Abstract
目的
通过体外实验探讨山奈酚对糖皮质激素诱导的股骨头坏死(glucocorticoids-induced osteonecrosis of the femoral head,GIONFH)中骨微血管内皮细胞(bone microvascular endothelial cells,BMECs)的作用。
方法
从股骨颈骨折患者自愿捐赠的股骨头或股骨颈松质骨中分离BMECs,并行CD31、血管性血友病因子免疫荧光染色和体外成管实验鉴定。采用细胞计数试剂盒8(cell counting kit 8,CCK-8)法筛选地塞米松(dexamethasone,Dex)抑制细胞活性的最佳浓度及时间点和改善Dex抑制活性的最佳山奈酚浓度;然后将实验分为4组,分别为单纯细胞组(A组)、加入最佳浓度Dex组(B组)、加入最佳浓度Dex+1 μmol/L山奈酚组(C组)和加入最佳浓度Dex+5 μmol/L山奈酚组(D组)。采用EdU实验、体外成管实验、TUNEL实验、AnnexinⅤ/碘化丙啶(propidium iodide,PI)实验、Transwell 迁移实验、划痕实验和Western blot检测山奈酚对Dex干预后BMECs增殖、成血管、凋亡、迁移和蛋白表达的影响。
结果
经鉴定所培养细胞为BMECs。CCK-8法检测示Dex抑制BMECs活性的最佳浓度及时间点为300 μmol/L作用24 h,改善Dex抑制活性的最佳山奈酚浓度为1 μmol/L。EdU和成管实验结果示B~D组细胞增殖率、成管长度和分支点数目显著低于A组,B、D组显著低于C组,差异均有统计学意义(P<0.05)。TUNEL和Annexin V/PI凋亡检测结果显示,B~D组TUNEL阳性细胞率和细胞凋亡率显著高于A组,B、D组显著高于C组,差异均有统计学意义(P<0.05)。划痕实验和Transwell迁移实验结果显示,B~D组划痕愈合率和细胞迁移数显著低于A组,B、D组显著低于C组,差异均有统计学意义(P<0.05)。Western blot检测示,B~D组Cleaved Caspase-3和Bax蛋白相对表达量显著高于A组,B、D组显著高于C组;B~D组基质金属蛋白酶2、Cyclin D1、Cyclin E1、VEGFA和Bcl2蛋白相对表达量显著低于A组,B、D组显著低于C组;差异均有统计学意义(P<0.05)。
结论
山奈酚可减轻GIONFH中BMECs的损伤和功能障碍。
Keywords: 山奈酚, 地塞米松, 股骨头坏死, 骨微血管内皮细胞
Abstract
Objective
To explore the effect of Kaempferol on bone microvascular endothelial cells (BMECs) in glucocorticoid induced osteonecrosis of the femoral head (GIONFH) in vitro.
Methods
BMECs were isolated from cancellous bone of femoral head or femoral neck donated voluntarily by patients with femoral neck fracture. BMECs were identified by von Willebrand factor and CD31 immunofluorescence staining and tube formation assay. The cell counting kit 8 (CCK-8) assay was used to screen the optimal concentration and the time point of dexamethasone (Dex) to inhibit the cell activity and the optimal concentration of Kaempferol to improve the inhibition of Dex. Then the BMECs were divided into 4 groups, namely, the cell group (group A), the cells treated with optimal concentration of Dex group (group B), the cells treated with optimal concentration of Dex+1 μmol/L Kaempferol group (group C), and the cells treated with optimal concentration of Dex+5 μmol/L Kaempferol group (group D). EdU assay, in vitro tube formation assay, TUNEL staining assay, Annexin Ⅴ/propidium iodide (PI) staining assay, Transwell migration assay, scratch healing assay, and Western blot assay were used to detect the effect of Kaempferol on the proliferation, tube formation, apoptosis, migration, and protein expression of BMECs treated with Dex.
Results
The cultured cells were identified as BMECs. CCK-8 assay showed that the optimal concentration and the time point of Dex to inhibit cell activity was 300 μmol/L for 24 hours, and the optimal concentration of Kaempferol to improve the inhibitory activity of Dex was 1 μmol/L. EdU and tube formation assays showed that the cell proliferation rate, tube length, and number of branch points were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). TUNEL and Annexin V/PI staining assays showed that the rates of TUNEL positive cells and apoptotic cells were significantly higher in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Scratch healing assay and Transwell migration assay showed that the scratch healing rate and the number of migration cells were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Western blot assay demonstrated that the relative expressions of Cleaved Caspase-3 and Bax proteins were significantly higher in groups B-D than in group A, and in groups B and D than in group C (P<0.05); the relative expressions of matrix metalloproteinase 2, Cyclin D1, Cyclin E1, VEGFA, and Bcl2 proteins were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05).
Conclusion
Kaempferol can alleviate the damage and dysfunction of BMECs in GIONFH.
Keywords: Kaempferol, dexamethasone, osteonecrosis of the femoral head, bone microvascular endothelial cells
股骨头坏死(osteonecrosis of the femoral head,ONFH)是骨科难治性疾病,有多种病因[1]。中国ONFH患者累计达812万[2],且主要困扰劳动人口,给患者带来极大痛苦和经济负担[3]。在非创伤性ONFH中,糖皮质激素(glucocorticoids,GCs)诱导的ONFH(GCs induced ONFH,GIONFH)发病率占首位[4],其病理特征主要是多种原因引起的血运障碍[5-7],导致骨细胞及骨髓缺血坏死[8]。GCs可减少骨血管生成,因此改善股骨头血液循环可能是预防GIONFH的关键[9]。
骨微血管内皮细胞(bone microvascular endothe-lial cells,BMECs)在血管生成和调节骨内微环境中发挥重要作用[10],其衬附于骨微血管内壁表面,易成为GCs等的靶点而被损伤[11]。因此,BMECs损伤可能是缺血性病变的始动环节。研究表明,BMECs功能障碍引起的股骨头微循环障碍在GIONFH发生发展中起重要作用[12-15];在GIONFH中,BMECs因持续暴露于GCs导致功能紊乱,在诱导凋亡和抑制血管生成中起关键作用[12,16]。因此,骨保护药物可能通过抑制内皮细胞损伤,从而预防GIONFH。中药骨碎补已广泛应用于治疗骨质疏松等骨科疾病[17]。山奈酚是从骨碎补中提取的化合物,可通过抑制成骨细胞凋亡发挥骨保护作用,改善地塞米松(dexamethasone,Dex)诱导的成骨抑制[18-20]。目前相关研究主要集中于山奈酚的抗骨质疏松作用,尚无研究探讨其能否减轻Dex诱导的BMECs损伤。本研究拟通过体外实验观察山奈酚对Dex诱导导致的BMECs损伤的影响及其对GIONFH的保护作用。
1. 材料与方法
1.1. 主要试剂及仪器
山奈酚(北京索莱宝科技有限公司);Dex(上海源叶生物科技有限公司)。二者均保存于–20℃冰箱中,山奈酚使用前避光保存。实验时将Dex和山奈酚分别溶于DMSO,原液浓度分别为100 mmol/L和200 mmol/L,后续实验使用内皮细胞培养基(endothelial cell medium,ECM)稀释至合适浓度。
DMEM培养基、ECM、0.2% Ⅰ型胶原酶、0.1%胰蛋白酶-EDTA、FBS(GIBCO公司,美国);蛋白酶和磷酸酶抑制剂、封闭缓冲液(Thermo Fisher Scientific公司,美国);细胞计数试剂盒8(cell counting kit 8,CCK-8)(同仁公司,日本);EdU-488细胞增殖试剂盒(广州锐博生物科技有限公司);TUNEL凋亡检测试剂盒、AnnexinⅤ/碘化丙啶(propidium iodide,PI)凋亡检测试剂盒(上海碧云天生物技术有限公司);Matrigel基质胶(BD Biosciences公司,美国);Transwell小室(孔径3 μm)、24孔培养板、96孔培养板(Corning公司,美国);RIPA裂解液缓冲液、BCA蛋白质定量试剂盒(合肥白鲨生物科技有限公司);抗CD31、血管性血友病因子(von Willebrand factor,vWF)、Cyclin D1、Cyclin E1、基质金属蛋白酶2(matrix metalloproteinase 2,MMP2)、Cleaved Caspase-3、GAPDH、β-actin一抗(Cell Signaling Technology公司,美国);抗VEGFA、B细胞淋巴瘤2(B-cell lymphoma 2,Bcl2)、Bcl2相关蛋白X(Bcl2-associated X,Bax)、一抗(Proteintech公司,美国);辣根过氧化物酶标记的山羊抗兔或抗鼠IgG二抗(Bioworld公司,美国)。
酶标仪、电化学发光检测系统(Thermo Fisher Scientific公司, 美国);荧光显微镜、光学显微镜(Casse公司,美国);流式细胞仪(Becton Dickinson公司,美国);Image Lab 5.0软件(Bio-Rad公司,美国)。
1.2. 细胞培养与鉴定
采用本课题组既往报道的方法[21],采用酶消化、差速贴壁技术分离培养人BMECs。无菌条件下,取因股骨颈骨折接受人工全髋关节置换术患者自愿捐赠的松质骨,用咬骨钳咬成细小骨粒,生理盐水冲洗3~5遍,置于DMEM培养基中,6 h内提取BMECs。弃培养基,于37℃水浴条件下,0.2%Ⅰ型胶原酶消化25 min,0.1%胰蛋白酶-EDTA消化5 min,含10%FBS的DMEM培养基终止消化,100目细胞筛过滤,以离心半径10 cm、800 r/min离心6 min,收集沉淀,ECM重悬,接种于细胞培养瓶中。光镜下观察细胞形态变化。待细胞生长至培养瓶面积80%时进行传代,取第2~5代细胞用于后续实验。
细胞鉴定:① CD31和vWF免疫荧光染色:CD31和vWF作为特异性内皮细胞标记物用于BMECs鉴定[16]。将BMECs接种于24孔板中,培养至细胞密度为50%~70%,4%多聚甲醛固定15 min;0.1%Triton X-100破膜,封闭缓冲液封闭30 min;加入一抗CD31(1∶200)及vWF(1∶1 000)4℃孵育过夜;加入辣根过氧化物酶标记的山羊抗兔或抗鼠IgG二抗4℃避光孵育1 h,含DAPI的防荧光淬灭封片剂封片,荧光显微镜观察。随机选取3个视野,统计细胞总数及CD31、vWF阳性细胞数,计算CD31及vWF阳性率。② 体外成管实验:在预冷24孔培养板上加入289 μL Matrigel基质胶,37℃孵育30 min;以4.0×105个/mL密度接种BMECs,37℃、5%CO2培养箱孵育16 h,光镜观察细胞是否呈管状分布。
1.3. 山奈酚对Dex干预后BMECs的影响
1.3.1. 对细胞增殖和成血管的影响
① CCK-8检测:将100 μL含BMECs的ECM培养基加入96孔板中,每孔2×103个,分别加入不同浓度山奈酚(0、0.01、0.1、1、5、10、25 μmol/L)和Dex(0、10、25、50、100、200、300 μmol/L)干预,每组6个复孔,均以DMSO作为溶剂对照。分别于培养24、48 h时每孔加入10 μL CCK-8溶液孵育,1 h后采用酶标仪测定450 nm波长处吸光度(A)值。筛选抑制细胞活性的最佳Dex浓度和干预时间点,以及改善细胞活性的最佳山奈酚浓度和干预时间用于后续实验。将此浓度Dex分别与不同浓度山奈酚(0、0.1、1、5、10 μmol/L)干预BMECs至最佳时间点作为实验组(分别记为2~6组),以单纯BMECs作为对照组(记为1组),DMSO作为溶剂对照组(记为7组),筛选改善Dex抑制作用的最佳山奈酚浓度。
② EdU实验:将100 μL含BMECs的ECM培养基加入96孔板中,每孔2×103个,分为4组,分别为单纯细胞组(A组)、加入最佳浓度Dex组(B组)、加入最佳浓度Dex+1 μmol/L山奈酚组(C组)和加入最佳浓度Dex+5 μmol/L山奈酚组(D组)。干预24 h后,使用EdU-488细胞增殖试剂盒处理各组细胞,荧光显微镜下观察。随机选取3个视野,统计细胞总数及EdU阳性细胞数,计算细胞增殖率(公式:EdU阳性细胞数/细胞总数×100%),结果取均值,实验重复3次。
③ 体外成管实验:分组方法同EdU实验,参照1.2方法行体外成管实验,光镜下观察;随机选取3个视野,使用Image J 1.53k软件计算各组成管长度和分支点数目,取均值,数据以各组与A组的比值表示,实验重复3次。
1.3.2. 对细胞凋亡的影响
分组方法同EdU实验,使用一步法TUNEL凋亡检测试剂盒检测细胞凋亡情况,荧光显微镜下观察;随机取3个视野计数TUNEL阳性细胞数,并计算TUNEL阳性细胞率,取均值,实验重复3次。根据Annexin V/PI凋亡检测试剂盒方法,采用流式细胞术评估细胞凋亡率,实验重复3次。
1.3.3. 对细胞迁移的影响
分组方法同EdU实验,通过划痕实验和Transwell迁移实验检测山奈酚对Dex干预后BMECs迁移的影响。① 划痕实验:使用200 µL移液枪枪头在融合单层细胞上制造划痕,孵育0、24 h采集图像,测量划痕宽度并按以下公式计算划痕愈合率:(0 h划痕宽度−24 h划痕宽度)/0 h划痕宽度×100%,实验重复3次。② Transwell迁移实验:将200 µL含1×105个BMECs的无血清培养基加入上室,将600 µL含20%FBS的ECM培养基加入下室。分别按分组方法处理,孵育12 h后,Transwell小室用甲醇固定,0.1%结晶紫染色;随后用棉签去除每个小室上表面未迁移细胞,光镜下观察。随机取3个视野计数迁移细胞,取均值,实验重复3次。
1.3.4. 对细胞蛋白表达的影响
分组方法同EdU实验,采用Western blot法检测山奈酚对Dex干预后BMECs蛋白表达的影响。加入蛋白酶和磷酸酶抑制剂后,用RIPA裂解液缓冲液冰上裂解BMECs,BCA蛋白质定量试剂盒测定蛋白浓度;蛋白裂解物经SDS-PAGE分离后,电转移至聚偏二氟乙烯膜上;加入抗Cyclin D1、Cyclin E1、MMP2、Cleaved Caspase-3、GAPDH和β-actin一抗,抗VEGFA、Bax、Bcl2一抗;二抗为辣根过氧化物酶标记的山羊抗兔或抗鼠IgG。通过电化学发光检测系统对蛋白质条带进行可视化,并使用Image Lab 5.0软件进行蛋白相对表达量定量分析。
1.4. 统计学方法
采用GraphPad Prism8.0.1统计软件进行分析。计量资料行正态性检验,均符合正态分布,数据以均数±标准差表示,组间比较采用单因素方差分析,两两比较采用LSD检验;检验水准α=0.05。
2. 结果
2.1. BMECs培养及鉴定
光镜下观察示细胞呈短纺锤形和鹅卵石样形态生长。免疫荧光染色示CD31及vWF阳性率分别为99.21%±0.76%和98.66%±0.41%,均呈高表达。体外成管实验示BMECs呈管状分布,在体外具有血管生成特性。见图1~3。
图 1.
Morphological observation of primary BMECs (×100)
原代BMECs形态观察(×100)
图 3.
Tube formation of the second passage BMECs (×100)
第2代BMECs体外成管实验(×100)
图 2.
Immunofluorescence staining observation of BMECs (Fluorescence microscope×50)
BMECs免疫荧光染色观察(荧光显微镜×50)
从左至右依次为CD31/vWF、DAPI、二者重叠 a. CD31;b. vWF
From left to right for CD31/vWF, DAPI, and merge a. CD31; b. vWF
2.2. 山奈酚对Dex干预后BMECs的影响
2.2.1. 对细胞增殖和成血管的影响
① CCK-8检测:结果显示,Dex抑制细胞活性呈剂量依赖性,浓度越高,抑制作用越强。Dex作用24 h且浓度为300 μmol/L时,对BMECs活性的抑制作用显著强于其他浓度(P<0.05);而当作用时间延长至48 h时,Dex对BMECs活性的抑制作用开始减弱。因此,选择300 μmol/L Dex作用24 h进行后续实验。而山奈酚作用48 h且浓度为1 μmol/L时,可以显著增加BMECs活性,并改善Dex的抑制作用。因此选择1 μmol/L山奈酚作用48 h进行后续实验。见图4。② EdU实验:荧光显微镜观察示A组被绿染的增殖细胞数显著多于其余3组,C组多于B、D组。见图5。A组细胞增殖率显著高于其余3组,C组高于B、D组,差异均有统计学意义(P<0.05)。见表1。③ 体外成管实验:光镜下观察示A组细胞呈管状分布,B~D组管状结构均有不同程度破坏。见图6。A组成管长度和分支点数目显著高于其余3组,C组高于B、D组,差异均有统计学意义(P<0.05)。见表1。
图 4.
Effect of Kaempferol on BMECs activity after Dex treatment
山奈酚对Dex干预后BMECs活性的影响
a. 不同浓度Dex干预24、48 h;b. 不同浓度山奈酚干预24、48 h;c. 不同浓度山奈酚干预48 h后、300 μmol/L Dex干预24 h
a. Different concentrations of Dex were treated for 24 and 48 hours;b. Different concentrations of Kaempferol were treated for 24 and 48 hours; c. After 48 hours treatment with different concentrations of Kaempferol, 300 μmol/L Dex was treated for 24 hours

图 5.
EdU assay to detect the effect of Kaempferol on the proliferation of BMECs after Dex treatment (Fluorescence microscope×50)
EdU实验检测山奈酚对Dex干预后BMECs增殖的影响(荧光显微镜×50)
从上至下依次为Hoechst、EdU、二者重叠 a. A组;b. B组;c. C组;d. D组
From top to bottom for Hoechst, EdU, and merge a. Group A; b. Group B; c. Group C; d. Group D

表 1.
Effects of Kaempferol on proliferation, apoptosis, migration, and angiogenesis of BMECs after Dex treatment(n=3,
)
山奈酚对Dex干预后BMECs增殖、凋亡、迁移和成血管的影响(n=3,
)
| 组别 Group |
细胞增殖率(%) Cell proliferation rate (%) |
成管长度 Tube length |
分支点数目 Number of branch points |
TUNEL阳性 细胞率(%) TUNEL positive cells rate (%) |
细胞凋亡率(%) Cell apoptotic rate (%) |
划痕愈合率(%) Scratch healing rate (%) |
细胞迁移数 (个/视野) Number of migration cells (/field) |
|
*与A组比较P<0.05,#与B组比较P<0.05,△与D组比较P<0.05 *Compared with group A, P<0.05; #compared with group B, P<0.05; △compared with group C, P<0.05 | |||||||
| A | 27.46±2.08#△ | 1.00±0.00#△ | 1.00±0.00#△ | 1.51±0.56#△ | 4.07±0.65#△ | 82.67±1.93#△ | 216.00±5.57#△ |
| B | 8.38±1.30* | 0.45±0.02* | 0.50±0.01* | 30.95±2.38* | 22.44±0.80* | 33.28±1.72* | 58.33±3.06* |
| C | 22.29±0.44*#△ | 0.81±0.03*#△ | 0.89±0.03*#△ | 16.10±0.49*#△ | 11.70±0.70*#△ | 71.51±0.70*#△ | 178.70±6.11*#△ |
| D | 16.79±0.88* | 0.64±0.01* | 0.73±0.05* | 21.86±0.95* | 18.10±0.33* | 49.93±3.60* | 96.67±3.51* |
| 统计值 Statistic |
F=114.500 P<0.001 |
F=387.800 P<0.001 |
F=90.680 P<0.001 |
F=257.300 P<0.001 |
F=460.900 P<0.001 |
F=289.900 P<0.001 |
F=701.900 P<0.001 |
图 6.
Tube formation assay to detect the effect of Kaempferol on the angiogenesis of BMECs after Dex treatment (Fluorescence microscope×100)
体外成管实验检测山奈酚对Dex干预后BMECs成血管的影响(×100)
a. A组;b. B组;c. C组;d. D组
a. Group A; b. Group B; c. Group C; d. Group D

2.2.2. 对细胞凋亡的影响
TUNEL和Annexin V/PI凋亡检测结果示,B~D组TUNEL阳性细胞率和细胞凋亡率显著高于A组,B、D组显著高于C组,差异均有统计学意义(P<0.05)。见图7、8及表1。
图 7.
TUNEL staining assay to detect the effect of Kaempferol on the apoptosis of BMECs after Dex treatment (Fluorescence microscope×100)
TUNEL染色检测山奈酚对Dex干预后BMECs凋亡的影响(荧光显微镜×100)
从上至下依次为DAPI、TUNEL、二者重叠 a. A组;b. B组;c. C组;d. D组
From top to bottom for DAPI, TUNEL, and merge a. Group A; b. Group B; c. Group C; d. Group D

图 8.
Annexin V/PI flow cytometry assay to detect the effect of Kaempferol on the apoptosis of BMECs after Dex treatment
Annexin V/PI流式细胞仪检测山奈酚对Dex干预后BMECs凋亡的影响
a. A组;b. B组;c. C组;d. D组
a. Group A; b. Group B; c. Group C; d. Group D

2.2.3. 对细胞迁移的影响
划痕实验和Transwell迁移实验结果显示,B~D组划痕愈合率和细胞迁移数显著低于A组,B、D组显著低于C组,差异均有统计学意义(P<0.05)。见图9、10及表1。
图 9.
Scratch healing assay to detect the effect of Kaempferol on the migration of BMECs after Dex treatment (×50)
划痕实验检测山奈酚对Dex干预后BMECs迁移的影响(×50)
从左至右依次为A、B、C、D组 a. 0 h;b. 24 h
From left to right for groups A, B, C, and D a. 0 hour; b. 24 hours

图 10.
Transwell migration assay to detect the effect of Kaempferol on the migration of BMECs after Dex treatment (Crystal violet×100)
Transwell迁移实验检测山奈酚对Dex干预后BMECs迁移的影响(结晶紫×100)
a. A组;b. B组;c. C组;d. D组
a. Group A; b. Group B; c. Group C; d. Group D

2.2.4. 对细胞蛋白表达的影响
Western blot检测示,B~D组Cleaved Caspase-3和Bax蛋白相对表达量显著高于A组,B、D组显著高于C组;B~D组MMP2、Cyclin D1、Cyclin E1、VEGFA和Bcl2蛋白相对表达量显著低于A组,B、D组显著低于C组;差异均有统计学意义(P<0.05)。见图11、12。
图 11.
Western blot assay to detect the effect of Kaempferol on protein expression of BMECs after Dex treatment
Western blot检测山奈酚对Dex干预后BMECs目的蛋白表达的影响
Mr:相对分子质量 1:A组 2:B组 3:C组4:D组
Mr: Relative molecular mass 1: Group A 2: Group B 3: Group C 4: Group D
图 12.
Western blot assay to detect the relative expression of target proteins in each group
Western blot检测各组各目的蛋白相对表达量
*P<0.05 a. MMP2;b. Cyclin E1;c. VEGFA;d. Cyclin D1;e. Cleaved Caspase-3;f. Bcl2;g. Bax
*P<0.05 a. MMP2; b. Cyclin E1; c. VEGFA; d. Cyclin D1; e. Cleaved Caspase-3; f. Bcl2; g. Bax

3. 讨论
GCs在临床应用广泛,已成为非创伤性ONFH最常见的原因[22]。体内外研究证实,GCs具有抑制血管生成、增加骨吸收和减少骨形成的作用。因此,促进骨形成和血管生成的药物将是预防GCs诱导骨病的最佳选择。山奈酚是一种重要的黄酮类化合物,通常存在于药用植物和植物源性食品中[23]。近年来,山奈酚被认为是一种有效治疗骨代谢相关疾病的天然化合物。山奈酚能保护血管免受氧化应激和炎症引起的损伤,减轻阿霉素引起的内皮细胞毒性损伤[24-25],改善Dex抑制成骨的活性,抑制GCs诱导的骨丢失,发挥抗骨质疏松作用[20,26]。因此,山奈酚既具有增加骨形成、抑制骨吸收的作用,同时又具有血管保护潜能,可能在治疗GIONFH中发挥重要作用。然而,相关研究主要集中于山奈酚对于成骨和破骨细胞的影响及其抗骨质疏松作用,目前尚未见研究探讨山奈酚对GIONFH的保护作用,对于山奈酚能否减轻Dex诱导的BMECs损伤尚不明确。本研究首次通过体外实验研究山奈酚对Dex诱导BMECs损伤的影响及其对GIONFH的保护作用。TUNEL和Annexin V/PI凋亡检测结果示,B、D组TUNEL阳性细胞率和细胞凋亡率显著高于C组(P<0.05),说明山奈酚可减轻Dex诱导的细胞凋亡。划痕实验和Transwell迁移实验结果显示,B、D组划痕愈合率和细胞迁移数显著低于C组(P<0.05),说明山奈酚可减轻Dex对细胞迁移的抑制作用。EdU及成管实验结果显示,B、D组增殖细胞率、成管长度和分支点数目显著低于C组(P<0.05),说明山奈酚可减轻Dex对细胞增殖和成血管的抑制作用。因此,山奈酚可减轻因内皮细胞受损引起的骨内微循环障碍,对GIONFH起保护作用,这些发现有利于理解山奈酚对GIONFH的保护机制。
细胞凋亡是一种正常生理过程,在ONFH的发生、发展中起着重要作用[27],抑制内皮细胞凋亡是维持血管完整性和血管新生所必需的环节[28]。既往研究表明,Bcl2表达增加可抑制细胞凋亡,而Cleaved Caspase-3和Bax表达增加可促进细胞凋亡[29]。因此,Bcl2和Bax表达的平衡决定了细胞死亡或存活。本研究中,Dex通过上调Bax、Cleaved Caspase-3水平,下调Bcl2水平诱导BMECs凋亡,与其他研究报道结果一致[30-31]。本研究发现山奈酚通过降低Cleaved Caspase-3和Bax蛋白水平和增加Bcl2蛋白水平,在GIONFH的BMECs中发挥抗凋亡作用。提示山奈酚可能通过抑制BMECs凋亡对GIONFH起到保护作用,其上游机制需要进一步研究。研究表明PI3K-Akt-Foxo1信号通路在细胞的增殖、凋亡、炎症和氧化应激过程中发挥重要作用,Dex可以通过PI3K-Akt-Foxo1信号通路诱导大鼠ONFH,上调Bax、Cleaved Caspase-3蛋白表达,下调Bcl2蛋白表达[30,32]。既往研究表明,山奈酚同样可以调节PI3K-Akt信号通路促进BMSCs成骨,从而发挥抗骨质疏松作用[33]。因此,山奈酚可能通过PI3K-Akt-Foxo1信号通路上调Bax、Cleaved Caspase-3表达,下调Bcl2表达,从而在GIONFH的BMECs中发挥抗凋亡作用。这一假设仍需要进一步研究验证。
Cyclin D1和Cyclin E1是调节各种细胞增殖的重要因子[34]。研究表明,山奈酚可以通过激活JNK和p38-MAPK信号通路,调节Cyclin D1和Cyclin E1蛋白表达,改善Dex对MC3T3-E1细胞成骨的抑制活性,从而发挥抗骨质疏松作用[20]。而Dex可以通过ROS-JNK-c-Jun信号通路诱导成骨细胞凋亡和自噬,从而导致ONFH[31]。本研究结果提示Dex可以抑制Cyclin D1和Cyclin E1蛋白表达,从而阻滞细胞周期,抑制BMECs增殖;而山奈酚可以上调Dex干预后BMECs中Cyclin D1和Cyclin E1的蛋白表达,促进BMECs增殖,从而促进血管生成。因此,山奈酚可能通过JNK信号通路上调Cyclin D1和Cyclin E1表达,从而在GIONFH的BMECs中发挥促增殖作用。这一假设仍需要后续实验进行验证。
VEGF作为一种强效血管生成因子,在内皮细胞增殖、迁移和血管生成中起着重要作用[35]。MMPs超家族由能够降解细胞外基质的金属蛋白酶组成,细胞外基质的降解是细胞迁移、侵袭和血管生成的基本过程[36]。研究表明,山奈酚可以增强VEGF诱导的脐静脉血管内皮细胞中VEGF受体2、内皮一氧化氮合酶和细胞外信号调节激酶的磷酸化,并同时增强VEGF介导的MMP2和MMP9表达[37]。本研究结果提示山奈酚可以提高Dex干预后BMECs中VEGFA和MMP2的蛋白表达,从而调节细胞迁移和血管生成,进而对GIONFH起保护作用。
综上述,本研究结果表明山奈酚通过减轻BMECs凋亡,促进BMECs增殖、迁移和成血管,减轻GIONFH的内皮损伤和功能障碍。但本研究还存在一些局限性:首先,调控细胞增殖、凋亡、迁移和血管生成的蛋白很多,本研究仅检测了主要相关蛋白表达量,后续应深入研究其上游机制及相关信号通路;其次,本研究仅通过体外细胞实验研究山奈酚对GIONFH中BMECs的保护作用,还需要体内实验进一步验证。
利益冲突 在课题研究和文章撰写过程中不存在利益冲突;经费支持没有影响文章观点和对研究数据客观结果的统计分析及其报道
伦理声明 研究方案经中日友好医院伦理委员会批准(2021-16-K08)
作者贡献声明 徐鑫:实验构思及实施、文章撰写;范骁宇:数据分析和实验结果可视化;吴鑫杰:实验材料准备和数据收集;时利军:实验实施及数据收集;王培旭:实验实施及实验结果可视化;高福强:实验构思和方法设计;孙伟:实验监督和领导、初稿审阅和修改;李子荣:对文章初稿审阅和修改
Funding Statement
国家自然科学基金资助项目(82972524)
National Natural Science Foundation of China (82972524)
References
- 1.Xu H, Wang C, Liu C, et al Cotransplantation of mesenchymal stem cells and endothelial progenitor cells for treating steroid-induced osteonecrosis of the femoral head. Stem Cells Transl Med. 2021;10(5):781–796. doi: 10.1002/sctm.20-0346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Shang G, Wang Y, Xu Y, et al Long non-coding RNA TCONS_00041960 enhances osteogenesis and inhibits adipogenesis of rat bone marrow mesenchymal stem cell by targeting miR-204-5p and miR-125a-3p. J Cell Physiol. 2018;233(8):6041–6051. doi: 10.1002/jcp.26424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Fu F, Huang Z, Ye H, et al. Mechanisms and molecular targets of the Tao-Hong-Si-Wu-Tang formula for treatment of osteonecrosis of femoral head: A network pharmacology study. Evid Based Complement Alternat Med, 2020, 2020: 7130105. doi: 10.1155/2020/7130105.
- 4.Kuang MJ, Huang Y, Zhao XG, et al Exosomes derived from Wharton’s jelly of human umbilical cord mesenchymal stem cells reduce osteocyte apoptosis in glucocorticoid-induced osteonecrosis of the femoral head in rats via the miR-21-PTEN-AKT signalling pathway. Int J Biol Sci. 2019;15(9):1861–1871. doi: 10.7150/ijbs.32262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Johnston JC, Haile A, Wang D, et al Dexamethasone treatment alters function of adipocytes from a mesenchymal stromal cell line. Biochem Biophys Res Commun. 2014;451(4):473–479. doi: 10.1016/j.bbrc.2014.07.063. [DOI] [PubMed] [Google Scholar]
- 6.Sheng H, Sheng CJ, Cheng XY, et al Pathomorphological changes of bone marrow adipocytes in process of steroid-associated osteonecrosis. Int J Clin Exp Pathol. 2013;6(6):1046–1050. [PMC free article] [PubMed] [Google Scholar]
- 7.Weinstein RS Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med. 2011;365(1):62–70. doi: 10.1056/NEJMcp1012926. [DOI] [PubMed] [Google Scholar]
- 8.Mont MA, Salem HS, Piuzzi NS, et al Nontraumatic osteonecrosis of the femoral head: Where do we stand today?: A 5-year update. J Bone Joint Surg (Am) 2020;102(12):1084–1099. doi: 10.2106/JBJS.19.01271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Weinstein RS, Wan C, Liu Q, et al Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell. 2010;9(2):147–161. doi: 10.1111/j.1474-9726.2009.00545.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Li Z, Yang A, Yin X, et al Mesenchymal stem cells promote endothelial progenitor cell migration, vascularization, and bone repair in tissue-engineered constructs via activating CXCR2-Src-PKL/Vav2-Rac1. FASEB J. 2018;32(4):2197–2211. doi: 10.1096/fj.201700895R. [DOI] [PubMed] [Google Scholar]
- 11.张庆宇, 高福强, 程立明, 等 淫羊藿苷对骨微血管内皮细胞自噬及外泌体产生的影响. 中国修复重建外科杂志. 2019;33(5):568–577. doi: 10.7507/1002-1892.201811009. [DOI] [Google Scholar]
- 12.Yu H, Liu P, Zuo W, et al Decreased angiogenic and increased apoptotic activities of bone microvascular endothelial cells in patients with glucocorticoid-induced osteonecrosis of the femoral head. BMC Musculoskelet Disord. 2020;21(1):277. doi: 10.1186/s12891-020-03225-1. doi: 10.1186/s12891-020-03225-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Nishimura T, Matsumoto T, Nishino M, et al Histopathologic study of veins in steroid treated rabbits. Clin Orthop Relat Res. 1997;(334):37–42. [PubMed] [Google Scholar]
- 14.Kerachian MA, Séguin C, Harvey EJ Glucocorticoids in osteonecrosis of the femoral head: a new understanding of the mechanisms of action. J Steroid Biochem Mol Biol. 2009;114(3-5):121–128. doi: 10.1016/j.jsbmb.2009.02.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Huang C, Wen Z, Niu J, et al Steroid-induced osteonecrosis of the femoral head: Novel insight into the roles of bone endothelial cells in pathogenesis and treatment. Front Cell Dev Biol. 2021;9:777697. doi: 10.3389/fcell.2021.777697. doi: 10.3389/fcell.2021.777697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Yu H, Yue J, Wang W, et al Icariin promotes angiogenesis in glucocorticoid-induced osteonecrosis of femoral heads: In vitro and in vivo studies. J Cell Mol Med. 2019;23(11):7320–7330. doi: 10.1111/jcmm.14589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Cheng CF, Chien-Fu Lin J, Tsai FJ, et al Protective effects and network analysis of natural compounds obtained from Radix dipsaci, Eucommiae cortex, and Rhizoma drynariae against RANKL-induced osteoclastogenesis in vitro. J Ethnopharmacol. 2019;244:112074. doi: 10.1016/j.jep.2019.112074. doi: 10.1016/j.jep.2019.112074. [DOI] [PubMed] [Google Scholar]
- 18.Yang L, Li H, Yang M, et al. Exploration in the mechanism of Kaempferol for the treatment of gastric cancer based on network pharmacology. Biomed Res Int, 2020, 2020: 5891016. doi: 10.1155/2020/5891016.
- 19.Wong SK, Chin KY, Ima-Nirwana S The osteoprotective effects of Kaempferol: The evidence from in vivo and in vitro studies. Drug Des Devel Ther. 2019;13:3497–3514. doi: 10.2147/DDDT.S227738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Xie B, Zeng Z, Liao S, et al. Kaempferol ameliorates the inhibitory activity of dexamethasone in the osteogenesis of MC3T3-E1 cells by JNK and p38-MAPK pathways. Front Pharmacol, 2021, 12: 739326. doi: 10.3389/fphar.2021.739326.
- 21.Wu X, Wang Y, Fan X, et al Extracorporeal shockwave relieves endothelial injury and dysfunction in steroid-induced osteonecrosis of the femoral head via miR-135b targeting FOXO1: in vitro and in vivo studies. Aging (Albany NY) 2022;14(1):410–429. doi: 10.18632/aging.203816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.An F, Zhang L, Gao H, et al. Variants in RETN gene are associated with steroid-induced osteonecrosis of the femoral head risk among Han Chinese people. J Orthop Surg Res, 2020, 15(1): 96. doi: 10.1186/s13018-020-1557-3.
- 23.Kim TW, Lee SY, Kim M, et al. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death Dis, 2018, 9(9): 875. doi: 10.1038/s41419-018-0930-1.
- 24.Wu W, Yang B, Qiao Y, et al. Kaempferol protects mitochondria and alleviates damages against endotheliotoxicity induced by doxorubicin. Biomed Pharmacother, 2020, 126: 110040. doi: 10.1016/j.biopha.2020.110040.
- 25.Yao H, Sun J, Wei J, et al. Kaempferol protects blood vessels from damage induced by oxidative stress and inflammation in association with the Nrf2/HO-1 signaling pathway. Front Pharmacol, 2020, 11: 1118. doi: 10.3389/fphar.2020.01118.
- 26.Adhikary S, Choudhary D, Ahmad N, et al Dietary flavonoid Kaempferol inhibits glucocorticoid-induced bone loss by promoting osteoblast survival. Nutrition. 2018;53:64–76. doi: 10.1016/j.nut.2017.12.003. [DOI] [PubMed] [Google Scholar]
- 27.Tao SC, Yuan T, Rui BY, et al Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Theranostics. 2017;7(3):733–750. doi: 10.7150/thno.17450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Wang C, Xu H, Liu C, et al CaO2/gelatin oxygen slow-releasing microspheres facilitate tissue engineering efficiency for the osteonecrosis of femoral head by enhancing the angiogenesis and survival of grafted bone marrow mesenchymal stem cells. Biomater Sci. 2021;9(8):3005–3018. doi: 10.1039/D0BM02071K. [DOI] [PubMed] [Google Scholar]
- 29.Zhang B, Yi J, Zhang CL, et al MiR-146a inhibits proliferation and induces apoptosis in murine osteoblastic MC3T3-E1 by regulating Bcl2. Eur Rev Med Pharmacol Sci. 2017;21(17):3754–3762. [PubMed] [Google Scholar]
- 30.Sun F, Zhou JL, Wei SX, et al. Glucocorticoids induce osteonecrosis of the femoral head in rats via PI3K/AKT/FOXO1 signaling pathway. PeerJ, 2022, 10: e13319. doi: 10.7717/peerj.13319.
- 31.Peng P, Nie Z, Sun F, et al Glucocorticoids induce femoral head necrosis in rats through the ROS/JNK/c-Jun pathway. FEBS Open Bio. 2021;11(1):312–321. doi: 10.1002/2211-5463.13037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Ma X, Su P, Yin C, et al The roles of FoxO transcription factors in regulation of bone cells function. Int J Mol Sci. 2020;21(3):692. doi: 10.3390/ijms21030692. doi: 10.3390/ijms21030692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Gan L, Leng Y, Min J, et al. Kaempferol promotes the osteogenesis in rBMSCs via mediation of SOX2/miR-124-3p/PI3K/Akt/mTOR axis. Eur J Pharmacol, 2022, 927: 174954. doi: 10.1016/j.ejphar.2022.174954.
- 34.Chen XJ, Shen YS, He MC, et al. Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/β-catenin signaling pathway. Biomed Pharmacother, 2019, 112: 108746. doi: 10.1016/j.biopha.2019.108746.
- 35.Park JH, Seo JH, Jeon HY, et al Lentivirus-mediated VEGF knockdown suppresses gastric cancer cell proliferation and tumor growth in vitro and in vivo. Onco Targets Ther. 2020;13:1331–1341. doi: 10.2147/OTT.S234344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Mitsiogianni M, Koutsidis G, Mavroudis N, et al The role of isothiocyanates as cancer chemo-preventive, chemo-therapeutic and anti-melanoma agents. Antioxidants (Basel) 2019;8(4):106. doi: 10.3390/antiox8040106. doi: 10.3390/antiox8040106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Hu WH, Wang HY, Xia YT, et al Kaempferol, a major flavonoid in ginkgo folium, potentiates angiogenic functions in cultured endothelial cells by binding to vascular endothelial growth factor. Front Pharmacol. 2020;11:526. doi: 10.3389/fphar.2020.00526. doi: 10.3389/fphar.2020.00526. [DOI] [PMC free article] [PubMed] [Google Scholar]




