Abstract
The constant region of the immunoglobulin (IG) or antibody heavy gamma chain is frequently engineered to modify the effector properties of the therapeutic monoclonal antibodies. These variants are classified in regards to their effects on effector functions, antibody-dependent cytotoxicity (ADCC), antibody-dependent phagocytosis (ADCP), complement-dependent cytotoxicity (CDC) enhancement or reduction, B cell inhibition by the coengagement of antigen and FcγR on the same cell, on half-life increase, and/or on structure such as prevention of IgG4 half-IG exchange, hexamerisation, knobs-into-holes and the heteropairing H-H of bispecific antibodies, absence of disulfide bridge inter H-L, absence of glycosylation site, and site-specific drug attachment engineered cysteine. The IMGT engineered variant identifier is comprised of the species and gene name (and eventually allele), the letter ‘v’ followed by a number (assigned chronologically), and for each concerned domain (e.g, CH1, h, CH2 and CH3), the novel AA (single letter abbreviation) and IMGT position according to the IMGT unique numbering for the C-domain and between parentheses, the Eu numbering. IMGT engineered variants are described with detailed amino acid changes, visualized in motifs based on the IMGT numbering bridging genes, sequences, and structures for higher order description.
Keywords: IMGT, immunogenetics, immunoinformatics, immunoglobulin (IG), antibody, system biology, bioengineering, allotypes, variants, effector properties
1. Introduction
The adaptive immune response, acquired by jawed vertebrates (or gnathostomata) more than 450 million years ago and found in all extant jawed vertebrate species from fish to humans, is characterized by a remarkable immune specificity and memory, which are the properties of the B and T cells because of the extreme diversity of their antigen receptors [1]. The antigen receptors of the adaptive immune response [1,2] comprise the immunoglobulins (IG) or antibodies of the B cells and plasmocytes [3,4] and the T cell receptors (TR) of the T cells [5]. The IG recognizes antigens in their native (unprocessed) form, whereas the TR recognizes processed antigens, which are presented as peptides through its highly polymorphic major histocompatibility (MH, in humans HLA for human leucocyte antigens) proteins [6]. Immunoglobulins (IG) or antibodies serve a dual role in immunity. First, they both recognize antigens on the surface of foreign bodies such as bacteria and viruses, and second, they trigger elimination mechanisms such as cell lysis and phagocytosis to rid the body of these invading cells and particles [4]. IMGT®, the international ImMunoGeneTics information system® (https://www.imgt.org) (accessed on 11 October 2022) [1], was created in 1989 by Marie-Paule Lefranc in Montpellier, France, Laboratoire d’ImmunoGénétique Moléculaire (LIGM) des Prof G. and M-P. Lefranc (Université de Montpellier and CNRS) to manage the huge diversity of the IG and TR repertoires. For the first time, immunoglobulin (IG) or antibody and T cell receptor (TR) variable (V), diversity (D), joining (J) and constant (C) genes were officially recognized as ‘genes’ and conventional genes [1,3,5,7,8,9,10]. Through its creation, IMGT® marks the advent of a new science, immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics [1]. As an ontology and system, IMGT® bridges genes, sequences and structures of the antigen receptors to better understand their functions. Focusing on the constant region of the IgG, a standardized definition of engineered variants of therapeutic antibodies is provided based on the IMGT concepts.
2. An Ontology and a System to Bridge Genes, Sequences and Structures to Functions
IMGT®, the international ImMunoGeneTics information system® (Figure 1) [1,11,12,13,14,15,16,17,18,19,20,21], is an integrated system for the genes, sequences and structures of the IG or antibodies, TR and MH of the adaptive immune responses of the jawed vertebrates, as well as other proteins of the IG superfamily (IgSF) [22] and MH superfamily (MhSF) of vertebrates and invertebrates [23].
Immunoinformatics [1] builds and organizes molecular immunogenetics knowledge to be managed and shared in IMGT®. IMGT® comprises seven databases [24,25,26,27,28,29,30], 17 tools [31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50] and more than 25,000 pages of web resources (Table 1). IMGT® dababases are specialized in sequences (i.e., IMGT/LIGM-DB [24,25]), genes and alleles (IMGT/GENE-DB [26]), two-dimensional (2D) structures (IMGT/2Dstructure-DB) and three-dimensional (3D) structures (IMGT/3Dstructure-DB) [27,28,29], whereas the IMGT/mAb-DB [30] interface allows the querying of therapeutic monoclonal antibodies (IG, mAb), fusion proteins for immunological applications (FPIA), composite proteins for clinical applications (CPCA) and related proteins (RPI) of therapeutic interest (with links to amino acid sequences in IMGT/2Dstructure-DB, and if available, to 3D structures in IMGT/3D structure-DB. The IMGT® tools include: (1) For nucleotide sequence analysis, IMGT/V-QUEST [31,32,33,34,35,36] and the integrated IMGT/JunctionAnalysis [37,38] and IMGT/Automat [39,40] tools, and for next generation sequencing, the high-throughput version IMGT/HighV-QUEST [36,41,42,43,44,45] and the downloadable IMGT/StatClonotype [46,47] package (which allows for statistical pairwise analysis of the diversity and expression of the IMGT clonotypes (AA) [43] and repertoire comparisons in adaptive immune responses); (2) for genomic analysis, IMGT/LIGMotif [48] (which allows for the identification and description of new genes in genomic sequences); (3) for amino acid sequence analysis per the domain, IMGT/DomainGapAlign [28,49,50]; and (4) for graphical representations of the domains, the IMGT/Collier-de-Perles tool [51] (e.g., IMGT Colliers de Perles of the variable (V), constant (C) and groove (G) domains). IMGT® Web resources (‘the IMGT Marie-Paule page’) comprise the IMGT Repertoire (IG and TR, MH and RPI), IMGT Scientific chart, IMGT Education (IMGT Lexique, Aide-mémoire (amino acid physicochemical properties [52], splicing sites) and tutorials, etc.).
Table 1.
IMGT Databases | IMGT Tools | IMGT Web Resources ‘The IMGT Marie-Paule Page’ |
|
---|---|---|---|
Sequences | IMGT/LIGM-DB [24,25] IMGT/PRIMER-DB IMGT/CLL-DB |
IMGT/V-QUEST [31,32,33,34,35,36] IMGT/JunctionAnalysis [37,38] IMGT/Automat [39,40] IMGT/HighV-QUEST [36,41,42,43,44,45] IMGT/StatClonotype [46,47] IMGT/PhyloGene IMGT/Allele-Align |
Standardized keywords and labels [53,54] Standardized labels [55,56,57,58] IMGT Repertoire (IG and TR, MH, RPI Alignments of alleles Protein displays Tables of alleles CDR-IMGT lengths Allotypes [59,60] Isotypes, etc. |
Genes | IMGT/GENE-DB [26] | IMGT/LIGMotif [48] IMGT/LocusView IMGT/GeneView IMGT/GeneSearch IMGT/CloneSearch IMGT/GeneInfo |
Gene and allele nomenclature [1,2,3,4,5,7,8,9,10,61,62,63] Chromosomal localizations Locus representations Locus description Gene exon/intron splicing sites Gene tables Potential germline repertoires Lists of genes Correspondence between nomenclatures. |
Structures | IMGT/2Dstructure-DB IMGT/3Dstructure-DB [27,28,29] IMGT/mAb-DB [30] |
IMGT/DomainGapAlign [28,49,50] IMGT/DomainDisplay IMGT/StructuralQuery IMGT/Collier-de-Perles [51] |
IMGT unique numbering per domain [64,65,66,67,68,69,70,71,72] 2D Colliers de Perles (IG and TR, MH, RPI) [51,73,74,75,76,77] IMGT classes for amino acid physicochemical properties [52] IMGT Colliers de Perles reference profiles [52] 3D representations. |
The bridging of genes, structures and functions is based on the IMGT-ONTOLOGY axioms and concepts from which were generared the IMGT Scientific chart rules [78,79,80,81,82] (Table 2): CLASSIFICATION for theIMGT standardized gene and allele nomenclature [1,2,3,4,5,7,8,9,10,61,62,63], IDENTIFICATION for IMGT standardized keywords and keyword abbreviations (e.g., clonotype, paratope and epitope, variant, Fc receptor and FcR) [53,54], DESCRIPTION forIMGT standardized labels [55,56,57,58] (e.g., complementarity determining region (CDR)-IMGT (CDR1-IMGT to CDR3-IMGT) [57] and framework region (FR-IMGT) (FR1-IMGT to FR4-IMGT) [58]), NUMEROTATION for the IMGT unique numbering [64,65,66,67,68,69,70,71,72] and the IMGT Colliers de Perles [51,73,74,75,76,77]. IMGT positions per domain are used in Protein displays, Alignments of alleles, CDR-IMGT lengths, Allotypes [59,60] sections of the IMGT Repertoire, and to number amino acids involved in paratope/epitope (antigen receptor V-domains/target interactions [83]) (Table 1) and in effector properties (antigen receptor C-domain/effector binding proteins [6]).
Table 2.
IMGT-ONTOLOGY Axioms and Concepts | IMGT Scientific Chart Rules | |
---|---|---|
IDENTIFICATION [54] | Concepts of identification [53] | Standardized keywords [53,54] (e.g., clonotype, paratope, epitope, variant, Fc receptor, FcR) (1). |
DESCRIPTION [56] |
Concepts of description [55] | Standardized labels and annotations [55,56,57,58] (e.g., CDR-IMGT [57], FR-IMGT [58], antibody description [84]) |
CLASSIFICATION [63] | Concepts of classification [62] | Reference sequences Standardized IG and TR gene nomenclature (group, subgroup, gene, allele) [1,2,3,4,5,7,8,9,10,61,62,63] (1). |
NUMEROTATION [64] | Concepts of numerotation [65,66,67,68,69,70,71,72] | IMGT unique numbering for V- and V-LIKE domains [65,66,67] C- and C-LIKE domains [68] G- and G-LIKE domains [69] IMGT Colliers de Perles [73,74,75,76,77] |
ORIENTATION | Concepts of orientation | Chromosome orientation Locus orientation Gene orientation DNA strand orientation Domain beta-strand orientation |
OBTENTION | Standardized origin Standardized methodology |
Keyword use versus gene name nomenclature for defining a receptor: in this paper, this concerns the related proteins of immune interest (RPI) such as the Fc receptor’s gamma. Owing to the diversity and multiplicity of these receptors, and in the absence of standardized sequence characterization in functional analysis, these receptors are usually identified with keywords, for example for Homo sapiens, FcγR, FcγRI, FcγRII, FcγRIII and so on. However, it should be noted that, when there is no ambiguity as to the interactive chain involved, the HGNC gene name should be used (FCGR1A, FCGR2A, FCGR2B, FCRG2C, FCGR3A and FCGR3B). This rule is applied in this paper for the neonatal Fc receptor (FcRn), which is made of the interactive Fc gamma receptor and transporter (FCGRT) chain that is associated with B2M.
IMGT standards have been used since 2006 in the description of the therapeutic antibodies published in the World Health Organization’s (WHO) International Nonproprietary Names (INN) programme [84,85,86]. Since 2003, IMGT® has been widely used in the analysis of therapeutical antibodies for humanization and/or engineering [4,11,13,87,88,89,90,91,92,93,94,95,96].
3. Immunoglobulin IgG Receptor, Chains, Domains and Amino Acids
The Homo sapien’s IgG1-kappa (Figure 2) is taken as an example (Table 3) because it is the most represented subclass in therapeutic antibodies.
Table 3.
IG Structure Labels (IMGT/3Dstructure-DB [27,28,29]) |
Sequence Labels (IMGT/LIGM-DB [24,25]) | |||
---|---|---|---|---|
Receptor | Chain | Domain Type | Domain | Region 1 |
IG-GAMMA-1_KAPPA | H-GAMMA-1 | V | VH | V-D-J-REGION |
C | CH1 | C-REGION 2 | ||
C | CH2 | |||
C | CH3 | |||
L-KAPPA | V | V-KAPPA | V-J-REGION | |
C | C-KAPPA | C-REGION |
1. The VH-domain (or V-D-J-REGION) and the VL-domain (V-KAPPA or V-LAMBDA) (or V-J-REGION) are encoded by rearranged V-(D)-J genes, whereas the remainder of the chain is the C-REGION (encoded by a C gene). The C-REGION comprises one C-domain (C-KAPPA or C-LAMBDA) for the L chain, or several C-domains (CH) for the H chain. 2 The heavy chain C-REGION also includes the HINGE-REGION, and for membrane IG (mIG), the CONNECTING-REGION (CO), TRANSMEMBRANE-REGION (TM) and CYTOPLASMIC-REGION (CY); for secreted IG (sIG), the C-REGION includes CHS instead of CO, TM and CY.
In the IMGT system, the C-domain includes the C-DOMAIN of the IG and of the TR [1] and the C-LIKE-DOMAIN of the IgSF other than IG and TR [22]. The C-domain description of any receptor, any chain and any species is based on the IMGT unique numbering for the C-domain (C-DOMAIN and C-LIKE-DOMAIN) [68]. A C-domain (Figure 3) comprises about 90–100 amino acids and is made up of seven antiparallel beta strands (A, B, C, D, E, F and G), linked by beta turns (AB, DE and EF), a transversal strand (CD) and two loops (BC and FG), and forms a sandwich of two sheets [ABED] [GFC]. A C-domain has a topology and a three-dimensional structure that is similar to that of a V-domain [67], but without the C’ and C’’ strands and the C’C’’ loop, which is replaced by a transversal CD strand [68]. The lengths of the strands and loops (Table 4) are visualized in the IMGT Colliers de Perles on one layer and two layers (Figure 3).
Table 4.
C Domain Strands, Turns and Loops a | IMGT Position b | Lengths c | Characteristic IMGT Residue@Position d |
---|---|---|---|
A-STRAND | 1–c15 | 15 (14 if gap at 10) | |
AB-TURN | 15.1–15.3 | 0-3 | |
B-STRAND | 16–26 | 11 | 1st-CYS 23 |
BC-LOOP | 27–31 34–38 |
10 (or less) | |
C-STRAND | 39–45 | 7 | CONSERVED-TRP 41 |
CD-STRAND | 45.1–45.9 | 0–9 | |
D-STRAND | 77–84 | 8 (or 7 if gap at 82) | |
DE-TURN | 84.1–84.7 85.1–85.7 |
0–14 | |
E-STRAND | 85–96 | 12 | hydrophobic 89 |
EF-TURN | 96.1–96.2 | 0–2 | |
F-STRAND | 97–104 | 8 | 2nd-CYS 104 |
FG-LOOP | 105–117 | 13 (or less, or more) | |
G-STRAND | 118–128 | 11 (or less) |
a IMGT labels (concepts of description) are written in capital letters (no plural) [55,56]. b based on the IMGT unique numbering for C-domain (C-DOMAIN and C-LIKE-DOMAIN) [68]. c in number of amino acids (or codons). d IMGT Residue@Position is a given residue (usually an amino acid) or a given conserved property amino acid class, at a given position in a domain, based on the IMGT unique numbering [68].
There are six IMGT anchors in a C-domain (four of them identical to those of a V-domain): Positions 26 and 39 (anchors of the BC loop), 45 and 77 (by extension, anchors of the CD strand as there is no C’-C’’ loop in a C-domain [68]), and 104 and 118 (anchors of the FG loop). A C-domain has five characteristic amino acids at given positions (positions with bold (online red) letters in the IMGT Colliers de Perles). Four of them are highly conserved and hydrophobic [52] and are common to the V-domain: 23 (1st-CYS), 41 (CONSERVED-TRP), 89 (hydrophobic) and 104 (2nd-CYS). These amino acids contribute to the two major features shared by the V and C-domains: The disulfide bridge (between the two cysteines 23 and 104) and the internal hydrophobic core of the domain (with the side chains of tryptophan W41 and amino acid 89). The fifth position, 118, is diverse and is characterized as being an FG loop anchor. In the IMGT system, the C-domains (C-DOMAIN and C-LIKE-DOMAIN) are delimited considering the exon delimitation, whenever appropriate, allowing the integration of strands A and G, which do not have structural alignments.
The 20 usual amino acids (AA) have been classified in eleven IMGT physicochemical classes [52] (IMGT® https://www.imgt.org, IMGT Education > Aide-mémoire > Amino acids) (Figure 4).
4. IGHG, IGKC and IGLC2 Engineered Variants
One hundred and fourteen IGHG engineered variants have been defined by their IMGT gene nomenclature, the IMGT unique numbering for C-domain [68] and IMGT motifs in domain strands and/or loops (Table 4, Figure 3), with corresponding Eu positions [97] (IMGT https://www.imgt.org, IMGT Scientific chart > Correspondence between C numberings > Correspondence between the IMGT unique numbering for C-DOMAIN, the IMGT exon numbering, the EU and Kabat numberings: Human IGHG [97,98] https://www.imgt.org/IMGTScientificChart/Numbering/Hu_IGHGnber.html) (Supplementary Table S1). The IGKC and IGLC2 engineered variants involved in the structure have also been defined similarly by their IMGT gene nomenclature, the IMGT unique numbering for the C-domain [68] and IMGT motifs in the domain strands and/or loops (Table 4), with corresponding Eu positions [97] (IMGT https://www.imgt.org, IMGT Scientific chart > Correspondence between C numberings > Correspondence between the IMGT unique numbering for the C-DOMAIN, the IMGT exon numbering, the EU and Kabat numberings: Human IGKC [97,98].
The correspondence between the IMGT unique numbering and the Eu positions are provided here in a horizontal format for the IGHG1 CH1, hinge, CH2 and CH3-domains (Figure 5), and hinges of IGHG1, IGHG2, IGHG3 and IGHG4 (Figure 6), and by extension to the alignment of IGKC and IGLC2 with IGHG1 CH1 (Figure 7).
Standardized characterization has become a necessity, owing to the increasing number of engineered antibodies of effector properties [99,100] and/or various formats. Based on the IMGT Scientific chart rules, we propose a standardized IMGT nomenclature of engineered variants involved in effector properties (ADCC, ADCP and CDC), half-life and structure of therapeutical monoclonal antibodies. The standardized variant characterization comprises (1) the IMGT engineered Fc variant name (e.g. G1v1), (2) the IMGT variant definition (for each amino acid (AA) change: domain, AA in the one-letter abbreviation [52] and its position in the IMGT unique numbering for C domain [68], e.g. CH2 P1.4, (3) the IMGT amino acid changes on the IGHG CH domain with the Eu numbering between parentheses (e.g., CH2 E1.4 > P (233)), (4) the Eu numbering variant (e.g., E233P), (5) the IMGT motif positions according to the IMGT unique numbering [68], followed between parentheses, by the Eu numbering, motif with AA before and after the AA change in bold (e.g., IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APPLLGGPS; underlined amino acids in the motif correspond to additional positions in the IMGT unique numbering for the C-domain [68,70,71,72], e.g., APELLG and APPLLG which correspond to 1.6, 1.5, 1.4, 1.3, 1.2 and 1.1), and (6) information from the literature regarding ‘property and function’.
These properties and functions have allowed to classify the IMGT engineered variants in 19 types (#1 to #19) corresponding to four categories. The first category ‘Effector’ refers to the variants that affect the effector properties: ADCC reduction #1 (Table 5), ADCC enhancement #2 (Table 6), ADCP and CDC enhancement #3 (Table 7), CDC enhancement #4 (Table 8), CDC reduction #5 (Table 9), ADCC and CDC reduction #6 (Table 10), B cell inhibition by the coengagement of antigen and FcγR on the same cell #7 (Table 11), knock out CH2 84.4 glycosylation #8 (Table 12), the second category ‘Half-life’ refers to the variants that affect (most of them increasing) the half-life #9 (Table 13), the third one ‘Protein A’ refers to the abrogation of binding to protein A #10 (Table 14), the fourth one ‘Structure’ refers to variants that affect the stability or structure of monospecific, bispecific or multispecific antibodies and include: formation of additional bridge stabilizing CH2 in the absence of N84.4 (297) glycosylation #11 (Table 15), prevention of IgG4 half-IG exchange #12 (Table 16), hexamerisation #13 (Table 17), knobs-into-holes and the enhancement of heteropairing H-H of bispecific antibodies #14 (Table 18), suppression of inter H-L and/or inter H-H disulfide bridges #15 (Table 19), site-specific drug attachment #16 (Table 20), enhancement of hetero pairing H-L of bispecific antibodies #17 (Table 21), control of half-IG exchange of bispecific IgG4 #18 (Table 22), reducing acid-induced aggregation #19 (Table 23).
Table 5.
IMGT Engineered Fc Variant Name | IMGT Engineered Variant Definition | IMGT Amino Acid Changes on IGHG CH Domain (Eu Numbering between Parentheses) | Amino Acid Changes With the Eu Positions | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering and with Eu Positions between Parentheses | 1. Property and Function | 2. Property and Function |
---|---|---|---|---|---|---|
G1v1 |
CH2
P1.4 |
CH2 E1.4 > P (233) |
E233P |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APPLLGGPS |
ADCC reduction. Prevents FcγRI binding [101] |
|
G1v2 |
CH2
V1.3 |
CH2 L1.3 > V (234) |
L234V |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APEVLGGPS |
ADCC reduction Decreases FcγRI binding [101] |
|
G1v3 |
CH2
A1.2 |
CH2 L1.2 > A (235) |
L235A |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APELAGGPS |
ADCC reduction. Prevents FcγRI binding [101] |
|
G1v5 |
CH2
W109 |
CH2 K109 > W (326) |
K326W |
IGHG1 CH2 FG 105–117 (322–332) KVSNKA..LPAPI > KVSNWA..LPAPI |
ADCC reduction [102] |
CDC enhancement. Increases C1q binding [102] |
G1v47 |
CH2
delG1.1 |
CH2 G1.1 > del (326) |
G236del |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APELLGPS |
ADCC reduction. Eliminates binding to FcγRI, FcγRIIA, FcγRIIIA [103] |
|
G1v50 |
CH2
P1.4 V1.3 A1.2 delG1.1 |
CH2 E1.4 > P (233), L1.3 > V (234), L1.2 > A (235), G1.1 > del (236) |
E233P, L234V, L235A, G236del |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APPVA-GPS |
ADCC reduction. Decreases FcgammaR binding (G2-like motif). [Combines G1v1, v2, v3 and v47] |
|
G1v52 |
CH2
R1.1, R113 |
CH2 G1.1 > R (231) L113 > R (328) |
G236R, L328R GRLR |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APELLRGPS IGHG1 CH2 FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..RPAPI |
ADCC reduction. Abrogates FcgammaR binding |
|
G1v66 |
CH2
A27 |
CH2 D27 > A |
D265A |
IGHG1 CH2 23–31 (261–269) CVVVDVSHE > CVVVAVSHE |
ADCC reduction. Reduces FcγR binding. |
|
G1v67 |
CH2
S27 |
CH2 D27 > S |
D265S |
IGHG1 CH2 23–31 (261–269) CVVVDVSHE > CVVVSVSHE |
ADCC reduction. Reduces FcγR binding. |
Engineered amino acid changes are in bold in the IMGT variants (red before the change, green after the change. The motif is in yellow and shown before and after the AA change(s). Amino acids of the motifs at additional positions in the IMGT unique numbering for C-domain [68] (by comparison to the V-domain IMGT unique numbering [67]) are underlined. Alias variant names found in the literature are written in blue in column 4 ‘Amino Acid Changes with the Eu Positions’. The background color indicates a reduction (pink color) or an enhancement (green color) of the involved effector ‘Property and Function’. For other ‘Property and Function’, background colors refer to structure (yellow), half-life (pale blue color) or protein A (pale orange).
Table 6.
IMGT Engineered Fc Variant Name | IMGT Engineered Variant Definition | IMGT Amino Acid Changes on IGHG CH Domain (Eu Numbering between Parentheses) | Amino Acid Changes with the Eu Positions | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering and with Eu Positions between Parentheses | 1. Property and Function | 2. Property and Function | 3D |
---|---|---|---|---|---|---|---|
G1v6 |
CH2
A85.4, A118, A119 |
CH2 S85.4 > A(298), E118 > A (333), K119 > A (334) |
S298A, E333A, K334A |
IGHG1 CH2 84.1–85.1 (294–301) EQYNSTYR > EQYNATYR FG 105–117,118,119 (322–334) KVSNKA..LPAPIEK > KVSNKA..LPAPIAA |
ADCC enhancement. Increases FcγRIIIa binding [104] |
||
G1v7 |
CH2
D3, E117 |
CH2 S3 > D (239), I117 > E (332) |
S239D, I332E DE |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APELLGGPD FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LPAPE |
ADCC enhancement. Increases FcγRIIIA binding [105] |
||
G1v8 |
CH2
D3, L115, E117 |
CH2 S3> D (239), A115 > L (330), I117 > E (332) |
S239D, A330L, I332E DLE, 3M |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APELLGGPD FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LPLPE |
ADCC enhancement. Increases FcRIIIA binding [105] |
Decreases FcγRIIB binding [105] | 3D [106] |
G1v9 |
CH2 L7, P83, L85.2, I88. CH3 L83 |
CH2 F7 > L (243), R83 > P (292), Y85.2 > L (300), V88 > I (305) CH3 P83 > L (396) |
F243L, R292P, Y300L, V305I, P396l LPLIL |
IGHG1 CH2 6–10 (242–246) LFPPK > LLPPK 83–88 (292–305) REEQYNSTYRVVSV > PEEQYNSTLRVVSI CH3 83–84.4 (396–401) PVLDSD > IVLDSD |
ADCC enhancement. 100% increase. [107] |
||
G1v10 |
CH2
Y1.3, Q1.2, W1.1, M3, D30, E34, A85.4 |
CH2 L1.3 > Y (234), L1.2 > Q (235), G1.1 > W (236), S3 > M (239), H30 > D (268), D34 > E (270), S85.4 > A (298) |
L234Y, L235Q, G236W, S239M, H268D, D270E, S298A |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APEYQWGPM 27–31,34 (265–270) DVSHED > DVSDEE 84.1–85.1 (294–301) EQYNSTYR > EQYNATYR |
ADCC enhancement. Increases FcγIIIA binding [108] >2000-fold (F158), >1000-fold (V158) in the association of G1v10 and G1v11 [108] |
||
G1v11 |
CH2
E34, D109, M115, E119 |
CH2 D34 > E (270), K109 > D (326), A115 > M (330) K119 > E (334) |
D270E, K326D, A330M, K334E |
IGHG1 CH2 27–31,34 (265–270) DVSHED > DVSHEE FG 105–117,118,119 (322–334) KVSNKA..LPAPIEK > KVSNDA..LPMPIEE |
ADCC enhancement. Increases FcγIIIA binding [108] >2000-fold (F158), >1000-fold (V158) in the association of G1v10 and G1v11 [108] |
||
G2v1 |
CH2
L1.3, L1.2, G1.1 |
CH2 V1.2 > LL(234,235) A1.1 > G(236) |
V235LL, A236G |
IGHG2 CH2 1.6–3 (231–239) AP.PVAGPS > APPLLGGPS |
ADCC enhancement. Confers FcγRI binding (WT does not show any binding capacity) [101] |
||
G4v1 |
CH2
L1.3 |
CH2 F1.3 > L (234) |
F234L |
IGHG4 CH2 1.6–3 (231–239) APEFLGGPS > APELLGGPS |
ADCC enhancement. Increases FcγRI affinity [101] |
||
Mus musculus
G2Bv1 |
CH2
L1.2 |
CH2 E1.2 > L (235) |
E235L |
IGHG2B CH2 1.6–3 (231–239) APNLEGGPS > APNLLGGPS |
ADCC enhancement. Increases FcγRI affinity [109] |
Table 7.
IMGT Engineered Fc Variant Name | IMGT Engineered Variant Definition | IMGT Amino Acid Changes on IGHG CH Domain (Eu Numbering between Parentheses) | Amino Acid Changes with the Eu Positions | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering and with Eu Positions between Parentheses | 1. Property and Function | 2. Property and Function | 3D |
---|---|---|---|---|---|---|---|
G1v12 |
CH2
A1.1, D3, L115, E117 |
CH2 G1.1 > A (236), S3 > D (239), A115 > L (330), I117 > E (332) |
G236A, S239D, A330L, I332E GASDALIE |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APELLAGPD FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LPLPE |
ADCC enhancement. Increases FcγRIIIA binding [110] |
ADCP enhancement. NK cell activation. Increases FcγRIIA binding [110] |
5d4q, 5d6d |
G1v13 |
CH2
A1.1, D3, E117 |
CH2 G1.1 > A (236), S3 > D (239), I117 > E (332) |
G236A, S239D, I332E GASDIE, ADE |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APELLAGPD FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LPAPE |
ADCC enhancement. Increases FcγIIIA binding [111] |
ADCP enhancement. NK cell activation. Increases FcγRIIA binding (70>fold)Increases FcγRIIA/FcγRIIB binding ratio (15-fold) [111] |
|
G1v45 |
CH2
A1.1, L115, E117 |
CH2 G1.1 > A (236), A115 > L (330), I117 > E(332) |
G236A, A330L, I332E GAALIE |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APELLAGPS FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LPLPE |
ADCC enhancement Increases FcγIIIA binding |
ADCP enhancement NK cell activation |
Table 8.
IMGT Engineered Variant Name | IMGT Engineered Variant Definition | IMGT Amino Acid Changes on IGHG CH Domain (Eu Numbering between Parentheses) | Amino Acid Changes with the Eu Positions | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering and with Eu Positions between Parentheses | 1. Property and Function | 2. Property and Function |
---|---|---|---|---|---|---|
G1v5 |
CH2
W109 |
CH2 K109 > W (326) |
K326W |
IGHG1 CH2 FG 105–117 (322–332) KVSNKA..LPAPI > KVSNWA..LPAPI |
CDC enhancement. Increases C1q binding [102] |
ADCC reduction [102]. |
G1v15 |
CH2
S118 |
CH2 E118 > S (333) |
E333S |
IGHG1 CH2 FG 105–117,118 (322–333) KVSNKA..LPAPIE > KVSNKA..LPAPIS |
CDC enhancement. Increases C1q binding [102] |
|
G1v16 |
CH2
W109, S118 |
CH2 K109 > W (326), E118 > S (333) |
K326W, E333S |
IGHG1 CH2 FG 105–117,118 (322–333) KVSNKA..LPAPIE > KVSNWA..LPAPIS |
CDC enhancement. Increases C1q binding [102] |
|
G1v17 |
CH2
E29, F30, T107 |
CH2 S29 > E (267), H30 > F(268), S107 > T (324) |
S267E, H268F, S324T EFT |
IGHG1 CH2 27–31 (265–269) DVSHE > DVEFE FG 105–117 (322–332) KVSNKA..LPAPI > KVTNKA..LPAPI |
CDC enhancement Increases C1q binding [112] |
|
G1v18 |
CH3
R1, G109, Y120 |
CH3 E1 > R (345), E109 > G (430), S120 > Y (440) |
E345R, E430G, S440Y |
IGHG1 CH3 1.4–2 (341–346) GQPREP > GQPRRP 105–110 (426–431) SVMHEA > SVMHGA 118–125 (438–445) QKSLSLSP > QKYLSLSP |
CDC enhancement. Increases C1q binding [113]. The triple mutant IgG1-005-RGY (IGHG1v18) form IgG1 hexamers [113] |
Favors IgG1 hexamerization. |
G1v35 |
CH2
E29 |
CH2 S29 > E (267) |
S267E SE |
IGHG1 CH2 27–31 (265–269) DVSHE > DVEHE |
CDC enhancement. Increases C1q binding [112] |
Binds to FCGRT and FcγRIIB, but not to other FcγR in a mouse model [114]. |
G1G3v1 |
CH2
Q38, K40, F85.2 |
CH2 K38 > Q (274), N40 > K (276), Y85.2 > F (300) |
K274Q, N276K, Y300F chimere G1–G3 (1) |
IGHG1 CH2 34–41 (270–277) DPEVKFNW > DPEVQFKW 84.1–85.1 (294–301) EQYNSTYR > EQYNSTFR |
CDC enhancement. Increases C1q binding [115]. |
|
G4v2 |
CH2
P116 |
CH2 S116 > P(331) |
S331P |
IGHG4 CH2 FG 105–117 (322–332) KVSNKG..LPSSI > KVSNKG..LPSPI |
CDC enhancement [116]. (G1-, G2-, G3-like). |
(1) The chimeric chain is the IGHG1*01 CH1-hinge—IGHG3*01 CH2-CH3. Amino acids Q38, K40 (CH2) and F85.2 (CH3) are from IGHG3*01. The changes are shown in comparison to the IGHG1*01 amino acids at the same positions as K38, N40 (CH2) and Y85.2 (CH3).
Table 9.
IMGT Engineered Variant Name | IMGT Engineered Variant Definition | IMGT Amino Acid Changes on IGHG CH Domain (Eu Numbering between Parentheses) | Amino Acid Changes with the Eu Positions | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering and with Eu Positions between Parentheses | Property and Function |
---|---|---|---|---|---|
G1v8 |
CH2
D3, L115, E117 |
CH2 S3 > D (239), A115 > L (330), I117 > E (332) |
S239D, A330L, I332E DLE |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APELLGGPD FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LPLPE |
CDC reduction. Ablates CDC [105] |
G1v19 |
CH2
A34 |
CH2 D34 > A (270) |
D270A |
IGHG1 CH2 34–41 (270–277) DPEVKFNW > APEVKFNW |
CDC reduction. Reduces C1q binding [117] |
G1v20 |
CH2
A105 |
CH2 K105 > A (322) |
K322A |
IGHG1 CH2 FG 105–117 (322–332) KVSNKA..LPAPI > AVSNKA..LPAPI |
CDC reduction. Reduces C1q binding [117,118] |
Mus musculus G2Bv2 |
CH2
A101 |
CH2 E101 > A(318) |
E318A (2) |
IGHG2B CH2 100–110 KEFKCKVNNKD > KAFKCKVNNKD |
CDC reduction. Reduces C1q binding [119] |
Mus musculus G2Bv3 |
CH2
A103 |
CH2 K103 > A(320) |
K320A (2) |
IGHG2B CH2 100–110 KEFKCKVNNKD > KEFACKVNNKD |
CDC reduction. Reduces C1q binding [119] |
Mus musculus G2Bv4 |
CH2
A105 |
CH2 K105 > A(322) |
K322A (2) |
IGHG2B CH2 100–110 KEFKCKVNNKD > KEFKCAVNNKD |
CDC reduction. Reduces C1q binding [119] |
(2) Mus musculus IGHG2B CH2 E101, K103 and K105 form a common core in the interactions of IgG and C1q [119].
Table 10.
IMGT Engineered Fc Variant Name | IMGT Engineered Variant Definition | IMGT Amino Acid Changes on IGHG CH Domain (Eu Numbering between Parentheses) | Amino Acid Changes with the Eu Positions | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering and with Eu Positions between Parentheses | 1. Property and Function | 2. Property and Function | 3. 3D and Property and Function |
---|---|---|---|---|---|---|---|
G1v4 | CH2 A114 |
CH2 P114 > A (329) |
P329A) |
IGHG1 CH2 FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LAAPI |
ADCC reduction. Reduces FcγR binding [117] |
CDC reduction. Reduces C1q binding [117] |
|
G1v14 |
CH2
A1.3, A1.2 |
CH2 L1.3 > A (234), L1.2 > A (235) |
L234A, L235A LALA |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APEAAGGPS |
ADCC reduction. Reduces FcγR binding [118,120] |
CDC reduction. Reduces C1q binding [118,120] |
|
G1v14-1 |
CH2
A1.3, A1.2, A1 |
CH2 L1.3 > A (234), L1.2 > A (235), G1 > A (237) |
L234A, L235A, G237A |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APEAAGAPS |
ADCC reduction. Reduces FcγR binding. |
CDC reduction. Reduces C1q binding. |
|
G1v14-4 |
CH2
A1.3, A1.2, A114 |
CH2 L1.3 > A (234), L1.2 > A (235), P114 > A (329) |
L234A, L235A, P329A |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APEAAGGPS FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LAAPI |
ADCC reduction. Reduces FcγR binding. |
CDC reduction. Reduces C1q binding. |
|
G1v14-48 |
CH2 A1.3, A1.2, R113 |
CH2 L1.3 > A (234), L1.2 > A (235), L113 > R (328) |
L234A, L235A, L328R |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APEAAGGPS FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..RPAPI |
ADCC reduction. Reduces FcγR binding. |
CDC reduction. Reduces C1q binding. |
|
G1v14-49 |
CH2
A1.3, A1.2, G114 |
CH2 L1.3 > A (234), L1.2 > A (235), P114 > G (329) |
L234A, L235A, P329G LALAPG |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APEAAGGPS FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LGAPI |
ADCC reduction. Reduces FcγR binding [121] |
CDC reduction. Reduces C1q binding [121] |
|
G1v14-67 | CH2 A1.3, A1.2, S27 |
CH2 L1.3 > A (234), L1.2 > A(235), D27 > S (265) |
L234A, L235A, D265S |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APEAAGGPS 23–31 (261–269) CVVVDVSHE > CVVVSVSHE |
ADCC reduction. Reduces FcγR binding [121]. |
CDC reduction. Reduces C1q binding [121]. |
Combines Homsap G1v14 and G1v67 (G1 CH2 S27). |
G1v23 |
CH2
E1.2 |
CH2 L1.2 > E(235) |
L235E |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APELEGGPS |
ADCC reduction. Reduces FcγR binding [122] |
CDC reduction. Reduces C1q binding [122] |
|
G1v38 |
CH2
S108, F113 |
CH2 N108 > S (325), L113 > F (328) |
N325S, L328F |
IGHG1 CH2 FG 105–117 (322–332) KVSNKA..LPAPI > KVSSKA..FPAPI |
ADCC reduction. Abrogates FcγRIII binding, increases FcγRII binding, retains FcγRI high affinity binding [123] |
CDC reduction. Abrogates C1q binding. |
|
G1v39 |
CH2
F1.3, E1.2, S116 |
CH2 L1.3 > F (234), L1.2 > E (235), P116 > S (331) |
L234F, L235E, P331S FES, TM |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APEFEGGPS FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LPASI |
ADCC reduction Reduces FcγR effector properties [124] (2) |
CDC reduction. Reduces C1q binding [122] |
3D 3c2s |
G1v40 |
CH2
A1.3, A1.2, S116 |
CH2 L1.3 > A (234), L1.2 > A (235), P116 > S (331) |
L234A, L235A, P331S |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APEAAGGPS FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LPASI |
ADCC reduction. Reduces FcγR binding. |
CDC reduction. Reduces C1q binding. |
|
G1v41 |
CH2
F1.3, E1.2 |
CH2 L1.3 > F (234), L1.2 > E (235) |
L234F, L235E FE |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APEFEGGPS |
ADCC reduction. Reduces FcγR binding [124] |
CDC reduction. Reduces C1q binding [122] |
|
G1v43 |
CH2
A1.3, E1.2, A1 |
CH2 L1.3 > A (234), L1.2 > E (235), G1 > A (237) |
L234A, L235E, G237A |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APEAEGAPS |
ADCC reduction. Reduces FcγR binding |
CDC reduction. Reduces C1q binding |
|
G1v48 |
CH2
R113 |
CH2 L113 > R (328) |
L328R |
IGHG1 CH2 FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..RPAPI |
ADCC reduction. Reduces FcγR binding |
CDC reduction. Reduces C1q binding |
|
G1v49 |
CH2
G114 |
CH2 P114 > G (329) |
P329G |
IGHG1 CH2 FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LGAPI |
ADCC reduction. Reduces FcγR binding [121] |
CDC reduction. Reduces C1q binding [121] |
|
G1v51 |
CH2
K29 |
CH2 S29 > K (267) |
S267K |
IGHG1 CH2 27–31 (265–269) DVSHE > DVKHE |
ADCC reduction. Reduces FcγR binding |
CDC reduction. Reduces C1q binding |
|
G1v53 |
CH2
F1.3, Q1.2, Q105 |
CH2 L1.3 > F (234) L1.2 > Q (235) K105 > Q (322) |
L234F, L235Q, K322Q, FQQ |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APEFQGGPS FG 105–117 (322–332) KVSNKA..LPAPI > QVSNKA..LPAPI |
ADCC reduction. Reduces FcγR binding |
CDC reduction. Reduces C1q binding |
|
G1v53, G1v21 |
CH2
F1.3, Q1.2, Q105 Y15.1, T16, E18 |
CH2 L1.3 > F (234), L1.2 > Q (235), K105 > Q (322) M15.1 > Y (252), S16 > T (254), T18 > E (256) |
L234F, L235Q, K322Q, M252Y, S254T, T256E FQQ–YTE |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APEFQGGPS 15–18 (251–256) LMI.SRT > LYITRE FG 105–117 (322–332) KVSNKA..LPAPI > QVSNKA..LPAPI |
ADCC reduction. Reduces FcγR binding [125] (G1v53) |
CDC reduction. Reduces C1q binding [125] (G1v53) |
Extends half-life [125] (G1v21). |
G1v59 |
CH2
S1.3 T1.2 R1.1 |
CH2 L1.3 > S(234) L1.2 > T (235) G1.1 > R (236) |
L234S L235T G236R |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APESTRGPS |
ADCC undetectable. Abrogates FcγR binding [126] |
CDC undetectable. Abrogates C1q binding [126] |
|
G1v60 |
CH2
S115, S116 |
CH2 A115 > S(330) P116 > S (331) |
A330S P331S |
FG 105–117 (322–332) KVSNKA..LPAPI > QVSNKA..LPSSI |
ADCC reduction. Reduces FcγR binding. |
CDC reduction. Reduces C1q binding. |
|
G1v63 |
CH2
S2 |
CH2 P2 > S |
P238S |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APELLGGSS |
ADCC reduction. Reduces FcγR binding. |
CDC reduction. Reduces C1q binding. |
|
G1v65 |
CH2
delE1.4, delL1.3, delL1.2 |
CH2 E1.4 > del, L1.3 > del, L1.2 > del |
E233del, L234del, L235del |
IGHG1 CH2 1.6–3 (231–239) APELLGGPS > AP- - -GGPS |
ADCC reduction. Reduces FcγR binding. |
CDC reduction. Reduces C1q binding. |
|
G1v70 |
h
S5, S11, S14, CH2 S2 |
h C5 > S(220), C11 > S (226) C14 > S(226) CH2 P2 > S |
C220S C226S C229S P238S |
IGHG1 h 1–15 (216–230) EPKSCDKTHTCPPCP > EPKSSDKTHTSPPSP IGHG1 CH2 1.6–3 (231–239) APELLGGPS > APELLGGSS |
ADCC reduction. Reduces FcγR binding. |
CDC reduction. Reduces C1q binding. |
Combines G1v63 with G1v37 (no H-L), G1v61 (no H-H h11) and G1v62 (no H-H h14). |
G2v2 |
CH2
Q30, L92, S115, S116 |
CH2 H30 > Q(268), V92 > L(309), A115 > S(330), P116 > S(331) |
H268Q, V309L, A330S, P331S IgG2m4 |
IGHG2 CH2 27–38 (265–274) DVSHEDPEVQ > DVSQEDPEVQ 89–96 (306–313) LTVVHQDW > LTVLHQDW FG 105–117 (322–332) KVSNKG..LPAPI > KVSNKA..LPSSI |
ADCC reduction. Reduces FcγR binding [127] |
CDC reduction. Reduces C1q binding [127] |
|
G2v3 |
CH2
A1.2, A1, S2, A30, L92, S115, S116 |
CH2 V1.2 > A (235), G1 > A (237), P2 > S(238), H30 > A(268), V92 > L(309), A115 > S(330), P116 > S(331) |
V235A, G237A, P238S, H268A, V309L, A330S, P331S G2sigma |
IGHG2 CH2 1.6–3 (231–239) AP.PVAGPS > AP.PAAASS 27–38 (265–274) DVSHEDPEVQ > DVSAEDPEVQ 89–96 (306–313) LTVVHQDW > LTVLHQDW FG 105–117 (322–332) KVSNKG..LPAPI > KVSNKA..LPSSI |
ADCC reduction. Reduces FcγR binding [124]. Undetectable ADCC andV1 ADCP [124] |
CDC reduction. Reduces C1q binding [124]. Undetectable CDC [124] |
|
G2G4v1
(1) |
CH2
E1.4 > del P1.3, V1.2, A1.1 |
CH2 E1.4 > del(233), F1.3 > P(234), L1.2 > V(235), G1.1 > A(236) |
E233del, F234P, L235V, G236A |
IGHG4 CH2 1.6–3 (231–239) APEFLGGPS > AP.PVAGPS |
ADCC reduction. Reduces FcγR binding [128] |
CDC reduction. Reduces C1q binding [128] |
|
G4v3 |
CH2
E1.2 |
CH2 L1.2 > E(235) |
L235E LE |
IGHG4 CH2 1.6–3 (231–239) APEFLGGPS > APEFEGGPS |
ADCC reduction. Reduces FcγR binding [122] |
CDC reduction. Reduces C1q binding [122] |
|
G4v3
G4v5 |
h
P10, CH2 E1.2 |
h S10 > P(228) CH2 L1.2 > E(235) |
S228P, L235E SPLE |
IGHG4 h 1–12 (216–230) ESKYGPPCPSCP > ESKYGPPCPPCP CH2 1.6–3 (231–239) APEFLGGPS > APEFEGGPS |
ADCC reduction. Reduces FcγR binding [122] (G4v3) |
CDC reduction. Reduces C1q binding [122] (G4v3) |
Prevents IgG4 half-IG exchange [129] (G4v5) |
G4v3-49 |
CH2
E1.2 G114 |
CH2 L1.2 > E(235) P114 > G (329) |
L235E P329G LEPG |
IGHG4 CH2 1.6–3 (231–239) APEFLGGPS > APEFEGGPS FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LGAPI |
ADCC reduction. Reduces FcγR binding [121] |
CDC reduction. Reduces C1q binding [121] |
|
G4v3-49
G4v5 |
h
P10, CH2 E1.2 G114 |
h S10 > P(228) CH2 L1.2 > E(235) P114 > G (329) |
S228P, L235E P329G SPLEPG |
IGHG4 h 1–12 (216–230) ESKYGPPCPSCP ESKYGPPCPPCP CH2 1.6–3 (231–239) APEFLGGPS > APEFEGGPS FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LGAPI |
ADCC reduction. Reduces FcγR binding [121] (G4v3-49) |
CDC reduction. Reduces C1q binding [121] (G4v3-49) |
Prevents IgG4 half-IG exchange [129] (G4v5). |
G4v4 |
CH2
A1.3, A1.2 |
CH2 F1.3 > A (234), L1.2 > A (235) |
F234A L235A FALA |
IGHG4 CH2 1.6–3 (231–239) APEFLGGPS > APEAAGGPS |
ADCC reduction. Reduces FcγR binding [120]. |
CDC reduction. Reduces C1q binding [120]. |
|
G4v4
G4v5 |
h
P10, CH2 A1.3, A1.2 |
h S10 > P(228) CH2 F1.3 > A (234) L1.2 > A (235) |
S228P, F234A, L235A IgG4 ProAlaAla |
IGHG4 h 1–12 (216–230) ESKYGPPCPSCP > ESKYGPPCPPCP CH2 1.6–3 (231–239) APEFLGGPS > APEAAGGPS |
ADCC reduction. Reduces FcγR binding [124] (G4v4) |
CDC reduction. Reduces C1q binding [120] (G4v4) |
Prevents IgG4 half-IG exchange [129] (G4v5). |
G4v7 |
CH2
delE1.4, P1.3, V1.2, A1.1 |
CH2 E1.4 > del (233) F1.3 > P (234), L1.2 > V (235), G1.1 > A (236), |
E233del, F234P, L235V, G236A |
IGHG4 CH2 1.6–3 (231–239) APEFLGGPS> AP-PVAGPS (G2-like) |
ADCC reduction. Reduces FcγR binding |
CDC reduction. Reduces C1q binding |
|
G4v49 |
CH2
G114 |
CH2 P114 > G (329) |
P329G |
IGHG4 CH2 FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..LGAPI |
ADCC reduction. Reduces FcγR binding [121] |
CDC reduction. Reduces C1q binding [121] |
|
Canis lupus familiaris
G2v1 |
CH2
A1.3, A1.2, A1 |
CH2 M1.3 > A (234), L1.2 > A (235), G1 > A (237). |
M234A, L235A, G237A |
IGHG2 CH2 1.6–3 (231–239) APEMLGGPS > APEAAGAPS |
ADCC reduction. Reduces FcγR binding |
CDC reduction. Reduces C1q binding |
|
Canis lupus familiaris
G2v2 |
CH2
A1.3, A1.2, G114 |
CH2 M1.3 > A (234), L1.2 > A(235) P114 > G(329) |
M234A, L235A, P329G |
IGHG2 CH2 1.6–3 (231–239) APEMLGGPS > APEAAGGPS IGHG1 CH2 FG 105–117 (322–332) KVNNKA..LPSPI > KVNNKA..LGSPI |
ADCC reduction. Reduces FcγR binding |
CDC reduction. Reduces C1q binding |
(1) The monoclonal antibody is eculizumab. The heavy chain is the chimeric IGHG2*01 CH1-hinge—IGHG4*01 CH2-CH3. The CH2 and CH3 are from IGHG4*01, except for the CH2 positions 1.6-1.1 (AP.PVA) with del 1.4 and amino acids P1.3, V1.2 and A1.1 being from IGHG2*01. The changes are shown in comparison to the IGHG4*01 amino acids at the same positions as E1.4, F1.3, L1.2 and G1.1.
Table 11.
IMGT Engineered Fc Variant Name | IMGT Engineered Variant Definition | IMGT Amino Acid Changes on IGHG CH Domain (Eu Numbering between Parentheses) | Amino Acid Changes with the Eu Positions | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering and with Eu Positions between Parentheses | Property and Function |
---|---|---|---|---|---|
G1v25 |
CH2
E29, F113 |
CH2 S29 > E (267), L113 > F (328) |
S267E, L328F |
IGHG1 CH2 27–31 (265–269) DVSHE > DVEHE FG 105–117 (322–332) KVSNKA..LPAPI > KVSNKA..FPAPI |
Increases FcγRIIB binding (400-fold) [130] Inhibits by downstream ITIM signaling in B cells [131] |
Table 12.
IMGT Engineered Variant Name | IMGT Engineered Variant Definition | IMGT Amino Acid Changes on IGHG CH Domain (Eu Numbering between Parentheses) | Amino Acid Changes with the Eu Positions | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering and with Eu Positions between Parentheses | Property and Function |
---|---|---|---|---|---|
G1v29 |
CH2
A84.4 |
CH2 N84.4 > A (297) |
N297A |
IGHG1 CH2 83–86 REEQYNSTYRVV > REEQYASTYRVV |
ADCC reduction. Reduces FcγR binding [132] |
G1v30 |
CH2
G84.4 |
CH2 N84.4 > G(297) |
N297G |
IGHG1 CH2 83–86 REEQYNSTYRVV > REEQYGSTYRVV |
ADCC reduction. Reduces FcγR binding [132] |
G1v36 |
CH2
Q84.4 |
CH2 N84.4 > Q (297) |
N297Q |
IGHG1 CH2 83–86 REEQYNSTYRVV > REEQYQSTYRVV |
ADCC reduction. Reduces FcγR binding |
G4v36 |
CH2
Q84.4 |
CH2 N84.4 > Q (297) |
N297Q |
IGHG4 CH2 83–86 REEQFNSTYRVV > REEQFQSTYRVV |
ADCC reduction. Reduces FcγR binding |
Canis lupus familiaris
G2v29 |
CH2
A84.4 |
CH2 N84.4 > A (297) |
N297A |
IGHG1 CH2 83–86 REEQFNGTYRVV > REEQFAGTYRVV |
ADCC reduction. Reduces FcγR binding |
Table 13.
IMGT Engineered Variant Name | IMGT Engineered Variant Definition | IMGT Amino Acid Changes on IGHG CH Domain (Eu Numbering between Parentheses) | Amino Acid Changes with the Eu Positions | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering and with Eu Positions between Parentheses | Property and Function |
---|---|---|---|---|---|
G1v21 |
CH2
Y15.1, T16, E18 |
CH2 M15.1 > Y (252), S16 > T (254), T18 > E (256) |
M252Y, S254T, T256E YTE |
IGHG1 CH2 13–18 (249–256) DTLMISRT > DTLYITRE |
Half-life increase Enhances FCGRT binding at pH 6.0 [133,134] (1) |
G1v22 |
CH2 Y15.1, T16, E18, CH3 K113, F114, H116 |
CH2 M15.1 > Y (252) S16 > T (254) T18 > E (256) CH3 H113 > K (433) N114 > F (434) Y116 > H (436) |
M252Y S254T T256E H433K N434F Y436H |
IGHG1 CH2 13–18 (249–256) DTLMISRT > DTLYITRE CH3 FG 105–117 (426–437) SVMHEA.LHNHYT > SVMHEA.LKFHHT |
Half-life increase Enhances FCGRT binding at pH 6.0 [134] |
G1v24 |
CH3
L107, S114 |
CH3 M107 > L (428), N114 > S (434) |
M428L, N434S |
GHG1 CH3- FG 105–117 (426–437) SVMHEA.LHNHYT > SVLHEA.LHSHYT |
Half-life increase Enhances FCGRT binding at pH 6.0 (11-fold increase in affinity) [135] (2) |
G1v42 |
CH2 Q14, CH3 L107 |
CH2 T14 > Q (250) CH3 M107 > L (428) |
T250Q M428L |
IGHG1 CH2 13–18 (249–256) DTLMISRT > DQLMISRT CH3- FG 105–117 (426–437) SVMHEA.LHNHYT > SVLHEA.LHNHYT |
Half-life increase Enhances FCGRT binding at pH 6.0 [134] |
G1v46 |
CH3
K113, F114 |
CH3 H113 > K (433), N114 > F(434) |
H433K, N434F |
IGHG1 CH3- FG 105–117 (426–437) SVMHEA.LHNHYT > SVMHEA.LKFHYT |
Half-life increase Enhances FCGRT binding at pH 6.0. |
G2v4 |
CH2
Q14 |
CH2 T14 > Q (250) |
T250Q |
IGHG2 CH2 13–18 (249–256) DTLMISRT > DQLMISRT |
Half-life increase Enhances FCGRT binding at pH 6.0 [136] |
G2v5 |
CH3
L107 |
CH3 M107 > L (428) |
M428L |
IGHG2 CH3 FG 105–117 (426–437) SVMHEA.LHNHYT > SVLHEA.LHNHYT |
Half-life increase Enhances FCGRT binding at pH 6.0 [136] |
G2v6 |
CH2 Q14, CH3 L107 |
CH2 T14 > Q (250) CH3 M107 > L(428) |
T250Q M428L |
IGHG2 CH2 13–18 (249–256) DTLMISRT > DQLMISRT CH3 FG 105–117 (426–437) SVMHEA.LHNHYT > SVLHEA.LHNHYT |
Half-life increase Enhances FCGRT binding at pH 6.0 [136] |
G2v8-1 |
CH2
A93 |
CH2 H93 > A (310) |
H310A |
IGHG2 CH2 89–96 (306–313) LTVVHQDW > LTVVAQDW |
Abrogates FCGRT binding at pH 6.0 (G2v8 any amino acid replacement of H93 except cystein) [137]. Number 1 of G2v8-1 is for A |
G3v1 |
CH3
H115 |
CH3 R115 > H(435) |
R435H |
IGHG3 CH3 FG 105–117 (426–437) SVMHEA.LHNRFT > SVMHEA.LHNHFT |
Half-life increase Extends half-life [138] |
G4v21 |
CH2
Y15.1, T16, E18 |
CH2 M15.1 > Y (252), S16 > T (254), T18 > E (256) |
M252Y, S254T, T256E YTE |
IGHG4 CH2 13–18 (249–256) DTLMISRT > DTLYITRE |
Half-life increase Enhances FCGRT binding at pH 6.0 [134] |
G4v22 |
CH2 T16, P91, CH3 A114 |
CH2 S16 > T(254), V91 > P (308) CH3 N114 > A (434) |
S254T, V308P N434A |
IGHG4 CH2 13–18 (249–256) DTLMISRT > DTLYITRE CH3 FG 105–117 (426–437) SVMHEA.LHNHYT > SVMHEA.LHAHYT |
Half-life increase Enhances FCGRT binding at pH 6.0 [139] |
G4v24 |
CH3
L107 S114 |
CH3 M107 > L (428) N114 > S(434) |
M428L, N434A |
CH3 FG 105–117 (426–437) SVMHEA.LHNHYT > SVLHEA.LHSHYT |
Half-life increase Enhances FCGRT binding at pH 6.0 |
(1) Ten-fold increase at pH 6.0 [134] and four-fold increases half-life in a cynomolgus pK study [140]. The T18>E amino acid change provides two novel salt bridges between the Fc and ΒM2 of FCGRT IMGT/3Dstructure-DB: 4n0f, 4n0u [137]. A change of IGHG1 CH2 His H93 (310) into any other amino acid (excluding Cys) leads to an undetectable binding to FCGRT (FcRn) at pH 6.0 [137]. (2) An increased reduction in tumor burden in human FCGRT (FcRn) transgenic tumor-bearing mice treated with an anti-EGFR or an anti-VEGF antibody [135]. From the 3D structure, it is postulated that N114>S (434) allows for additional hydrogen bonds with FCGRT (FcRn) [137] IMGT/3Dstructure-DB: 4n0f, 4n0u.
Table 14.
IMGT Engineered Variant Name | IMGT Engineered Variant Definition | IMGT Amino acid changes on IGHG CH domain (Eu numbering between parentheses) | Amino acid changes with the Eu positions | Motif identifiable in gene and domain with positions according to the IMGT unique numbering and with Eu positions between parentheses | Property and function |
---|---|---|---|---|---|
G4v8 |
CH3
R115, F116, P125 |
CH3 H115 > R (435), Y116 > F (436), L125 > P (445) |
H435R, Y436F, L445P |
IGHG4 CH3- FG 105–117 (426–437) SVMHEA.LHNHYT > SVMHEA.LHNRFT 118–125 (438–445) QKSLSLSL > QKSLSLSP |
Abrogates binding to Protein A |
Table 15.
IMGT Engineered Variant Name | IMGT Engineered Variant Definition | IMGT Amino Acid Changes on IGHG CH Domain (Eu Numbering between Parentheses) | Amino Acid Changes with the Eu Positions | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering and with Eu Positions between Parentheses | Property and Function |
---|---|---|---|---|---|
G1v54 |
CH2
C83, C85 |
CH2 R83 > C (292), V85 > C (302) |
R292C, V302C |
IGHG1 CH2 83–86 REEQYNSTYRVV > CEEQYASTYRCV (v29) CEEQYGSTYRCV (v30) CEEQYQSTYRCV (v36) |
Stabilizes CH2 in the absence of N84.4 (297) glycosylation |
G1v54-29 |
CH2
C83, A84.4, C85 |
CH2 R83 > C (292), N84.4 > A(297) V85 > C (302) |
R292C, N297A V302C |
IGHG1 CH2 83–86 REEQYNSTYRVV > CEEQYASTYRCV |
Stabilizes CH2 in the absence of N84.4 (297) glycosylation |
G1v54-30 |
CH2
C83, G84.4, C85 |
CH2 R83 > C (292), N84.4 > G (297) V85 > C (302) |
R292C, N297G V302C |
IGHG1 CH2 83–86 REEQYNSTYRVV > CEEQYGSTYRCV |
Stabilizes CH2 in the absence of N84.4 (297) glycosylation |
G1v54-36 |
CH2
C83, Q84.4, C85 |
CH2 R83 > C (292), N84.4 > Q (297) V85 > C (302) |
R292C, N297Q V302C |
IGHG1 CH2 83–86 REEQYNSTYRVV > CEEQYQSTYRCV |
Stabilizes CH2 in the absence of N84.4 (297) glycosylation |
Table 16.
IMGT Engineered Variant Name | IMGT Engineered Variant Definition | IMGT Amino Acid Changes on IGHG CH Domain (Eu Numbering between Parentheses) | Amino Acid Changes with the Eu Positions | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering and with Eu Positions between Parentheses | Property and Function |
---|---|---|---|---|---|
G4v5
|
h
P10 |
h S10 > P(228) |
S228P |
IGHG4 h 1–12 (216–230) ESKYGPPCPSCP > ESKYGPPCPPCP (G1-like) |
Prevents in vivo and in vitro IgG4 half-IG exchange [129] |
G4v6 |
CH3
K88 |
CH3 R88 > K |
R409K |
IGHG1 CH3 85.4–89 (404–410) GSFFLYSRL > GSFFLYSKL |
Reduces IgG4 half-IG exchange [141] |
Table 17.
IMGT Engineered Variant Name | IMGT Engineered Variant Definition | IMGT Amino Acid Changes on IGHG CH Domain (Eu Numbering between Parentheses) | Amino Acid Changes with the Eu Positions | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering and with Eu Positions between Parentheses | Property and Function |
---|---|---|---|---|---|
G1v34 |
CH3
G109 |
CH3 E109 > G (430) |
E430G |
IGHG1 CH3- FG 105–117 (426–437) SVMHEA.LHNHYT > SVMHGA.LHNHYT |
Favors IgG1 hexamerisation by increased intermolecular Fc-Fc interactions after antigen binding on the cell surface |
Table 18.
IMGT Engineered Variant Name | IMGT Engineered Variant Definition | IMGT Amino Acid Changes on IGHG CH Domain (Eu Numbering between Parentheses) | Amino Acid Changes with the Eu Positions | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering and with Eu Positions between Parentheses | Property and Function |
---|---|---|---|---|---|
G1v26 |
CH3
Y22 |
CH3 T22 > Y (366) |
T366Y |
IGHG1 CH3 20–26 (364–370) SLTCLVK > SLYCLVK |
Knob of knobs-into-holes G1v26 knob/G1v31 hole interactions between the CH3 of the two different gamma1 chains [142] |
G1v31 |
CH3
T86 |
CH3 Y86 > T (407) |
Y407T |
IGHG1 CH3 85.4–89 (404–410) GSFFLYSKL > GSFFLTSKL |
Hole of knobs-into-holes G1v26 knob/G1v31 hole interactions between the CH3 of the two different gamma1 chains [142] (G1v26 knob/G1v31 hole) |
G1v32 |
CH3
W22 |
CH3 T22 > W (366) |
T366W |
IGHG1 CH3 20–26 (364–370) SLTCLVK > SLWCLVK |
Knob of knobs-into-holes G1v32 knob/G1v33 hole interactions between the CH3 of the two different gamma1 chains |
G1v33 |
CH3
S22, A24, V86 |
CH3 T22 > S (366), L24 > A (368), Y86 > V(407) |
T366S, L368A, Y407V |
IGHG1 CH3 20–26 (364–370) SLTCLVK > SLSCAVK 85.4–89 (404–410) GSFFLYSKL> GSFFLVSKL |
Hole of knobs-into-holes G1v32 knob/G1v33 hole interactions between the CH3 of the two different gamma1 chains |
G1v68 |
CH3
V6, L22, L79, W81 |
CH3 T6 > V (350) T22 > L (366) K79 > L (392) T81 > W (394) |
T350V T366L K392L T394W |
IGHG1 CH3 3–9 (347–353) QVYTLPP > QVYVLPP 20–26 (364–370) SLTCLVK > SLLCLVK 77–83 (390–396) NYKTTPP > NYLTWPP |
Enhances, with G1v69, the heteropairing H-H of bispecific antibodies |
G1v69 |
CH3
V6, Y7, A85.1, V86 |
CH3 T6 > V (350) L7 > Y (351) F85.1 > A (405) Y86 > V (407) |
T350V L351Y F405A Y407V |
IGHG1 CH3 3–9 (347–353) QVYTLPP > QVYVYPP IGHG1 CH3 85.4–89 (404–410) GSFFLYSKL > GSFALVSKL |
Enhances, with G1v68, the heteropairing H-H of bispecific antibodies |
Table 19.
IMGT Variant Name | IMGT Variant Description | IMGT Amino Acid Changes on IGHG CH Domain with Eu Numbering between Parentheses | Eu Numbering Variant | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering | Property and Function |
---|---|---|---|---|---|
G1v37 |
h
S5 |
h C5 > S (220) |
C220S |
IGHG1 h 1–15 (216–230) EPKSCDKTHTCPPCP > EPKSSDKTHTCPPCP |
No disulfide bridge inter H-L |
G1v61 |
h
S11 |
h C11 > S (226) |
C226S |
IGHG1 h 1–15 (216–230) EPKSCDKTHTCPPCP > EPKSCDKTHTSPPCP |
No disulfide bridge inter H-H h 11 |
G1v62 |
h
S14 |
h C14 > S (229) |
C229S |
IGHG1 h 1–15 (216–230) EPKSCDKTHTCPPCP > EPKSCDKTHTCPPSP |
No disulfide bridge inter H-H h 14 |
Table 20.
IMGT Variant Name | IMGT Variant Description | IMGT Amino Acid Changes on IGHG CH Domain with Eu Numbering between Parentheses | Eu Numbering Variant | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering | Property and Function |
---|---|---|---|---|---|
G1v27 |
CH2
C3 |
CH2 S3 > C(329) |
S239C |
IGHG1 CH2 1.6–4 (231–240) APELLGGPSV > APELLGGPCV |
Site-specific drug attachment engineered cysteine |
G1v28 |
CH2
C(3^4) |
CH2 (3^4)C(239^240) |
C(239^240) |
IGHG1 CH2 1.6–4 (231–240) APELLGGPSV > APELLGGPSCV |
Site-specific drug attachment engineered cysteine |
G1v44 |
CH3
C122 |
CH3 S122 > C (442) |
S442C |
IGHG1 CH3 118–125 (438–445) QKSLSLSP > QKSLCLSP |
Site-specific drug attachment engineered cysteine |
G1v55 |
CH3
C123 |
CH3 L123 > C (443) |
L443C |
IGHG1 CH3 118–125 (438–445) QKSLSLSP > QKSLSCSP |
Site-specific drug attachment engineered cysteine |
G1v56 |
CH2
F85.2 CH3 F85.2 |
CH2 Y85.2 > F (pAMF) CH3 F85.2 > F (pAMF) |
Y300F F404F |
IGHG1 CH2 84.1–85.1 (294–301) EQYNSTYR > EQYNSTFR CH3 84.1–85.1 (398–405) LDSDGSFF LDSDGSFF |
Modified phenylalanine for conjugation (produced in Escherichia coli, non glycosylated) |
G1v64 |
CH2
C36 |
CH2 E36 > C |
E272C |
IGHG1 CH2 34–41 (270–277) DPEVKFNW > DPCVKFNW |
Conjugation site-specific engineered cysteine |
Table 21.
IMGT Variant Name | IMGT Variant Description | IMGT Amino Acid Changes on IGHG CH Domain with Eu Numbering between Parentheses | Eu Numbering Variant | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering | Property and Function |
---|---|---|---|---|---|
G1v57 |
CH1
E26, E119 |
CH1 K26 > E (147), K119 > E(213) |
K147E, K213E |
IGHG1 CH1 23–26 (144–147) CLVK > CLVE 118–121 (212–215) DKKV > DEKV |
Enhances, with KCv57, the hetero pairing H-L of bispecific antibodies |
KCv57 |
IGKC
R12, K13 |
IGKC E12 > R, Q13 > K |
E123R, Q124K |
IGKC 10–15 (121–126) SDEQLK > SDRKLK |
Enhances, with G1v57, the hetero pairing H-L of bispecific antibodies |
G1v58 |
CH1
C5, h V5 |
CH1 F5 > C (126), h C5 > V (220) |
F126C, C220V |
IGHG1 CH1 1.4–15 (118–136) ASTKGPSVFPLAPSSKSTS > ASTKGPSVCPLAPSSKSTS IGHG1 h 1–15 (216–230) EPKSCDKTHTCPPCP > EPKSVDKTHTCPPCP |
Alternative interchain cysteine mutations to enhance, with LC2v58, heteropairing of bispecific antibodies |
LC2v58 |
LC2
C10, V126 |
IGLC S10 > C (121), C126 > V (214) |
S121C, C214V |
IGLC2 1.5–15 (107A–126) GQPKAAPSVTLFPPSSEELQ > GQPKAAPSVTLFPPCSEELQ IGLC2 118–127 (206–215) EKTVAPTECS > EKTVAPTEVS |
Alternative interchain cysteine mutations to enhance, with G1v58, heteropairing of bispecific antibodies |
Table 22.
IMGT Variant Name | IMGT Variant Description | IMGT Amino Acid Changes on IGHG CH Domain with Eu Numbering between Parentheses | Eu Numbering Variant | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering | Property and Function |
---|---|---|---|---|---|
G4v10 |
CH3
L85.1, K88 |
CH3 F85.1 > L(405), R88 > K (409) |
F405L, R409K |
IGHG1 CH3 85.4–92 (402–413) GSFFLYSRLTVD > GSFLLYSKLTVD |
Control of half-IG exchange of bispecific IgG4 |
Table 23.
IMGT Engineered Fc Variant Name |
IMGT Engineered Variant definition | IMGT Amino Acid Changes on IGHG CH Domain (Eu Numbering between Parentheses) | Amino Acid Changes with the Eu Positions | Motif Identifiable in Gene and Domain with Positions According to the IMGT Unique Numbering and with Eu Positions between Parentheses | 1. Property and Function | 2. Property and Function | 3. Property and Function |
---|---|---|---|---|---|---|---|
G2v7 |
CH2
Y85.2, L92, A339 |
CH2 F85.2 > Y(300) V92 > L(309) T339 > A(339) |
F300Y V309L T339A |
IGHG2 CH2 85.4–92 (300–309) STFRVVSVLTVV > STYRVVSVLTVL 118–125 (333–340) EKTISKTK > EKTISKAK |
Reduces acid-induced aggregation [143] | Low ADCC Low FcγR binding [143] |
Low CDC Low C1q binding [143] |
In the tables, the different columns correspond to the items of the standardized variant characterization detailed above. Engineered amino acid changes are in bold in the IMGT variants (red before the change, green after the change. The motif is in yellow and shown before and after the AA change(s).
The variants involved in antibody-dependent cellular cytotoxicity (ADCC) reduction. include nine Homo sapiens IGHG1 variants, which comprise: G1v1 [1], G1v2 [1], G1v3 [1], G1v5 [6], G1v47 [37], G1v50 (the variant G1v50 is a variant combining the G1v1, G1v2, G1v3 and G1v47 amino acid changes), G1v52 ‘GRLR’, G1v66 and G1v67 (Table 5).
The variants involved in antibody-dependent cellular cytotoxicity (ADCC) enhancement include nine variants, of which six Homo sapiens IGHG1 variants: G1v6 [3], G1v7 ‘DE’ [4], G1v8 ‘DLE’ ‘3M’ [4] [25], G1v9 [14], G1v10 [15] and G1v11 [15]; one Homo sapiens IGHG2 variant: G2v1 [1]; one Homo sapiens IGHG4 variant: G4v1 [1]; and one Mus musculus IGHG2B variant: Musmus G2Bv1 [5] (Table 6).
The variants involved in antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) enhancement include three Homo sapiens IGHG1 variants: G1v12 ‘GASDALIE’ [26], G1v13 ‘GASDIE’ ‘ADE’ [16] and G1v45 ‘GAALIE’ (Table 7).
The variants involved in complement-dependent cytotoxicity (CDC) enhancement include 8 variants, of which seven Homo sapiens IGHG1 variants: G1v5 [6], G1v15 [6], G1v16 [6], G1v17 ‘EFT’ [18], G1v18 [19], G1v35 ‘SE’ [18,27] and the chimeric G1G3v1 [17], and one IGHG4 variant: G4v2 [8] (Table 8).
The variants involved in complement-dependent cytotoxicity (CDC) reduction include six variants, of which three Homo sapiens IGHG1 variants: G1v8 ‘DLE’ [4], G1v19 [2] and G1v20 [2,39]; and three Mus musculus IGHG2B variants: Musmus G2Bv2 [7], Musmus G2Bv3 [7] and Musmus G2Bv4 [7] (Table 9).
The variants involved in antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) reduction include 32 variants and four variant associations, of which 22 Homo sapiens IGHG1 variants: G1v4 [2], G1v14 ‘LALA’ [21,39], G1v14-1, G1v14-4, G1v14-48, G1v14-49 ‘LALAPG’ [40], G1v14-67, G1v23 [20], G1v38 [35], G1v39 ‘FES’ ‘TM’ [20,24], G1v40, G1v41 [20,24], G1v43, G1v48, G1v49 [40], G1v51, G1v53 ‘FQQ’, G1v59 [41], G1v60, G1v63, G1v65, G1v70 and one association G1v53-G1v21 ‘FQQ-YTE’ [38]; three Homo sapiens IGHG2 variants: G2v2 ‘IgG2m4′ [23], G2v3 ‘G2sigma’ [24] and the chimeric G2G4v1 [22]; five Homo sapiens IGHG4 variants: G4v3 ‘LE’ [20], G4v3-49 ‘LEPG’ [40], G4v4 ‘FALA’ [21], G4v7, G4v49 [40] and three associations G4v3-G4v5 ‘SPLE’ [12,20], G4v3-49-G4v5 ‘SPLEPG’ [40] [12] and G4v4-G4v5 ‘IgG4ProAlaAla’ [12,24] and two Canis lupus familiaris IGHG2 variants: CanlupfamG2v1 and CanlupfamG2v2 (Table 10).
The variants involved in B cell inhibition by coengagement of antigen and FcγR on the same cell include one Homo sapiens IGHG1 variant: G1v25 [33,34] (Table 11).
The variants involved in knock out CH2 84.4 glycosylation include five variants, of which three Homo sapiens IGHG1 variants: G1v29 [42], G1v30 [42], G1v36; one Homo sapiens IGHG4 variant: G4v36; and one Canis lupus familiaris IGHG2 variant: Canlupfam G2v29 (Table 12).
The variants involved in half-life increase or decrease include 13 variants, 12 of them increase half-life, of which five Homo sapiens IGHG1 variants: G1v21 ‘YTE’ [9,29,30,31,32], G1v22 [30], G1v24 [32], G1v42 [30] and G1v46; 3 Homo sapiens IGHG2 variants: G2v4 [10], G2v5 [10] and G2v6 [10]; one Homo sapiens IGHG3 variant: G3v1 [11]; three Homo sapiens IGHG4 variants: G4v21 ‘YTE’ [30], G4v22 [36] and G4v24. One variant G2v8-1 abrogates binding to FCGRT (FcRn) (Table 13).
The variants involved in abrogation of binding to Protein A include one Homo sapiens IGHG4 variant: G4v8 (Table 14).
The variants involved in formation of additional bridge stabilizing CH2 in the absence of N84.4 (Eu 297) glycosylation include four Homo sapiens IGHG1 variants: G1v54, G1v54-29, G1v54-30 and G1v54-36 (Table 15).
The variants involved in prevention of IgG4 half-IG exchange include two Homo sapiens IGHG4 variants: G4v5 [12] and G4v6 [13] (Table 16).
The variants involved in hexamerisation include one Homo sapiens IGHG1 variant: G1v34 (Table 17).
The variants involved in knobs-into-holes and enhancement of heteropairing H-H of bispecific antibodies include six Homo sapiens IGHG1 variants: G1v26 knob [28] and G1v31 hole [28], G1v32 knob and G1v33 hole, G1v68 and G1v69 (Table 18).
The variants involved in suppression of inter H-L and/or inter H-H disulfide bridges includes three Homo sapiens IGHG1 variants: G1v37, G1v61 and G1v62 (Table 19).
The variants involved in site-specific drug attachment include six Homo sapiens IGHG1 variants: G1v27, G1v28, G1v44, G1v55, G1v56 and G1v64 (Table 20).
The variants involved in enhancement of hetero pairing H-Linclude two Homo sapiens IGHG1 variants: G1v57 used in association with Homo sapiens IGKC variant: KCv57, and G1v58, used in association with Homo sapiens IGLC2 variant: LC2v58 (Table 21).
The variants involved in control of half-IG exchange of bispecific IgG4 antibodies include one Homo sapiens IGHG4 variant: G4v10 (Table 22).
The variants involved in reducing acid-induced aggregation include one Homo sapiens IGHG2 variant: G2v7 (Table 23).
Two variants have been assigned to two properties belonging to different types and are therefore found in two tables, G1v5 (Table 5 and Table 8) and G1v8 (Table 6 and Table 9).
Supplementary Table S2 provides the variants of Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21, Table 22 and Table 23 in an alphanumeric order of the IMGT engineered variants involved in the effector properties (ADCC, ADCP and CDC), half-life and structure of the therapeutical monoclonal antibodies.
5. Conclusions
The therapeutic monoclonal antibody engineering field is the most promising in the medical field. A standardized analysis of IG genomic and expressed sequences, structures and interactions is crucial for a better molecular understanding and comparison of the mAb specificity, affinity, half-life, Fc effector properties and potential immunogenicity. IMGT has provided the concepts for the IG loci description of newly sequenced genomes [2], antibody structure/function characterization [4], antibody engineering (single chain Fragment variable (scFv), phage displays, combinatorial libraries) and antibody humanization (chimeric, humanized and human antibodies). IMGT® standardization allows the repertoire analysis and antibody humanization studies to move to novel, high-throughput methodologies with the same high-quality criteria. The CDR-IMGT lengths are now required for mAb INN applications and are included in the WHO-INN definitions (84–86). The characterization of the IGHG engineered variants for effector properties, half-life increase, and new structures of bi- and multi-specific antibodies brings a new level of standardized information in the comparative analysis of therapeutic antibodies.
Acknowledgments
We thank Souphatta Sasorith, Mélissa Cambon and Karima Cherouali for their contribution in the early phase of this work.
Supplementary Materials
The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/antib11040065/s1, Table S1: Correspondence between the IMGT unique numbering for C-DOMAIN, the IMGT exon numbering, the EU and Kabat numberings: Human IGHG [97,98] https://www.imgt.org/IMGTScientificChart/Numbering/Hu_IGHGnber.html; Table S2: IMGT nomenclature (alphanumeric order) of engineered variants involved in effector properties (ADCC, ADCP, CDC), half-life and structure of therapeutical monoclonal antibodies.
Author Contributions
Conceptualization, methodology, validation, investigation, data curation, writing, review and editing, visualization, ontology, M.-P.L. and G.L. All authors have read and agreed to the published version of the manuscript.
Data Availability Statement
Data is contained within the article or Supplementary material.
Conflicts of Interest
The authors declare no conflict of interest.
Funding Statement
This research received no external funding.
Footnotes
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Lefranc M.-P. Immunoglobulin and T cell receptor genes: IMGT® and the birth and rise of immunoinformatics. Front Immunol. 2014;5:22. doi: 10.3389/fimmu.2014.00022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Lefranc M.-P., Lefranc G. IMGT® Homo sapiens IG and TR loci, gene order, CNV and haplotypes: New concepts as a paradigm for jawed vertebrates genome assemblies. Biomolecules. 2022;12:381. doi: 10.3390/biom12030381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Lefranc M.-P., Lefranc G. The Immunoglobulin FactsBook. Academic Press; London, UK: 2001. pp. 1–457. [Google Scholar]
- 4.Lefranc M.-P., Lefranc G. Immunoglobulins or Antibodies: IMGT® Bridging Genes, Structures and Functions. Biomedicines. 2020;8:319. doi: 10.3390/biomedicines8090319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Lefranc M.-P., Lefranc G. The T Cell Receptor FactsBook. Academic Press; London, UK: 2001. pp. 1–397. [Google Scholar]
- 6.Lefranc M.-P., Lefranc G. Antibody sequence and structure analyses using IMGT®: 30 years of immunoinformatics. In: Tsumoto K., Kuroda D., editors. Computer Aided Antibody Design: Methods and Protocols. Springer; New York, NY, USA: 2022. Methods in Molecular Biology. in press . [Google Scholar]
- 7.Lefranc M.-P. Nomenclature of the human immunoglobulin genes. In: Coligan J.E., Bierer B.E., Margulies D.E., Shevach E.M., Strober W., editors. Current Protocols in Immunology. John Wiley and Sons; Hoboken, NJ, USA: 2000. pp. A.1P.1–A.1P.37. [DOI] [PubMed] [Google Scholar]
- 8.Lefranc M.-P. Nomenclature of the human T cell Receptor genes. In: Coligan J.E., Bierer B.E., Margulies D.E., Shevach E.M., Strober W., editors. Current Protocols in Immunology. John Wiley and Sons; Hoboken, NJ, USA: 2000. pp. A.1O.1–A.1O.23. [DOI] [PubMed] [Google Scholar]
- 9.Lefranc M.-P. WHO-IUIS Nomenclature Subcommittee for Immunoglobulins and T cell receptors report. Immunogenetics. 2007;59:899–902. doi: 10.1007/s00251-007-0260-4. [DOI] [PubMed] [Google Scholar]
- 10.Lefranc M.-P. WHO-IUIS Nomenclature Subcommittee for Immunoglobulins and T cell receptors report. Immunoglobulins and T cell receptors report August 2007, 13th International Congress of Immunology, Rio de Janeiro, Brazil. Dev. Comp. Immunol. 2008;32:461–463. doi: 10.1016/j.dci.2007.09.008. [DOI] [PubMed] [Google Scholar]
- 11.Lefranc M.-P. IMGT, the international ImMunoGeneTics information system. In: Bock G., Goode J., editors. Immunoinformatics: Bioinformatic Strategies for Better Understanding of Immune Function. Volume 254. John Wiley and Sons; Chichester, UK: 2003. pp. 126, discussion 136–142, 216–222, 250–252. Novartis Foundation Symposium. [Google Scholar]
- 12.Lefranc M.-P., Giudicelli V., Ginestoux C., Chaume D. IMGT, the international ImMunoGeneTics information system: The reference in immunoinformatics. Stud. Health Technol. Inform. 2003;95:74–79. [PubMed] [Google Scholar]
- 13.Lefranc M.-P. IMGT, the International ImMunoGenetics Information System®. In: Lo B.K.C., editor. Antibody Engineering Methods and Protocols. 2nd ed. Volume 248. Humana Press; Totowa, NJ, USA: 2004. pp. 27–49. Methods in Molecular Biology. [DOI] [PubMed] [Google Scholar]
- 14.Lefranc M.-P. IMGT, the international ImMunoGeneTics information system: A standardized approach for immunogenetics and immunoinformatics. Immunome Res. 2005;1:3. doi: 10.1186/1745-7580-1-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Lefranc M.-P. IMGT®, the international ImMunoGeneTics information system® for immunoinformatics. Methods for querying IMGT® databases, tools and Web resources in the context of immunoinformatics. In: Flower D.R., editor. Immunoinformatics: Predicting Immunogenicity in Silico. Volume 409. Humana Press; Totowa, NJ, USA: 2007. pp. 19–42. Methods in Molecular Biology. Chapter 2. [DOI] [PubMed] [Google Scholar]
- 16.Lefranc M.-P., Giudicelli V., Regnier L., Duroux P. IMGT, a system and an ontology that bridge biological and computational spheres in bioinformatics. Brief. Bioinform. 2008;9:263–275. doi: 10.1093/bib/bbn014. [DOI] [PubMed] [Google Scholar]
- 17.Lefranc M.-P. IMGT®, the international ImMunoGeneTics information system® for immunoinformatics. Methods for querying IMGT® databases, tools and Web resources in the context of immunoinformatics. Mol. Biotechnol. 2008;40:101–111. doi: 10.1007/s12033-008-9062-7. [DOI] [PubMed] [Google Scholar]
- 18.Lefranc M.-P., Giudicelli V., Ginestoux C., Jabado-Michaloud J., Folch G., Bellahcene F., Wu Y., Gemrot E., Brochet X., Lane J., et al. IMGT®, the International ImMunoGeneTics Information System®. Nucleic Acids Res. 2009;37:D1006–D1012. doi: 10.1093/nar/gkn838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Lefranc M.-P. IMGT, the International ImMunoGeneTics Information System. Cold Spring Harb. Protoc. 2011;6:595–603. doi: 10.1101/pdb.top115. [DOI] [PubMed] [Google Scholar]
- 20.Lefranc M.-P. IMGT® information system. In: Dubitzky W., Wolkenhauer O., Cho K.-H., Yokota H., editors. Encyclopedia of Systems Biology. Springer; New York, NY, USA: 2013. pp. 959–964. [DOI] [Google Scholar]
- 21.Lefranc M.-P., Giudicelli V., Duroux P., Jabado-Michaloud J., Folch G., Aouinti S., Carillon E., Duvergey H., Houles A., Paysan-Lafosse T., et al. IMGT®, the International ImMunoGeneTics Information System® 25 Years on. Nucleic Acids Res. 2015;43:D413–D422. doi: 10.1093/nar/gku1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Lefranc M.-P. Immunoglobulin superfamily (IgSF) In: Dubitzky W., Wolkenhauer O., Cho K.-H., Yokota H., editors. Encyclopedia of Systems Biology. Springer; New York, NY, USA: 2013. [DOI] [Google Scholar]
- 23.Lefranc M.-P. MH Superfamily (MhSF) In: Dubitzky W., Wolkenhauer O., Cho K.-H., Yokota H., editors. Encyclopedia of Systems Biology. Springer; New York, NY, USA: 2013. [DOI] [Google Scholar]
- 24.Lefranc M.-P., Giudicelli V., Busin C., Malik A., Mougenot I., Déhais P., Chaume D. LIGM-DB/IMGT: An integrated database of Ig and TcR, part of the Immunogenetics database. Ann. N. Y. Acad. Sci. 1995;764:47–49. doi: 10.1111/j.1749-6632.1995.tb55805.x. [DOI] [PubMed] [Google Scholar]
- 25.Giudicelli V., Duroux P., Ginestoux C., Folch G., Jabado-Michaloud J., Chaume D., Lefranc M.-P. IMGT/LIGM-DB, the IMGT® comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. Nucleic Acids Res. 2006;34:D781–D784. doi: 10.1093/nar/gkj088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Giudicelli V., Chaume D., Lefranc M.-P. IMGT/GENE-DB: A comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res. 2005;33:D256–D261. doi: 10.1093/nar/gki010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Kaas Q., Ruiz M., Lefranc M.-P. IMGT/3Dstructure-DB and IMGT/StructuralQuery, a database and a tool for immunoglobulin, T cell receptor and MHC structural data. Nucleic Acids Res. 2004;32:D208–D210. doi: 10.1093/nar/gkh042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Ehrenmann F., Kaas Q., Lefranc M.-P. IMGT/3Dstructure-DB and IMGT/DomainGapAlign: A Database and a Tool for Immunoglobulins or Antibodies, T Cell Receptors, MHC, IgSF and MhcSF. Nucleic Acids Res. 2010;38:D301–D307. doi: 10.1093/nar/gkp946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Ehrenmann F., Lefranc M.-P. IMGT/3Dstructure-DB: Querying the IMGT Database for 3D Structures in Immunology and Immunoinformatics (IG or Antibodies, TR, MH, RPI, and FPIA) Cold Spring Harb. Protoc. 2011;6:750–761. doi: 10.1101/pdb.prot5637. [DOI] [PubMed] [Google Scholar]
- 30.Poiron C., Wu Y., Ginestoux C., Ehrenmann F., Duroux P., Lefranc M.-P. IMGT/mAb-DB: The IMGT® database for therapeutic monoclonal antibodies; Proceedings of the 11èmes Journées Ouvertes de Biologie, Informatique et Mathématiques (JOBIM); Montpellier, France. 7–9 September 2010. [Google Scholar]
- 31.Giudicelli V., Chaume D., Lefranc M.-P. IMGT/V-QUEST, an Integrated Software for Immunoglobulin and T Cell Receptor V-J and V-D-J Rearrangement Analysis. Nucleic Acids Res. 2004;32:W435–W440. doi: 10.1093/nar/gkh412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Giudicelli V., Lefranc M.-P. Interactive IMGT on-line tools for the analysis of immunoglobulin and T cell receptor repertoires. In: Veskler B.A., editor. New Research on Immunology. Nova Science Publishers Inc.; New York, NY, USA: 2005. pp. 77–105. [Google Scholar]
- 33.Brochet X., Lefranc M.-P., Giudicelli V. IMGT/V-QUEST: The Highly Customized and Integrated System for IG and TR Standardized V-J and V-D-J Sequence Analysis. Nucleic Acids Res. 2008;36:W503–W508. doi: 10.1093/nar/gkn316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Giudicelli V., Lefranc M.-P. IMGT® standardized analysis of immunoglobulin rearranged sequences. In: Ghia P., Rosenquist R., Davi F., editors. Immunoglobulin Gene Analysis in Chronic Lymphocytic Leukemia. Wolters Kluwer Health Italy; Milano, Italy: 2008. pp. 33–52. Chapter 2. [Google Scholar]
- 35.Giudicelli V., Brochet X., Lefranc M.-P. IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences. Cold Spring Harb. Protoc. 2011;6:695–715. doi: 10.1101/pdb.prot5633. [DOI] [PubMed] [Google Scholar]
- 36.Alamyar E., Duroux P., Lefranc M.-P., Giudicelli V. IMGT® tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. In: Christiansen F., Tait B., editors. Immunogenetics. Volume 882. Humana Press; New York, NY, USA: 2012. pp. 569–604. Methods in Molecular Biology. Chapter 32. [DOI] [PubMed] [Google Scholar]
- 37.Yousfi Monod M., Giudicelli V., Chaume D., Lefranc M.-P. IMGT/JunctionAnalysis: The first tool for the analysis of the immunoglobulin and T cell receptor complex V-J and V-D-J JUNCTIONs. Bioinformatics. 2004;20:i379–i385. doi: 10.1093/bioinformatics/bth945. [DOI] [PubMed] [Google Scholar]
- 38.Giudicelli V., Lefranc M.-P. IMGT/JunctionAnalysis: IMGT standardized analysis of the V-J and V-D-J Junctions of the rearranged immunoglobulins (IG) and T cell receptors (TR) Cold Spring Harb. Protoc. 2011;6:716–725. doi: 10.1101/pdb.prot5634. [DOI] [PubMed] [Google Scholar]
- 39.Giudicelli V., Protat C., Lefranc M.-P. The IMGT strategy for the automatic annotation of IG and TR cDNA sequences: IMGT/Automat; Proceedings of the European Conference on Computational Biology (ECCB 2003), Data and Knowledge Bases, Institut National de Recherche en Informatique et en Automatique, Poster DKB_31, ECCB 2003; Paris, France. 27–30 September 2003; pp. 103–104. [Google Scholar]
- 40.Giudicelli V., Chaume D., Jabado-Michaloud J., Lefranc M.-P. Immunogenetics sequence Annotation: The strategy of IMGT based on IMGT-ONTOLOGY. Stud. Health Technol. Inform. 2005;116:3–8. [PubMed] [Google Scholar]
- 41.Alamyar E., Giudicelli V., Duroux P., Lefranc M.-P. IMGT/HighV-QUEST: A high-throughput system and web portal for the analysis of rearranged nucleotide sequences of antigen receptors—High-throughput version of IMGT/V-QUEST; Proceedings of the 11èmes Journées Ouvertes de Biologie, Informatique et Mathématiques (JOBIM); Montpellier, France. 7–9 September 2010. [Google Scholar]
- 42.Alamyar E., Giudicelli V., Li S., Duroux P., Lefranc M.-P. IMGT/HighV-QUEST: The IMGT® web portal for immunoglobulin (IG) or antibody and T cell receptor (TR) analysis from NGS high throughput and deep sequencing. Immunome Res. 2012;8:26. [Google Scholar]
- 43.Li S., Lefranc M.-P., Miles J.J., Alamyar E., Giudicelli V., Duroux P., Freeman J.D., Corbin V., Scheerlinck J.-P., Frohman M.A., et al. IMGT/HighV-QUEST paradigm for T cell receptor IMGT clonotype diversity and next generation repertoire immunoprofiling. Nat. Commun. 2013;4:2333. doi: 10.1038/ncomms3333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Giudicelli V., Duroux P., Lavoie A., Aouinti S., Lefranc M.-P., Kossida S. From IMGT-ONTOLOGY to IMGT/HighV-QUEST for NGS immunoglobulin (IG) and T cell receptor (TR) repertoires in autoimmune and infectious diseases. Autoimmun. Infect. Dis. 2015;1:1–15. [Google Scholar]
- 45.Giudicelli V., Duroux P., Kossida S., Lefranc M.-P. IG and TR single chain Fragment variable (scFv) sequence analysis: A new advanced functionality of IMGT/V-QUEST and IMGT/HighV-QUEST. BMC Immunol. 2017;18:35. doi: 10.1186/s12865-017-0218-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Aouinti S., Malouche D., Giudicelli V., Kossida S., Lefranc M.-P. IMGT/HighV-QUEST statistical significance of IMGT clonotype (AA) diversity per gene for standardized comparisons of next generation sequencing immunoprofiles of immunoglobulins and T cell receptors. PLoS ONE. 2015;10:e0142353. doi: 10.1371/journal.pone.0146702. https://doi.org/10.1371/journal.pone.0142353. eCollection 2015. Correction: PLoS ONE 2016, 11, e0146702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Aouinti S., Giudicelli V., Duroux P., Malouche D., Kossida S., Lefranc M.-P. IMGT/StatClonotype for pairwise evaluation and visualization of NGS IG and TR IMGT clonotype (AA) diversity or expression from IMGT/HighV-QUEST. Front. Immunol. 2016;7:339. doi: 10.3389/fimmu.2016.00339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Lane J., Duroux P., Lefranc M.-P. From IMGT-ONTOLOGY to IMGT/LIGMotif: The IMGT® standardized approach for immunoglobulin and T cell receptor gene identification and description in large genomic sequences. BMC Bioinform. 2010;11:223. doi: 10.1186/1471-2105-11-223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Ehrenmann F., Lefranc M.-P. IMGT/DomainGapAlign: IMGT standardized analysis of amino acid sequences of Variable, Constant, and Groove domains (IG, TR, MH, IgSF, MhSF) Cold Spring Harb. Protoc. 2011;6:737–749. doi: 10.1101/pdb.prot5636. [DOI] [PubMed] [Google Scholar]
- 50.Ehrenmann F., Lefranc M.-P. IMGT/DomainGapAlign: The IMGT® tool for the analysis of IG, TR, MHC, IgSF and MhcSF domain amino acid polymorphism. In: Christiansen F., Tait B., editors. Immunogenetics. Volume 882. Humana Press; New York, NY, USA: 2012. pp. 605–633. Methods in Molecular Biology. Chapter 33. [DOI] [PubMed] [Google Scholar]
- 51.Ehrenmann F., Giudicelli V., Duroux P., Lefranc M.-P. IMGT/Collier de Perles: IMGT Standardized representation of Domains (IG, TR, and IgSF Variable and Constant Domains, MH and MhSF Groove Domains) Cold Spring Harb. Protoc. 2011;6:726–736. doi: 10.1101/pdb.prot5635. [DOI] [PubMed] [Google Scholar]
- 52.Pommié C., Levadoux S., Sabatier R., Lefranc G., Lefranc M.-P. IMGT standardized criteria for statistical analysis of immunoglobulin V-REGION amino acid properties. J. Mol. Recognit. 2004;17:17–32. doi: 10.1002/jmr.647. [DOI] [PubMed] [Google Scholar]
- 53.Lefranc M.-P. From IMGT-ONTOLOGY IDENTIFICATION axiom to IMGT standardized keywords: For immunoglobulins (IG), T cell receptors (TR), and conventional genes. Cold Spring Harb. Protoc. 2011;6:604–613. doi: 10.1101/pdb.ip82. [DOI] [PubMed] [Google Scholar]
- 54.Lefranc M.-P. IMGT-ONTOLOGY, IDENTIFICATION axiom. In: Dubitzky W., Wolkenhauer O., Cho K.-H., Yokota H., editors. Encyclopedia of Systems Biology. Springer; New York, NY, USA: 2013. [DOI] [Google Scholar]
- 55.Lefranc M.-P. From IMGT-ONTOLOGY DESCRIPTION axiom to IMGT standardized labels: For immunoglobulin (IG) and T cell receptor (TR) sequences and structures. Cold Spring Harb. Protoc. 2011;6:614–626. doi: 10.1101/pdb.ip83. [DOI] [PubMed] [Google Scholar]
- 56.Lefranc M.-P. IMGT-ONTOLOGY, DESCRIPTION axiom. In: Dubitzky W., Wolkenhauer O., Cho K.-H., Yokota H., editors. Encyclopedia of Systems Biology. Springer; New York, NY, USA: 2013. [DOI] [Google Scholar]
- 57.Lefranc M.-P. Complementarity Determining Region (CDR-IMGT) In: Dubitzky W., Wolkenhauer O., Cho K.-H., Yokota H., editors. Encyclopedia of Systems Biology. Springer; New York, NY, USA: 2013. [DOI] [Google Scholar]
- 58.Lefranc M.-P. Framework Region (FR-IMGT) In: Dubitzky W., Wolkenhauer O., Cho K.-H., Yokota H., editors. Encyclopedia of Systems Biology. Springer; New York, NY, USA: 2013. [DOI] [Google Scholar]
- 59.Jefferis R., Lefranc M.-P. Human immunoglobulin allotypes: Possible implications for immunogenicity. mAbs. 2009;1:332–338. doi: 10.4161/mabs.1.4.9122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Lefranc M.-P., Lefranc G. Human Gm, Km and Am allotypes and their molecular characterization: A remarkable demonstration of polymorphism. In: Christiansen F., Tait B., editors. Immunogenetics. Volume 882. Humana Press; New York, NY, USA: 2012. pp. 635–680. Chapter 34. [DOI] [PubMed] [Google Scholar]
- 61.Lefranc M.-P. Nomenclature of the human immunoglobulin heavy (IGH) genes. Exp. Clin. Immunogenet. 2001;18:100–116. doi: 10.1159/000049189. [DOI] [PubMed] [Google Scholar]
- 62.Lefranc M.-P. From IMGT-ONTOLOGY CLASSIFICATION axiom to IMGT standardized gene and allele nomenclature: For immunoglobulins (IG) and T cell receptors (TR) Cold Spring Harb. Protoc. 2011;6:627–632. doi: 10.1101/pdb.ip84. [DOI] [PubMed] [Google Scholar]
- 63.Lefranc M.-P. IMGT-ONTOLOGY, CLASSIFICATION Axiom. In: Dubitzky W., Wolkenhauer O., Cho K.-H., Yokota H., editors. Encyclopedia of Systems Biology. Springer; New York, NY, USA: 2013. [DOI] [Google Scholar]
- 64.Lefranc M.-P. IMGT-ONTOLOGY, NUMEROTATION axiom. In: Dubitzky W., Wolkenhauer O., Cho K.-H., Yokota H., editors. Encyclopedia of Systems Biology. Springer; New York, NY, USA: 2013. [DOI] [Google Scholar]
- 65.Lefranc M.-P. Unique database numbering system for immunogenetic analysis. Immunol. Today. 1997;18:509. doi: 10.1016/S0167-5699(97)01163-8. [DOI] [PubMed] [Google Scholar]
- 66.Lefranc M.-P. The IMGT unique numbering for Immunoglobulins, T cell receptors and Ig-like domains. Immunology. 1999;7:132–136. [Google Scholar]
- 67.Lefranc M.-P., Pommié C., Ruiz M., Giudicelli V., Foulquier E., Truong L., Thouvenin-Contet V., Lefranc G. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev. Comp. Immunol. 2003;27:55–77. doi: 10.1016/S0145-305X(02)00039-3. [DOI] [PubMed] [Google Scholar]
- 68.Lefranc M.-P., Pommié C., Kaas Q., Duprat E., Bosc N., Guiraudou D., Jean C., Ruiz M., Da Piedade I., Rouard M., et al. IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains. Dev. Comp. Immunol. 2005;29:185–203. doi: 10.1016/j.dci.2004.07.003. [DOI] [PubMed] [Google Scholar]
- 69.Lefranc M.-P., Duprat E., Kaas Q., Tranne M., Thiriot A., Lefranc G. IMGT unique numbering for MHC groove G-DOMAIN and MHC superfamily (MhcSF) G-LIKE-DOMAIN. Dev. Comp. Immunol. 2005;29:917–938. doi: 10.1016/j.dci.2005.03.003. [DOI] [PubMed] [Google Scholar]
- 70.Lefranc M.-P. IMGT unique numbering for the Variable (V), Constant (C), and Groove (G) domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harb. Protoc. 2011;6:633–642. doi: 10.1101/pdb.ip85. [DOI] [PubMed] [Google Scholar]
- 71.Lefranc M.-P. IMGT unique numbering. In: Dubitzky W., Wolkenhauer O., Cho K.-H., Yokota H., editors. Encyclopedia of Systems Biology. Springer; New York, NY, USA: 2013. pp. 952–959. [DOI] [Google Scholar]
- 72.Lefranc M.-P. Immunoinformatics of the V, C, and G domains: IMGT® definitive system for IG, TR and IgSF, MH, and MhSF. In: De R.K., Tomar N., editors. Immunoinformatics: From Biology to Informatics. 2nd ed. Volume 1184. Humana Press; New Yor, NY, USA: 2014. pp. 59–107. Methods in Molecular Biology. [DOI] [PubMed] [Google Scholar]
- 73.Ruiz M., Lefranc M.-P. IMGT gene identification and Colliers de Perles of human immunoglobulins with known 3D structures. Immunogenetics. 2002;53:857–883. doi: 10.1007/s00251-001-0408-6. [DOI] [PubMed] [Google Scholar]
- 74.Kaas Q., Lefranc M.-P. IMGT Colliers de Perles: Standardized sequence-structure representations of the IgSF and MhcSF superfamily domains. Curr. Bioinform. 2007;2:21–30. doi: 10.2174/157489307779314302. [DOI] [Google Scholar]
- 75.Kaas Q., Ehrenmann F., Lefranc M.-P. IG, TR and IgSf, MHC and MhcSF: What do we learn from the IMGT Colliers de Perles? Brief. Funct. Genom. Proteom. 2007;6:253–264. doi: 10.1093/bfgp/elm032. [DOI] [PubMed] [Google Scholar]
- 76.Lefranc M.-P. IMGT Collier de Perles for the Variable (V), Constant (C), and Groove (G) domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harb. Protoc. 2011;6:643–651. doi: 10.1101/pdb.ip86. [DOI] [PubMed] [Google Scholar]
- 77.Lefranc M.-P. IMGT Collier de Perles. In: Dubitzky W., Wolkenhauer O., Cho K.-H., Yokota H., editors. Encyclopedia of Systems Biology. Springer; New York, NY, USA: 2013. pp. 944–952. [DOI] [Google Scholar]
- 78.Giudicelli V., Lefranc M.-P. Ontology for Immunogenetics: IMGT-ONTOLOGY. Bioinformatics. 1999;15:1047–1054. doi: 10.1093/bioinformatics/15.12.1047. [DOI] [PubMed] [Google Scholar]
- 79.Lefranc M.-P. IMGT-ONTOLOGY and IMGT databases, tools and web resources for immunogenetics and immunoinformatics. Mol. Immunol. 2004;40:647–660. doi: 10.1016/j.molimm.2003.09.006. [DOI] [PubMed] [Google Scholar]
- 80.Lefranc M.-P. IMGT-ONTOLOGY, IMGT® databases, tools and Web resources for Immunoinformatics. In: Schoenbach C., Ranganathan S., Brusic V., editors. Immunoinformatics. Volume 1. Springer; New York, NY, USA: 2008. pp. 1–18. Immunomics Reviews, Series of Springer Science and Business Media LLC. Chapter 1. [Google Scholar]
- 81.Giudicelli V., Lefranc M.-P. IMGT-ONTOLOGY 2012. Frontiers in Bioinformatics and Computational Biology. Front. Genet. 2012;3:79. doi: 10.3389/fgene.2012.00079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Giudicelli V., Lefranc M.-P. IMGT-ONTOLOGY. In: Dubitzky W., Wolkenhauer O., Cho K.-H., Yokota H., editors. Encyclopedia of Systems Biology. Springer; New York, NY, USA: 2013. pp. 964–972. [DOI] [Google Scholar]
- 83.Lefranc M.-P., Lefranc G. IMGT/3Dstructure-DB: T-cell Receptor TR Paratope and peptide/Major Histocompatibility pMH contact sites and epitope. Methods Mol. Biol. 2022;2453:533–570. doi: 10.1007/978-1-0716-2115-8_25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Lefranc M.-P. Antibody nomenclature: From IMGT-ONTOLOGY to INN definition. mAbs. 2011;3:1–2. doi: 10.4161/mabs.3.1.14151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.World Health Organization International Nonproprietary Names (INN) for Biological and Biotechnological Substances (a Review). WHO/EMP/RHT/TSN/2019.1. [(accessed on 14 August 2022)]. Available online: http://www.nihs.go.jp/dbcb/INN/BioReview2019.pdf.
- 86.Guimaraes Koch S.S., Thorpe R., Kawasaki N., Lefranc M.-P., Malan S., Martin A.C.R., Mignot G., Plückthun A., Rizzi M., Shubat S., et al. International nonproprietary names for monoclonal antibodies: An evolving nomenclature system. mAbs. 2022;14:2075078. doi: 10.1080/19420862.2022.2075078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Lefranc M.-P. Antibody databases and tools: The IMGT® experience. In: An Z., editor. Therapeutic Monoclonal Antibodies: From Bench to Clinic. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2009. pp. 91–114. Chapter 4. [Google Scholar]
- 88.Lefranc M.-P. Antibody databases: IMGT®, a French platform of world-wide interest. Bases de données anticorps: IMGT®, une plate-forme française d’intérêt mondial “Anticorps monoclonaux en thérapeutique”. Méd./Sci. 2009;25:1020–1023. doi: 10.1051/medsci/200925121020. [DOI] [PubMed] [Google Scholar]
- 89.Lefranc M.-P., Ehrenmann F., Ginestoux C., Duroux P., Giudicelli V. Use of IMGT® databases and tools for antibody engineering and humanization. In: Chames P., editor. Antibody Engineering. Vol. 907. Humana Press; New York, NY, USA: 2012. pp. 3–37. Methods in Molecular Biology. Chapter 1. [DOI] [PubMed] [Google Scholar]
- 90.Lefranc M.-P. How to use IMGT® for therapeutic antibody engineering. In: Dübel S., Reichert J., editors. Handbook of Therapeutic Antibodies. 2nd ed. Volume 1. Wiley; Hoboken, NJ, USA: 2014. pp. 229–264. Defining the Right Antibody Composition. Chapter 10. [Google Scholar]
- 91.Lefranc M.-P. IMGT® immunoglobulin repertoire analysis and antibody humanization. In: Alt F.W., Honjo T., Radbruch A., Reth M., editors. Molecular Biology of B Cells. 2nd ed. Academic Press; London, UK: 2014. pp. 481–514. Chapter 26. [Google Scholar]
- 92.Shirai H., Prades C., Vita R., Marcatili P., Popovic B., Xu J., Overington J.P., Hirayama K., Soga S., Tsunoyama K., et al. Antibody informatics for drug discovery. Biochim. Biophys. Acta. 2014;1844:2002–2015. doi: 10.1016/j.bbapap.2014.07.006. [DOI] [PubMed] [Google Scholar]
- 93.Alamyar E., Giudicelli V., Duroux P., Lefranc M.-P. Antibody V and C domain sequence, structure and interaction analysis with special reference to IMGT®. In: Ossipow V., Fischer N., editors. Monoclonal Antibodies: Methods and Protocols. 2nd ed. Volume 1131. Humana Press; New York, NY, USA: 2014. pp. 337–381. Methods in Molecular Biology. [DOI] [PubMed] [Google Scholar]
- 94.Lefranc M.-P. Immunoglobulins: 25 years of Immunoinformatics and IMGT-ONTOLOGY. Biomolecules. 2014;4:1102–1139. doi: 10.3390/biom4041102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Lefranc M.-P. Antibody informatics: IMGT, the international ImMunoGeneTics information system. In: Crowe J.E., Boraschi D., Rappuoli R., editors. Antibodies for Infectious Diseases. ASM Press; Washington, DC, USA: 2015. pp. 363–379. [DOI] [Google Scholar]
- 96.Lefranc M.-P., Lefranc G. IMGT® and 30 years of Immunoinformatics insight in antibody V and C domain structure and function. Antibodies. 2019;8:29. doi: 10.3390/antib8020029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Edelman G.M., Cunningham B.A., Gall W.E., Gottlieb P.D., Rutishauser U., Waxdal M.J. The covalent structure of an entire gammaG immunoglobulin molecule. Proc. Natl. Acad. Sci. USA. 1969;63:78–85. doi: 10.1073/pnas.63.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Kabat E.A., Wu T.T., Reid-Miller M., Perry H.M., Gottesman K.S. Sequences of Proteins of Immunological Interest. 5th ed. US Department of Health and Human Services; Washington, DC, USA: 1991. pp. 662, 680, 689.pp. 662, 680, 689. NIH publication n° 91-3242. [Google Scholar]
- 99.Booth B.J., Ramakrishnan B., Narayan K., Wollacott A.M., Babcock G.J., Shriver Z., Viswanathan K. Extending human IgG half-life using structure-guided design. mAbs. 2018;10:1098–1110. doi: 10.1080/19420862.2018.1490119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Liu R., Oldham R.J., Teal E., Beers S.A., Cragg M.S. Fc-Engineering for Modulated Effector Functions-Improving Antibodies for Cancer Treatment. Antibodies. 2020;9:64. doi: 10.3390/antib9040064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Chappel M.S., Isenman D.E., Everett M., Xu Y.Y., Dorrington K.J., Klein M.H. Identification of the Fc gamma receptor class I binding site in human IgG through the use of recombinant IgG1/IgG2 hybrid and point-mutated antibodies. Proc. Natl. Acad. Sci. USA. 1991;88:9036–9040. doi: 10.1073/pnas.88.20.9036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Idusogie E.E., Wong P.Y., Presta L.G., Gazzano-Santoro H., Totpal K., Ultsch M., Mulkerrin M.G. Engineered antibodies with increased activity to recruit complement. J. Immunol. 2001;166:2571–2575. doi: 10.4049/jimmunol.166.4.2571. [DOI] [PubMed] [Google Scholar]
- 103.Brinkhaus M., Douwes R.G.J., Bentlage A.E.H., Temming A.R., de Taeye S.W., Tammes Buirs M., Gerritsen J., Mok J.Y., Brasser G., Ligthart P.C., et al . Glycine 236 in the lower hinge region of human IgG1 differentiates FcγR from Complement effector function. J. Immunol. 2020;205:3456–3467. doi: 10.4049/jimmunol.2000961. [DOI] [PubMed] [Google Scholar]
- 104.Shields R.L., Namenuk A.K., Hong K., Meng Y.G., Rae J., Briggs J., Xie D., Lai J., Stadlen A., Li B., et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J. Biol. Chem. 2001;276:6591–6604. doi: 10.1074/jbc.M009483200. [DOI] [PubMed] [Google Scholar]
- 105.Lazar G.A., Dang W., Karki S., Vafa O., Peng J.S., Hyun L., Chan C., Chung H.S., Eivazi A., Yoder S.C., et al. Engineered antibody Fc variants with enhanced effector function. Proc. Natl. Acad. Sci. USA. 2006;103:4005–4010. doi: 10.1073/pnas.0508123103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Oganesyan V., Damschroder M.M., Leach W., Wu H., Dall’Acqua W.F. Structural characterization of a mutated, ADCC-enhanced human Fc fragment. Mol. Immunol. 2008;45:1872–1882. doi: 10.1016/j.molimm.2007.10.042. [DOI] [PubMed] [Google Scholar]
- 107.Stavenhagen J.B., Gorlatov S., Tuaillon N., Rankin C.T., Li H., Burke S., Huang L., Vijh S., Johnson S., Bonvini E., et al. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res. 2007;67:8882–8890. doi: 10.1158/0008-5472.CAN-07-0696. [DOI] [PubMed] [Google Scholar]
- 108.Mimoto F., Igawa T., Kuramochi T., Katada H., Kadono S., Kamikawa T., Shida-Kawazoe M., Hattori K. Novel asymmetrically engineered antibody Fc variant with superior FcγR binding affinity and specificity compared with afucosylated Fc variant. mAbs. 2013;5:229–236. doi: 10.4161/mabs.23452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Duncan A.R., Woof J.M., Partridge L.J., Burton D.R., Winter G. Localization of the binding site for the human high-affinity Fc receptor on IgG. Nature. 1988;332:563–564. doi: 10.1038/332563a0. [DOI] [PubMed] [Google Scholar]
- 110.Ahmed A.A., Keremane S.R., Vielmetter J., Bjorkman P.J. Structural characterization of GASDALIE Fc bound to the activating Fc receptor FcγRIIIa. J. Struct. Biol. 2016;1:78–89. doi: 10.1016/j.jsb.2016.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Richards J.O., Karki S., Lazar G.A., Chen H., Dang W., Desjarlais J.R. Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol. Cancer Ther. 2008;7:2517–2527. doi: 10.1158/1535-7163.MCT-08-0201. [DOI] [PubMed] [Google Scholar]
- 112.Moore G.L., Chen H., Karki S., Lazar G.A. Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions. mAbs. 2010;2:181–189. doi: 10.4161/mabs.2.2.11158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Diebolder C.A., Beurskens F.J., de Jong R.N., Koning R.I., Strumane K., Lindorfer M.A., Voorhorst M., Ugurlar D., Rosati S., Heck A.J., et al. Complement is activated by IgG hexamers assembled at the cell surface. Science. 2014;343:1260–1263. doi: 10.1126/science.1248943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Smith P., DiLillo D.J., Bournazos S., Li F., Ravetch J.V. Mouse model recapitulating human Fcγ receptor structural and functional diversity. Proc. Natl. Acad. Sci. USA. 2012;109:6181–6186. doi: 10.1073/pnas.1203954109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Natsume A., In M., Takamura H., Nakagawa T., Shiz Y., Kitajima K., Wakitani M., Ohta S., Satoh M., Shitara K., et al. Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities. Cancer Res. 2008;68:3863–3872. doi: 10.1158/0008-5472.CAN-07-6297. [DOI] [PubMed] [Google Scholar]
- 116.Tao M.H., Smith R.I., Morrison S.L. Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation. J. Exp. Med. 1993;178:661–667. doi: 10.1084/jem.178.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Idusogie E.E., Presta L.G., Gazzano-Santoro H., Totpal K., Wong P.Y., Ultsch M., Meng Y.G., Mulkerrin M.G. Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc. J. Immunol. 2000;164:4178–4184. doi: 10.4049/jimmunol.164.8.4178. [DOI] [PubMed] [Google Scholar]
- 118.Hezareh M., Hessell A.J., Jensen R.C., van de Winkel J.G., Parren P.W. Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1. J. Virol. 2001;75:12161–12168. doi: 10.1128/JVI.75.24.12161-12168.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Duncan A.R., Winter G. The binding site for C1q on IgG. Nature. 1988;332:738–740. doi: 10.1038/332738a0. [DOI] [PubMed] [Google Scholar]
- 120.Xu D., Alegre M.L., Varga S.S., Rothermel A.L., Collins A.M., Pulito V.L., Hanna L.S., Dolan K.P., Parren P.W., Bluestone J.A., et al. In vitro characterization of five humanized OKT3 effector function variant antibodies. Cell Immunol. 2000;200:16–26. doi: 10.1006/cimm.2000.1617. [DOI] [PubMed] [Google Scholar]
- 121.Schlothauer T., Herter S., Koller C.F., Grau-Richards S., Steinhart V., Spick C., Kubbies M., Klein C., Umaña P., Mössner E. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng. Des. Sel. 2016;29:457–466. doi: 10.1093/protein/gzw040. [DOI] [PubMed] [Google Scholar]
- 122.Alegre M.L., Collins A.M., Pulito V.L., Brosius R.A., Olson W.C., Zivin R.A., Knowles R., Thistlethwaite J.R., Jolliffe L.K., Bluestone J.A. Effect of a single amino acid mutation on the activating and immunosuppressive properties of a “humanized” OKT3 monoclonal antibody. J. Immunol. 1992;148:3461–3468. [PubMed] [Google Scholar]
- 123.Shang L., Daubeuf B., Triantafilou M., Olden R., Dépis F., Raby A.C., Herren S., Dos Santos A., Malinge P., Dunn-Siegrist I., et al. Selective antibody intervention of Toll-like receptor 4 activation through Fc γ receptor tethering. J. Biol. Chem. 2014;289:15309–15318. doi: 10.1074/jbc.M113.537936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Vafa O., Gilliland G.L., Brezski R.J., Strake B., Wilkinson T., Lacy E.R., Scallon B., Teplyakov A., Malia T.J., Strohl W.R. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations. Methods. 2014;65:114–126. doi: 10.1016/j.ymeth.2013.06.035. [DOI] [PubMed] [Google Scholar]
- 125.Borrok M.J., Mody N., Lu X., Kuhn M.L., Wu H., Dall’Acqua W.F., Tsui P. An “Fc-Silenced” IgG1 format with extended half-life designed for improved stability. J. Pharm. Sci. 2017;106:1008–1017. doi: 10.1016/j.xphs.2016.12.023. [DOI] [PubMed] [Google Scholar]
- 126.Wilkinson I., Anderson S., Fry J., Julien L.A., Neville D., Qureshi O., Watts G., Hale G. Fc-engineered antibodies with immune effector functions completely abolished. PLoS ONE. 2021;16:e0260954. doi: 10.1371/journal.pone.0260954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.An Z., Forrest G., Moore R., Cukan M., Haytko P., Huang L., Vitelli S., Zhao J.Z., Lu P., Hua J., et al. IgG2m4, an engineered antibody isotype with reduced Fc function. mAbs. 2009;1:572–579. doi: 10.4161/mabs.1.6.10185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Rother R.P., Rollins S.A., Mojcik C.F., Brodsky R.A., Bell L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat. Biotechnol. 2007;25:1256–1264. doi: 10.1038/nbt1344. [DOI] [PubMed] [Google Scholar]
- 129.Labrijn A.F., Buijsse A.O., van den Bremer E.T., Verwilligen A.Y., Bleeker W.K., Thorpe S.J., Killestein J., Polman C.H., Aalberse R.C., Schuurman J., et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat. Biotechnol. 2009;27:767–771. doi: 10.1038/nbt.1553. [DOI] [PubMed] [Google Scholar]
- 130.Chu S.Y., Vostiar I., Karki S., Moore G.L., Lazar G.A., Pong E., Joyce P.F., Szymkowski D.E., Desjarlais J.R. Inhibition of B cell receptor-mediated activation of primary human B cells by coengagement of CD19 and FcgammaRIIb with Fc-engineered antibodies. Mol. Immunol. 2008;45:3926–3933. doi: 10.1016/j.molimm.2008.06.027. [DOI] [PubMed] [Google Scholar]
- 131.Szili D., Cserhalmi M., Bankó Z., Nagy G., Szymkowski D.E., Sármay G. Suppression of innate and adaptive B cell activation pathways by antibody coengagement of FcγRIIb and CD19. mAbs. 2014;6:991–999. doi: 10.4161/mabs.28841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Leabman M.K., Meng Y.G., Kelley R.F., DeForge L.E., Cowan K.J., Iyer S. Effects of altered FcγR binding on antibody pharmacokinetics in cynomolgus monkeys. mAbs. 2013;5:896–903. doi: 10.4161/mabs.26436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.Robbie G.J., Criste R., Dall’acqua W.F., Jensen K., Patel N.K., Losonsky G.A., Griffin M.P. A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob. Agents Chemother. 2013;57:6147–6153. doi: 10.1128/AAC.01285-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Dall’Acqua W.F., Woods R.M., Ward E.S., Palaszynski S.R., Patel N.K., Brewah Y.A., Wu H., Kiener P.A., Langermann S. Increasing the affinity of a human IgG1 for the neonatal Fc receptor: Biological consequences. J. Immunol. 2002;169:5171–5180. doi: 10.4049/jimmunol.169.9.5171. [DOI] [PubMed] [Google Scholar]
- 135.Zalevsky J., Chamberlain A.K., Horton H.M., Karki S., Leung I.W., Sproule T.J., Lazar G.A., Roopenian D.C., Desjarlais J.R. Enhanced antibody half-life improves in vivo activity. Nat. Biotechnol. 2010;28:157–159. doi: 10.1038/nbt.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Hinton P.R., Johlfs M.G., Xiong J.M., Hanestad K., Ong K.C., Bullock C., Keller S., Tang M.T., Tso J.Y., Vásquez M., et al. Engineered human IgG antibodies with longer serum half-lives in primates. J. Biol. Chem. 2004;279:6213–6216. doi: 10.1074/jbc.C300470200. [DOI] [PubMed] [Google Scholar]
- 137.Oganesyan V., Damschroder M.M., Cook K.E., Li Q., Gao C., Wu H., Dall’Acqua W.F. Structural insights into neonatal Fc receptor-based recycling mechanisms. J. Biol. Chem. 2014;289:7812–7824. doi: 10.1074/jbc.M113.537563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Stapleton N.M., Andersen J.T., Stemerding A.M., Bjarnarson S.P., Verheul R.C., Gerritsen J., Zhao Y., Kleijer M., Sandlie I., de Haas M., et al. Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nat. Commun. 2011;2:599. doi: 10.1038/ncomms1608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Zhang J., Huang Y., Xi G., Zhang F. HX008: A humanized PD-1 blocking antibody with potent antitumor activity and superior pharmacologic properties. mAbs. 2020;12:1724751. doi: 10.1080/19420862.2020.1724751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Dall’Acqua W.F., Kiener P.A., Wu H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn) J. Biol. Chem. 2006;281:23514–23524. doi: 10.1074/jbc.M604292200. [DOI] [PubMed] [Google Scholar]
- 141.Labrijn A.F., Rispens T., Meesters J., Rose R.J., den Bleker T.H., Loverix S., van den Bremer E.T., Neijssen J., Vink T., Lasters I., et al. Species-specific determinants in the IgG CH3 domain enable Fab-arm exchange by affecting the noncovalent CH3-CH3 interaction strength. J. Immunol. 2011;187:3238–3246. doi: 10.4049/jimmunol.1003336. [DOI] [PubMed] [Google Scholar]
- 142.Ridgway J.B., Presta L.G., Carter P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 1996;9:617–621. doi: 10.1093/protein/9.7.617. [DOI] [PubMed] [Google Scholar]
- 143.Saito S., Namisaki H., Hiraishi K., Takahashi N., Iida S. Engineering a human IgG2 antibody stable at low pH. Protein Sci. 2020;29:1186–1195. doi: 10.1002/pro.3852. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Data Availability Statement
Data is contained within the article or Supplementary material.