Skip to main content
Diagnostics logoLink to Diagnostics
. 2022 Oct 31;12(11):2635. doi: 10.3390/diagnostics12112635

Correction: Sebro, R.; De la Garza-Ramos, C. Machine Learning for Opportunistic Screening for Osteoporosis from CT Scans of the Wrist and Forearm. Diagnostics 2022, 12, 691

Ronnie Sebro 1,2,*, Cynthia De la Garza-Ramos 2
PMCID: PMC9623605  PMID: 36359598

In the original publication [1], there was an error in Table 4 as published. The positive predicted value was listed as 0, when it is undefined (“-”). The corrected Table 4 appears below. The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Table 4.

Performance of the CT attenuation of each bone and multivariable machine learning models to predict osteoporosis and osteopenia/osteoporosis.

Test Dataset
Osteoporosis Training/
Validation
Dataset CT
Attenuation Threshold
AUC Sensitivity Specificity AUC Accuracy Positive Predictive Value (PPV) Negative Predictive Value (NPV)
Radius 90.179 0.708 0.500 0.639 0.569 0.600 0.350 0.767
Radius UD 154.998 0.725 0.607 0.625 0.616 0.620 0.386 0.804
Radius 33% −13.717 0.705 0.500 0.653 0.576 0.610 0.359 0.770
Ulna 67.121 0.719 0.750 0.667 0.708 0.690 0.467 0.873
Ulna UD 98.446 0.732 0.500 0.806 0.653 0.720 0.500 0.806
Ulna 33% 3.872 0.669 0.750 0.611 0.681 0.650 0.429 0.863
Scaphoid 247.592 0.763 0.571 0.583 0.577 0.580 0.348 0.778
Lunate 248.387 0.762 0.00 1.00 0.365 0.720 - 0.720
Triquetrum 207.882 0.730 0.00 1.00 0.390 0.720 - 0.720
Pisiform 162.298 0.753 0.714 0.653 0.684 0.670 0.444 0.855
Trapezium 141.824 0.734 0.00 1.00 0.383 0.720 - 0.720
Trapezoid 231.070 0.699 0.500 0.722 0.611 0.660 0.412 0.788
Capitate 248.039 0.763 0.536 0.736 0.636 0.680 0.441 0.803
Hamate 170.166 0.769 0.00 1.00 0.393 0.720 - 0.720
1 MC −7.772 0.752 0.500 0.778 0.639 0.700 0.467 0.800
2 MC 16.023 0.686 0.00 1.00 0.415 0.720 - 0.720
3 MC 61.555 0.565 0.00 1.00 0.466 0.720 - 0.720
4 MC 50.837 0.600 0.00 1.00 0.415 0.720 - 0.720
5 MC −34.860 0.566 0.00 1.00 0.408 0.720 - 0.720
Linear kernel SVM 0.894 0.883 0.435 0.680 0.780 0.840 0.526
Radial basis function kernel SVM 0.987 0.584 0.957 0.818 0.670 0.978 0.407
Sigmoid kernel SVM 0.627 0.844 0.739 0.818 0.820 0.915 0.586
Random Forest classifier 0.502 0.987 0.087 0.537 0.780 0.784 0.667
Osteopenia/Osteoporosis Training/
Validation
Dataset CT Attenuation Threshold
AUC Sensitivity Specificity AUC Accuracy Positive Predictive Value (PPV) Negative Predictive Value (NPV)
Radius 149.199 0.635 0.262 0.778 0.520 0.329 0.889 0.135
Radius UD 160.496 0.528 0.00 1.00 0.472 0.129 - 0.129
Radius 33% 10.942 0.716 0.459 0.667 0.563 0.486 0.903 0.154
Ulna 117.259 0.736 0.00 1.00 0.432 0.129 - 0.129
Ulna UD 162.088 0.643 0.705 0.556 0.630 0.686 0.915 0.217
Ulna 33% 73.365 0.708 0.00 1.00 0.454 0.129 - 0.129
Scaphoid 250.749 0.773 0.525 0.778 0.651 0.557 0.941 0.194
Lunate 258.091 0.768 0.00 1.00 0.433 0.129 - 0.129
Triquetrum 213.998 0.610 0.00 1.00 0.392 0.129 - 0.129
Pisiform 220.041 0.754 0.00 1.00 0.423 0.129 - 0.129
Trapezium 183.738 0.717 0.00 1.00 0.310 0.129 - 0.129
Trapezoid 269.594 0.726 0.656 0.778 0.717 0.671 0.952 0.250
Capitate 294.058 0.755 0.623 0.889 0.756 0.657 0.974 0.258
Hamate 171.503 0.673 0.00 1.00 0.423 0.129 - 0.129
1 MC 27.779 0.823 0.00 1.00 0.445 0.129 - 0.129
2 MC 30.584 0.752 0.721 0.889 0.805 0.743 0.978 0.320
3 MC 31.197 0.529 0.00 1.00 0.409 0.129 - 0.129
4 MC 55.376 0.579 0.770 0.556 0.663 0.743 0.922 0.263
5 MC 52.112 0.615 0.00 1.00 0.407 0.390 - 0.390
Linear kernel SVM 0.856 0.443 0.889 0.674 0.620 0.871 0.507
Radial basis function kernel SVM 0.969 0.885 0.667 0.805 0.800 0.806 0.788
Sigmoid kernel SVM 0.542 0.607 0.778 0.716 0.670 0.804 0.556
Random Forest classifier 0.511 0.967 0.222 0.595 0.680 0.663 0.818
Femoral Neck BMD ≤ −2.5 Training/
Validation
Dataset CT Attenuation Threshold
AUC Sensitivity Specificity AUC Accuracy Positive Predictive Value (PPV) Negative Predictive Value (NPV)
Radius 132.495 0.569 0.00 1.00 0.394 0.810 - 0.810
Radius UD 184.154 0.618 0.789 0.531 0.660 0.580 0.283 0.915
Radius 33% 20.908 0.625 0.00 1.00 0.426 0.810 - 0.810
Ulna 67.121 0.603 0.789 0.556 0.673 0.600 0.294 0.918
Ulna UD 82.730 0.581 0.526 0.790 0.658 0.740 0.370 0.877
Ulna 33% 35.520 0.621 0.00 1.00 0.375 0.810 - 0.810
Scaphoid 202.916 0.657 0.632 0.679 0.655 0.670 0.316 0.887
Lunate 224.838 0.684 0.526 0.864 0.695 0.800 0.476 0.886
Triquetrum 208.334 0.667 0.632 0.728 0.680 0.710 0.353 0.894
Pisiform 121.626 0.736 0.00 1.00 0.415 0.810 - 0.810
Trapezium 149.597 0.627 0.632 0.691 0.661 0.680 0.324 0.889
Trapezoid 207.953 0.663 0.632 0.679 0.655 0.670 0.316 0.887
Capitate 248.039 0.647 0.737 0.667 0.702 0.680 0.341 0.915
Hamate 185.743 0.600 0.842 0.568 0.705 0.620 0.314 0.939
1 MC 0.530 0.710 0.579 0.642 0.610 0.630 0.275 0.867
2 MC −7.273 0.681 0.526 0.630 0.578 0.610 0.250 0.850
3 MC −47.251 0.609 0.895 0.136 0.515 0.280 0.195 0.846
4 MC −13.146 0.672 0.00 1.00 0.458 0.810 - 0.810
5 MC 24.690 0.737 0.00 1.00 0.398 0.810 - 0.810
Linear kernel SVM 0.915 0.947 0.593 0.795 0.660 0.535 0.980
Radial basis function kernel SVM 0.997 0.579 0.864 0.770 0.810 0.500 0.897
Sigmoid kernel SVM 0.736 0.947 0.531 0.749 0.610 0.321 0.977
Random Forest classifier 0.489 0.421 0.901 0.661 0.810 0.500 0.869
Femoral Neck BMD < −1 Training/
Validation
Dataset CT Attenuation Threshold
AUC Sensitivity Specificity AUC Accuracy Positive Predictive Value (PPV) Negative Predictive Value (NPV)
Radius 130.336 0.603 0.00 1.00 0.415 0.270 - 0.270
Radius UD 163.209 0.558 0.00 1.00 0.492 0.270 - 0.270
Radius 33% 10.942 0.605 0.00 1.00 0.423 0.270 - 0.270
Ulna 94.009 0.647 0.740 0.652 0.696 0.720 0.857 0.486
Ulna UD 185.544 0.684 0.00 1.00 0.363 0.270 - 0.270
Ulna 33% 27.406 0.618 0.727 0.739 0.733 0.730 0.883 0.500
Scaphoid 229.799 0.719 0.558 0.913 0.736 0.660 0.953 0.439
Lunate 268.193 0.707 0.00 1.00 0.331 0.270 - 0.270
Triquetrum 287.366 0.641 0.831 0.565 0.698 0.760 0.836 0.556
Pisiform 221.709 0.714 0.00 1.00 0.437 0.270 - 0.270
Trapezium 165.624 0.722 0.558 0.870 0.714 0.640 0.911 0.418
Trapezoid 236.041 0.693 0.610 0.696 0.653 0.640 0.849 0.404
Capitate 257.499 0.693 0.545 0.870 0.708 0.790 0.842 0.625
Hamate 160.072 0.584 0.00 1.00 0.299 0.270 - 0.270
1 MC 26.390 0.710 0.714 0.609 0.661 0.680 0.825 0.432
2 MC 9.576 0.700 0.623 0.870 0.746 0.680 0.918 0.451
3 MC 54.574 0.491 0.00 1.00 0.424 0.270 - 0.270
4 MC 5.199 0.616 0.00 1.00 0.427 0.270 - 0.270
5 MC 1.294 0.674 0.597 0.696 0.647 0.630 0.846 0.396
Linear kernel SVM 0.895 0.468 0.826 0.678 0.550 0.900 0.317
Radial basis function kernel SVM 0.987 0.584 0.957 0.818 0.670 0.978 0.407
Sigmoid kernel SVM 0.627 0.844 0.739 0.818 0.820 0.915 0.586
Random Forest classifier 0502 0.987 0.043 0.515 0.770 0.776 0.500

Radius—distal third of the radius; Radius UD—ultradistal radius (radius epiphysis/metaphysis); Radius 33%—distal third of the radial shaft; Ulna—distal third of the ulna; Ulna UD—distal ulna (ulnar epiphysis/metaphysis); Ulna 33%—distal third of the ulnar shaft; 1 MC—proximal third of the first metacarpal; 2 MC—proximal third of the second metacarpal; 3 MC—proximal third of the third metacarpal; 4 MC—proximal third of the fourth metacarpal; 5 MC—proximal third of the fifth metacarpal; -—Undefined.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reference

  • 1.Sebro R., De la Garza-Ramos C. Machine Learning for Opportunistic Screening for Osteoporosis from CT Scans of the Wrist and Forearm. Diagnostics. 2022;12:691. doi: 10.3390/diagnostics12030691. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Diagnostics are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES