 0.795 | 0.660 | 0.535 | 0.980 | |
Radial basis function kernel SVM | 0.997 | 0.579 | 0.864 | 0.770 | 0.810 | 0.500 | 0.897 | |
Sigmoid kernel SVM | 0.736 | 0.947 | 0.531 | 0.749 | 0.610 | 0.321 | 0.977 | |
Random Forest classifier | 0.489 | 0.421 | 0.901 | 0.661 | 0.810 | 0.500 | 0.869 | |
Femoral Neck BMD < −1 |
Training/
Validation Dataset CT Attenuation Threshold |
AUC | Sensitivity | Specificity | AUC | Accuracy | Positive Predictive Value (PPV) | Negative Predictive Value (NPV) |
Radius | 130.336 | 0.603 | 0.00 | 1.00 | 0.415 | 0.270 | - | 0.270 |
Radius UD | 163.209 | 0.558 | 0.00 | 1.00 | 0.492 | 0.270 | - | 0.270 |
Radius 33% | 10.942 | 0.605 | 0.00 | 1.00 | 0.423 | 0.270 | - | 0.270 |
Ulna | 94.009 | 0.647 | 0.740 | 0.652 | 0.696 | 0.720 | 0.857 | 0.486 |
Ulna UD | 185.544 | 0.684 | 0.00 | 1.00 | 0.363 | 0.270 | - | 0.270 |
Ulna 33% | 27.406 | 0.618 | 0.727 | 0.739 | 0.733 | 0.730 | 0.883 | 0.500 |
Scaphoid | 229.799 | 0.719 | 0.558 | 0.913 | 0.736 | 0.660 | 0.953 | 0.439 |
Lunate | 268.193 | 0.707 | 0.00 | 1.00 | 0.331 | 0.270 | - | 0.270 |
Triquetrum | 287.366 | 0.641 | 0.831 | 0.565 | 0.698 | 0.760 | 0.836 | 0.556 |
Pisiform | 221.709 | 0.714 | 0.00 | 1.00 | 0.437 | 0.270 | - | 0.270 |
Trapezium | 165.624 | 0.722 | 0.558 | 0.870 | 0.714 | 0.640 | 0.911 | 0.418 |
Trapezoid | 236.041 | 0.693 | 0.610 | 0.696 | 0.653 | 0.640 | 0.849 | 0.404 |
Capitate | 257.499 | 0.693 | 0.545 | 0.870 | 0.708 | 0.790 | 0.842 | 0.625 |
Hamate | 160.072 | 0.584 | 0.00 | 1.00 | 0.299 | 0.270 | - | 0.270 |
1 MC | 26.390 | 0.710 | 0.714 | 0.609 | 0.661 | 0.680 | 0.825 | 0.432 |
2 MC | 9.576 | 0.700 | 0.623 | 0.870 | 0.746 | 0.680 | 0.918 | 0.451 |
3 MC | 54.574 | 0.491 | 0.00 | 1.00 | 0.424 | 0.270 | - | 0.270 |
4 MC | 5.199 | 0.616 | 0.00 | 1.00 | 0.427 | 0.270 | - | 0.270 |
5 MC | 1.294 | 0.674 | 0.597 | 0.696 | 0.647 | 0.630 | 0.846 | 0.396 |
Linear kernel SVM | 0.895 | 0.468 | 0.826 | 0.678 | 0.550 | 0.900 | 0.317 | |
Radial basis function kernel SVM | 0.987 | 0.584 | 0.957 | 0.818 | 0.670 | 0.978 | 0.407 | |
Sigmoid kernel SVM | 0.627 | 0.844 | 0.739 | 0.818 | 0.820 | 0.915 | 0.586 | |
Random Forest classifier | 0502 | 0.987 | 0.043 | 0.515 | 0.770 | 0.776 | 0.500 |
Radius—distal third of the radius; Radius UD—ultradistal radius (radius epiphysis/metaphysis); Radius 33%—distal third of the radial shaft; Ulna—distal third of the ulna; Ulna UD—distal ulna (ulnar epiphysis/metaphysis); Ulna 33%—distal third of the ulnar shaft; 1 MC—proximal third of the first metacarpal; 2 MC—proximal third of the second metacarpal; 3 MC—proximal third of the third metacarpal; 4 MC—proximal third of the fourth metacarpal; 5 MC—proximal third of the fifth metacarpal; -—Undefined.
Footnotes
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Reference
- 1.Sebro R., De la Garza-Ramos C. Machine Learning for Opportunistic Screening for Osteoporosis from CT Scans of the Wrist and Forearm. Diagnostics. 2022;12:691. doi: 10.3390/diagnostics12030691. [DOI] [PMC free article] [PubMed] [Google Scholar]