Abstract
目的
通过负载黄腐酚研发一种具有抗炎功能的聚乳酸-羟基乙酸[poly(lactic-co-glycolic acid),PLGA]支架,探讨其在羊体内抗炎及促进软骨再生的效果。
方法
取PLGA采用致孔剂浸出法制备多孔支架后,将其置于黄腐酚溶液24 h,制备黄腐酚-PLGA支架(以下简称“载药支架”)。取PLGA支架及载药支架以扫描电镜观测支架孔径、液体置换法计算孔隙率、傅里叶变换红外(Fourier transform infrared,FTIR)光谱仪验证支架上黄腐酚负载情况;并与经脂多糖炎症诱导处理的RAW264.7巨噬细胞共培养24 h,RT-PCR和Western blot检测炎症因子(IL-1β、TNF-α)表达,评价其体外抗炎性能。取成年山羊骨髓,采用贴壁法分离培养BMSCs并传代;取第2代细胞分别接种于两种支架构建BMSCs-支架复合物,通过活/死细胞染色及细胞计数试剂盒8(cell counting kit 8,CCK-8)观察支架细胞相容性。将BMSCs-支架复合物体外培养6周后,通过大体观察、组织学染色、Ⅱ型胶原免疫组织化学染色以及生化分析验证BMSCs-载药支架体外再生软骨的可行性。最后,将体外培养6周后的两种BMSCs-支架复合物分别植入6 月龄健康雌性山羊皮下,4周后行大体观察、组织学染色、Ⅱ型胶原免疫组织化学染色、生化分析以及RT-PCR检测,综合评估载药支架的体内抗炎效果以及促进软骨再生情况。
结果
制备的载药支架为白色多孔结构,具有丰富、连续且均匀的孔隙结构,孔径及孔隙率与PLGA支架比较差异均无统计学意义(P>0.05);FTIR光谱仪检测示黄腐酚成功负载至PLGA支架。体外观测示,载药支架炎症因子(IL-1β、TNF-α)基因及蛋白相对表达量均低于PLGA支架(P<0.05);且随培养时间延长活细胞明显增多,各时间点与PLGA支架比较差异无统计学意义(P>0.05)。体外软骨再生评价显示,培养6周后,两种BMSCs-支架复合物呈光滑、半透明淡黄色,并且能基本维持培养前形状;组织学及免疫组织化学染色示支架中均出现典型的软骨陷窝结构和软骨特异性细胞外基质表达;软骨特异性糖胺聚糖(glycosaminoglycan,GAG)和Ⅱ型胶原含量与BMSCs-PLGA支架复合物差异均无统计学意义(P>0.05)。体内软骨再生评价显示,植入羊体内4周后BMSCs-载药支架复合物基本维持植入前形状和大小,而BMSCs-PLGA支架复合物严重变形;BMSCs-载药支架复合物具有典型的软骨陷窝结构和软骨特异性细胞外基质,且未出现明显炎症细胞浸润;而BMSCs-PLGA支架复合物为杂乱的纤维状结构,可见明显炎症反应。BMSCs-载药支架复合物软骨特异性GAG和Ⅱ型胶原含量均明显高于BMSCs-PLGA支架复合物(P<0.05);IL-1β、TNF-α基因相对表达量均低于BMSCs-PLGA支架复合物(P<0.05)。
结论
载药支架具有合适孔径、孔隙率、细胞相容性和良好抗炎性能,联合BMSCs植入羊体内后能促进软骨再生。
Keywords: 软骨组织工程, 黄腐酚, 支架, 抗炎, BMSCs, 羊
Abstract
Objective
To develop an anti-inflammatory poly (lactic-co-glycolic acid) (PLGA) scaffold by loading xanthohumol, and investigate its anti-inflammatory and cartilage regeneration effects in goats.
Methods
The PLGA porous scaffolds were prepared by pore-causing agent leaching method, and then placed in xanthohumol solution for 24 hours to prepare xanthohumol-PLGA scaffolds (hereinafter referred to as drug-loaded scaffolds). The PLGA scaffolds and drug-loaded scaffolds were taken for general observation, the pore diameter of the scaffolds was measured by scanning electron microscope, the porosity was calculated by the drainage method, and the loading of xanthohumol on the scaffolds was verified by Fourier transform infrared (FTIR) spectrometer. Then the two scaffolds were co-cultured with RAW264.7 macrophages induced by lipopolysaccharide for 24 hours, and the expressions of inflammatory factors [interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α)] were detected by RT-PCR and Western blot to evaluate the anti-inflammatory properties in vitro of two scaffolds. Bone marrow mesenchymal stem cells (BMSCs) was obtained from bone marrow of a 6-month-old female healthy goat, cultured by adherent method, and passaged in vitro. The second passage cells were seeded on two scaffolds to construct BMSCs-scaffolds, and the cytocompatibility of scaffolds was observed by live/dead cell staining and cell counting kit 8 (CCK-8) assay. The BMSCs-scaffolds were cultured in vitro for 6 weeks, aiming to verify its feasibility of generating cartilage in vitro by gross observation, histological staining, collagen type Ⅱ immunohistochemical staining, and biochemical analysis. Finally, the two kinds of BMSCs-scaffolds cultured in vitro for 6 weeks were implanted into the goat subcutaneously, respectively. After 4 weeks, gross observation, histological staining, collagen type Ⅱ immunohistochemical staining, biochemical analysis, and RT-PCR were performed to comprehensively evaluate the anti-inflammatory effect in vivo and promotion of cartilage regeneration of the drug-loaded scaffolds.
Results
The prepared drug-loaded scaffold had a white porous structure with abundant, continuous, and uniform pore structures. Compared with the PLGA scaffold, there was no significant difference in pore size and porosity (P>0.05). FTIR spectrometer analysis showed that xanthohumol was successfully loaded to PLGA scaffolds. The in vitro results demonstrated that the gene and protein expressions of inflammatory cytokines (IL-1β and TNF-α) in drug-loaded scaffold significantly decreased than those in PLGA scaffold (P<0.05). With the prolongation of culture, the number of live cells increased significantly, and there was no significant difference between the two scaffolds (P>0.05). The in vitro cartilage regeneration test indicated that the BMSCs-drug-loaded scaffolds displayed smooth and translucent appearance with yellow color after 6 weeks in vitro culture, and could basically maintained its original shape. The histological and immunohistochemical stainings revealed that the scaffolds displayed typical lacunar structure and cartilage-specific extracellular matrix. In addition, quantitative data revealed that the contents of glycosaminoglycan (GAG) and collagen type Ⅱ were not significantly different from BMSCs-PLGA scaffolds (P>0.05). The evaluation of cartilage regeneration in vivo showed that the BMSCs-drug-loaded scaffolds basically maintained their pre-implantation shape and size at 4 weeks after implantation in goat, while the BMSCs-PLGA scaffolds were severely deformed. The BMSCs-drug-loaded scaffolds had typical cartilage lacuna structure and cartilage specific extracellular matrix, and no obvious inflammatory cells infiltration; while the BMSCs-PLGA scaffolds had a messy fibrous structure, showing obvious inflammatory response. The contents of cartilage-specific GAG and collagen type Ⅱ in BMSCs-drug-loaded scaffolds were significantly higher than those in BMSCs-PLGA scaffolds (P<0.05); the relative gene expressions of IL-1β and TNF-α were significantly lower than those in BMSCs-PLGA scaffolds (P<0.05).
Conclusion
The drug-loaded scaffolds have suitable pore size, porosity, cytocompatibility, and good anti-inflammatory properties, and can promote cartilage regeneration after implantation with BMSCs in goats.
Keywords: Cartilage tissue engineering, xanthohumol, scaffold, anti-inflammation, bone marrow mesenchymal stem cells, goat
近年来,临床上因炎症、外伤、肿瘤等引起的关节、耳、鼻、气管等部位软骨损伤不断增多[1]。但是软骨因缺乏血管、神经和淋巴管,自愈能力差,如何修复软骨损伤是临床一大难点[2]。软骨组织工程将细胞、支架及诱导因子结合,以促进软骨组织再生,达到修复软骨目的,为软骨损伤治疗带来希望。
自1994年Brittberg等[3]首次使用自体软骨细胞修复软骨缺损以来,软骨细胞成为软骨组织工程领域应用最广泛的种子细胞,但存在来源有限、供区损伤较大、体外培养易去分化等问题。为此,BMSCs代替软骨细胞成为热门种子细胞选择[4]。但是,研究表明基于BMSCs构建的组织工程软骨(BMSCs engineered cartilage,BEC)植入动物体内后,往往出现严重炎症反应[5],使软骨细胞外基质遭受破坏,软骨力学性能变差[6],最终导致软骨缺损修复失败,成为阻碍BEC临床应用的关键因素。因此,构建具有抗炎功能的支架,对软骨组织工程发展具有重要意义。
黄腐酚是从啤酒花中提取的一种异戊烯类黄酮化合物,具有多种生物活性,因具有抗癌功能受到广泛关注[7]。近年来,大量研究证明黄腐酚能抑制IL-1β、TNF-α等炎症因子[8]。但目前基于黄腐酚制作具有抗炎功能支架并用于构建组织工程软骨的研究较少。为此,本研究拟用黄腐酚与聚乳酸-羟基乙酸 [poly(lactic-co-glycolic acid),PLGA] 制备具有抗炎功能的支架,然后接种BMSCs后体外诱导6周制备BEC,最后将其植入羊体内,观测该支架体内抗炎和促进软骨再生的能力,为软骨组织工程用于临床奠定基础。
1. 材料与方法
1.1. 实验动物及主要试剂、仪器
6月龄健康雌性山羊1只,体质量25 kg,由上海甲干生物科技有限公司提供。RAW264.7巨噬细胞(上海纪宁实业有限公司)。
PLGA、10%FBS、1%青霉素-链霉素-两性霉素B、0.15%Ⅱ型胶原酶、RPMI1640培养基、RT-PCR试剂盒(GIBCO公司,美国);黄腐酚(上海阿拉丁生化科技股份有限公司);脂多糖(lipopolysaccharide,LPS)、木瓜蛋白酶溶液(Sigma公司,美国);TRIzol裂解试剂、RNA提取试剂盒、逆转录试剂盒、PCR试剂盒(EZbioscience公司,美国);活/死细胞染色试剂盒、细胞计数试剂盒8(cell counting kit 8,CCK-8)、HE染色试剂盒、番红O染色试剂盒、Ⅱ型胶原染色试剂盒、阿利新蓝试剂盒、ELISA试剂盒(上海翌圣生物科技股份有限公司);苯甲基磺酰氟(phenylmethylsulfonyl fluoride,PMSF)、DMEM培养基、RIPA裂解缓冲液(HyClone公司,美国);BCA蛋白定量试剂盒(Beyotime公司,美国)。
冻干机(上海田枫实业有限公司);扫描电镜(JEOL公司,日本);力学测试仪(苏州检卓仪器科技有限公司);激光共聚焦显微镜(Nikon公司,日本);酶标仪(Thermo Fisher公司,美国);傅里叶变换红外(Fourier transform infrared,FTIR)光谱仪(ABB Bomem公司,加拿大);RT-PCR分析仪(Applied Biosystems公司,美国);蛋白印迹成像系统(Bio-Rad公司,美国);Image Pro Plus 6.0 软件(Media Cybernetics公司,美国)。
1.2. BMSCs分离培养及传代
将舒泰TM50与陆眠宁以8∶1(V/V)比例混合后,按照0.3 mL/kg剂量肌肉注射麻醉山羊;穿刺抽取骨髓,将其与PBS按1∶2比例混合后,以离心半径30 cm,3 000 r/min离心5 min;弃上清液,使用含10%FBS、1%青霉素-链霉素-两性霉素B的DMEM培养基重悬后,按照1∶3比例传代。经流式细胞检测鉴定培养细胞为BMSCs后,取第2代细胞用于后续实验。
1.3. 支架制备及观测
1.3.1. 支架制备
取PLGA采用致孔剂浸出法[9],基于特制模具(直径6 mm,厚度2 mm)制备多孔支架,冻干48 h以增强支架稳定性。将PLGA支架用环氧乙烷消毒后,置于浓度为40 μmol/L的黄腐酚溶液中,37℃振摇24 h,使黄腐酚溶液充分浸润PLGA支架,然后取出置于通风橱干燥,制备黄腐酚-PLGA支架(以下简称“载药支架”)。
1.3.2. 支架观测
① 支架孔径及孔隙率测算:取单纯PLGA支架及载药支架真空喷金处理,扫描电镜观察微观形貌并测量孔径。使用液体置换法计算支架孔隙率,具体步骤:干燥支架称重(W0)后浸至无水乙醇中,待无气泡产生后取出称重(W1),按以下公式计算支架孔隙率:(W1−W0)/(ρ×V)×100%。其中,ρ为无水乙醇在20℃时密度(0.789 g/mL),V为支架体积。
② 支架红外光谱测定:采用FTIR光谱仪分别检测黄腐酚、单纯PLGA支架和载药支架的红外光谱,以检测黄腐酚是否负载至PLGA支架。
③ 支架体外抗炎性能评价:取RAW264.7巨噬细胞以LPS(1 μg/mL)进行炎症诱导24 h后,分别接种于单纯PLGA支架及载药支架(接种细胞数均为5×105个),构建两种巨噬细胞-支架复合物;将其置于含10%FBS、1%青霉素-链霉素-两性霉素B的RPMI1640培养基,于37℃、5%CO2及饱和湿度培养箱中培养24 h。采用RT-PCR及Western blot检测RAW264.7巨噬细胞的炎症因子(IL-1β、TNF-α)基因及蛋白表达水平。
RT-PCR检测:采用TRIzol试剂从巨噬细胞-支架复合物提取总RNA,于260 nm波长处测定RNA浓度,验证提取RNA的质量和纯度。按照逆转录试剂盒说明书,将RNA反转录成cDNA。按照试剂盒说明书,通过RT-PCR 分析仪检测IL-1β、TNF-α基因表达情况,以GAPDH作为内参,计算目的基因相对表达量。引物序列见表1。
表 1.
Primer sequence of RT-PCR (5′→3′)
RT-PCR引物序列(5′→3′)
| 基因 Gene |
引物序列 Primer sequence |
| GAPDH | 上游 TCACCATCTTCCAGGAGCG Forward |
| 下游 CTGCTTCACCACCTTCTTGA Reverse |
|
| IL-1β | 上游 ACCAAACCTCTTCGAGGCAC Forward |
| 下游 AGCCATCATTTCACTGGCGA Reverse |
|
| TNF-α | 上游 GTCAACCTCCTCTCTGCCAT Forward |
| 下游 CCAAAGTAGACCTGCCCAGA Reverse |
Western blot检测:首先将PMSF(1 mmol/L)与RIPA裂解缓冲液混合,提取两组RAW264.7巨噬细胞总蛋白。然后用BCA蛋白定量试剂盒计算蛋白含量。利用聚偏氟乙烯膜和SDS-PAGE凝胶电泳,分别呈递40 ng蛋白。阻断2 h后,用5%脱脂牛奶与一抗在4℃下孵育过夜,其中IL-1β(1∶1 000)、TNF-α(1∶1 000)、β-actin(1∶5 000);TBST洗膜,再用相应二抗在室温下孵化2 h,TBST洗涤后观察蛋白条带。采用Image Pro Plus 6.0 软件分析条带强度,以与β-actin强度的比值作为目的蛋白相对表达量。
④ 支架细胞相容性评价:取第2代BMSCs,以含10%FBS、1%青霉素-链霉素-两性霉素B的DMEM培养基重悬,制备浓度为5.0×105个/mL的细胞悬液,均匀接种于单纯PLGA支架及载药支架(接种细胞数均为1×106个),置于37℃、5%CO2及饱和湿度细胞培养箱培养,隔天换液。培养1、4、7 d取两组支架,活/死细胞染色后于激光共聚焦显微镜下观察BMSCs存活情况,红细胞为绿色荧光,死细胞为红色荧光;CCK-8试剂盒检测BMSCs细胞活力。
1.4. 体内外软骨再生评价
1.4.1. 体外实验
取第2代BMSCs,以含10%FBS、1%青霉素-链霉素-两性霉素B的DMEM培养基重悬,制备浓度为1.0×108个/mL的细胞悬液;分别接种于单纯PLGA支架及载药支架(接种细胞数均为2×107个),置于37℃、5%CO2及饱和湿度细胞培养箱培养4 h,制备BMSCs-支架复合物。将两组复合物置于软骨诱导培养基(含10%牛血清白蛋白、维生素C、脯氨酸、TGF-β、亚油酸、IGF、地塞米松、胰岛素-转铁蛋白-硒-X的DMEM培养基),继续培养6周后收集标本进行体外软骨再生评价。
观测指标:① 大体观察两组标本形状、质地及颜色。② 组织学观察:取两组标本以4%多聚甲醛固定24 h,脱水、石蜡包埋,制备片厚5 μm切片。取部分切片行HE染色及番红O染色,光镜下观察组织结构及细胞外基质分泌情况。③ Ⅱ型胶原免疫组织化学染色:取组织学观察中制备的部分切片,行Ⅱ型胶原免疫组织化学染色并光镜下观察。④ 生化检测:将两组样品置于木瓜蛋白酶溶液,于65℃消化12 h;采用阿利新蓝试剂盒检测糖胺聚糖 (glycosaminoglycan,GAG)含量,ELISA试剂盒检测Ⅱ型胶原含量。实验均重复3次。
1.4.2. 体内实验
① 实验分组及方法:将山羊同上法再次麻醉后,无菌条件下于背部左、右两侧对称部位分别作3个长1.5 cm切口并形成腔隙,分别植入1.4.1中体外培养6周的BMSCs-载药支架复合物(左侧)、BMSCs-PLGA支架复合物(右侧),用5-0可吸收缝线缝合切口。术后连续3 d肌肉注射200万U青霉素预防感染。4周后取出标本进行体内软骨再生及炎症相关情况评价。
② 观测指标:参照1.4.1观测指标对两组标本进行大体、组织学以及Ⅱ型胶原免疫组织化学染色观察,检测GAG及Ⅱ型胶原含量;参照1.3.2 RT-PCR法检测两组标本IL-1β和TNF-α基因相对表达量。实验均重复3次。
1.5. 统计学方法
采用GraphPad Prism 8.0统计软件进行分析。计量资料经正态性检验均符合正态分布,数据以均数±标准差表示,组间比较采用独立样本t检验;检验水准 α=0.05。
2. 结果
2.1. 支架观测
2.1.1. 支架形貌表征
载药支架和PLGA支架均为白色多孔结构,扫描电镜下可见丰富、连续且均匀的孔隙结构。其中,载药支架孔径为(200.65±4.13)μm、孔隙率为85.56%±1.52%,PLGA支架分别为(198.19±6.44)μm、85.45%±1.05%,两组差异均无统计学意义(t=0.642,P=0.539;t=0.113,P=0.913)。
FTIR光谱仪检测示PLGA支架及载药支架均在1 750~1 760 cm−1处出现1个典型峰,其由3 000 cm−1处C=O基团延伸产生;在1626 cm−1处出现C=O延伸谱带,以及1545 cm−1和1514 cm−1处-C=C-谱带。单纯黄腐酚在3400 cm−1处存在-OH峰,但由于PLGA支架中存在具有相同波长的谱带,所以此峰在载药支架谱带中不明显。结果提示黄腐酚负载至PLGA支架。见图1。
图 1.
Scaffold observation
支架观测
a. 大体观察 从上至下为载药支架、PLGA支架;b、c. 于放大50、100倍扫描电镜观察 从上至下为载药支架、PLGA支架;d. 支架红外光谱
a. General observation From top to bottom for drug-loaded scaffold and PLGA scaffold, respectively; b, c. Observation by scanning electron microscope at 50 and 100 times magnifications From top to bottom for drug-loaded scaffold and PLGA scaffold, respectively; d. Infrared spectrum of the scaffolds

2.1.2. 支架体外抗炎性能评价
培养24 h后,RT-PCR检测示载药支架IL-1β、TNF-α基因相对表达量分别为1.49±0.14、3.46±0.29,低于PLGA支架的5.71±0.18、8.57±0.15,差异有统计学意义(t=25.800,P<0.001;t=21.880,P<0.001)。
Western blot检测示,载药支架IL-1β、TNF-α蛋白相对表达量分别为0.19±0.02、0.31±0.01,低于PLGA支架的0.86±0.02、0.88±0.052,差异有统计学意义(t=41.910,P<0.001;t=18.550,P<0.001)。见图2。
图 2.
Expressions of IL-1β and TNF-α proteins detected by Western blot
Western blot检测支架IL-1β、TNF-α蛋白表达
1:载药支架 2:PLGA支架
1: Drug-loaded scaffold 2: PLGA scaffold

2.1.3. 支架细胞相容性评价
① 活/死细胞染色:激光共聚焦显微镜下见两组支架上细胞均存活良好,未见明显死细胞,且随培养时间延长活细胞明显增多,两组间无明显差异。② CCK-8检测示,随培养时间延长,两组支架上细胞均增殖良好;各时间点两组吸光度(A)值比较,差异均无统计学意义(P>0.05)。见图3。
图 3.
In vitro cytocompatibility evaluation of scaffolds
支架细胞相容性观观测
a. 活/死细胞染色观察(激光共聚焦显微镜×40) 从左至右分别为培养1、4、7 d 从上至下分别为BMSCs-载药支架复合物、BMSCs-PLGA支架复合物;b. CCK-8检测细胞生长曲线
a. Living/dead cells staining observation (Laser confocal microscope×40) From left to right for 1, 4, and 7 days after culture, respectively; from top to bottom for BMSCs-drug-loaded scaffold and BMSCs-PLGA scaffold, respectively; b. Cell growth curve by CCK-8 assay

2.2. 体内外软骨再生评价
2.2.1. 体外软骨再生评价
体外培养6周后,大体观察见两组BMSCs-支架复合物均呈光滑、半透明淡黄色,与培养前形态、大小无明显差异;组织学染色示两组支架中均出现典型的软骨陷窝结构和软骨特异性细胞外基质,Ⅱ型胶原免疫组织化学染色可见软骨组织特异性细胞外基质表达。BMSCs-载药支架复合物软骨特异性GAG和Ⅱ型胶原含量分别为12.96±0.27、0.20±0.01,BMSCs-PLGA支架复合物为12.78±0.16、0.21±0.01,差异均无统计学意义(t=0.810,P=0.463;t=0.443,P=0.681)。见图4。
图 4.
In vitro cartilage regeneration observation
体外软骨再生评价
从上至下为BMSCs-载药支架复合物、BMSCs-PLGA支架复合物 a. 大体观察;b. HE染色(×40);c. 番红O染色(×40);d. Ⅱ型胶原免疫组织化学染色(×40)
From top to bottom for BMSCs-drug-loaded scaffold and BMSCs-PLGA scaffold, respectively a. Gross observation; b. HE staining (×40); c. Safranin O staining (×40); d. Collagen type Ⅱ immunohistochemical staining (×40)

2.2.2. 体内软骨再生评价
植入羊体内4周后,大体观察示BMSCs-载药支架复合物基本维持植入前形状和大小,表面光滑,呈典型象牙白状软骨样外观;而BMSCs-PLGA支架复合物严重变形,外表粗糙,呈红黄相间炎症样外观。见图5a。
组织学染色示,BMSCs-载药支架复合物具有典型的软骨陷窝结构和软骨特异性细胞外基质,且未出现明显炎症细胞浸润;BMSCs- PLGA支架复合物为杂乱的纤维状结构,可见明显炎症反应。见图5b、c。
Ⅱ型胶原免疫组织化学染色示,BMSCs-载药支架复合物显著表达软骨特异性Ⅱ型胶原,而BMSCs-PLGA支架复合物Ⅱ型胶原表达极少。BMSCs-载药支架复合物软骨特异性GAG和Ⅱ型胶原含量分别为20.47±0.76、1.54±0.05,BMSCs-PLGA支架复合物为4.09±0.44、0.11±0.01,差异均有统计学意义(t=26.340,P<0.001;t=38.300,P<0.001)。见图5d。
图 5.
In vivo cartilage regeneration observation
体内软骨再生评价
从上至下为BMSCs-载药支架复合物、BMSCs-PLGA支架复合物 a. 大体观察;b. HE染色(×40);c. 番红O染色(×40);d. Ⅱ型胶原免疫组织化学染色(×40)
From top to bottom for BMSCs-drug loaded scaffold and BMSCs-PLGA scaffold, respectively a. Gross observation; b. HE staining (×40); c. Safranin O staining (×40); d. Collagen type Ⅱ immunohistochemical staining (×40)

RT-PCR检测BMSCs-载药支架复合物IL-1β、TNF-α基因相对表达量分别为2.37±0.29、3.65±0.16,低于BMSCs-PLGA支架复合物的8.04±0.14、9.11±0.16,差异均有统计学意义(t=24.800,P<0.001;t=34.490,P<0.001)。
3. 讨论
BEC植入动物体内后,炎症反应往往难以避免,虽然适度的炎症反应有利于控制感染、清除坏死物质,但过度的炎症反应会直接导致软骨再生失败。① 植入手术产生的创伤以及支架材料的免疫反应均会引起严重炎症反应;② 过度炎症反应会降低BMSCs活性和分化能力,使BEC植入体内后出现血管化与骨化,最终导致软骨再生失败[10-11];③ 炎症会使巨噬细胞及成纤维细胞等在支架表面形成纤维囊,将支架与组织分隔,导致软骨再生失败[12]。
为了解决BEC植入体内引起的炎症问题,研究人员进行了许多探索,并取得了一些成果。例如,制备特异性复合生物材料以抑制炎症介质的产生[13-16]。Liang等[17]使用聚二甲基硅氧烷微珠负载地塞米松和雌二醇,构建了一个可控的双药物负载支架,通过地塞米松与雌二醇共同作用,抑制炎症细胞浸润,提高血管再生能力;Go等[18]将抗炎激素A-黑素细胞刺激素物理吸附至可生物降解的PLGA微球表面,达到减少炎症细胞浸润的效果。上述研究提示通过构建负载抗炎药物的功能性支架,有利于体内软骨再生。为使载药支架在体内持续释放药物,保持药物浓度,Ziadlou等[19]基于丝素蛋白和透明质酸-酪氨酸溶液的酶促交联,开发了一种可注射水凝胶,用于软骨组织工程的药物输送。结果显示该水凝胶药物释放能力持久,有助于降低体内炎症程度,促进体内软骨再生。
选择合适的抗炎药物是构建载药功能性支架的核心之一。大量研究表明,黄腐酚具有卓越的抗炎性能,与其能影响多种炎症通路有关。① 通过介导Gas5/miR-27A信号通路,对炎症和外来刺激引起的软骨细胞细胞外基质降解具有保护作用[20];② 通过介导软骨细胞炎症的HO-1和C/EBP-β信号通路来减轻炎症反应和细胞外基质的降解[21];③ 减少巨噬细胞中LSP受体TLR4和MD2的表达,从而抑制巨噬细胞中NF-κB的活化,同时抑制STAT-1α与IRF-1的结合活性[22];④ 抑制软骨细胞中由IL-1β诱导的TNF-α和IL-6表达,也能逆转被IL-1β抑制的Ⅱ型胶原表达 [8]。以上研究说明,黄腐酚对影响软骨再生的多条炎症通路具有直接抑制作用,可以应用于软骨组织工程构建抗炎支架,促进软骨再生。
高分子合成材料PLGA具有生物降解速率可控、生物相容性好、力学强度高等优点,在组织工程领域应用十分广泛[23]。因此,本研究将黄腐酚负载于安全无毒、稳定的多孔PLGA支架上,制备了黄腐酚-PLGA支架。红外光谱图显示黄腐酚能稳固负载至PLGA支架,分析与黄腐酚结构中含有大量-OH,能与PLGA发生交联有关[24]。大体观察以及扫描电镜观察示,负载的黄腐酚对PLGA支架外观、孔径和孔隙率无明显影响,分析PLGA支架与黄腐酚均为性质稳定的化合物,负载黄腐酚并不会改变PLGA支架的物理化学性质。而且黄腐酚-PLGA支架与RAW264.7巨噬细胞体外共培养后,RT-PCR和Western blot检测结果均表明炎症相关因子(TNF-α和IL-1β)表达量明显下降,体现了黄腐酚强大的抗炎性能。活/死细胞染色和CCK-8检测表明负载黄腐酚安全、无毒,而且体外软骨再生实验显示引入黄腐酚没有影响PLGA支架的体外软骨再生能力,分析与PLGA稳定的化学性质和多孔结构,以及黄腐酚为天然异戊烯类黄酮化合物,安全、无毒,不会对软骨再生造成负面影响有关[25]。
软骨组织工程的核心目标是实现体内软骨再生,然而既往研究的多种BMSCs-支架结构在体外能成功再生软骨,但植入动物体内后再生软骨常发生塌陷、变形甚至消失,导致软骨再生失败,尤其是在免疫系统完善的大型动物体内,软骨再生效果更不理想,炎症反应是体内软骨再生失败的重要原因[26-28]。IL-1β和TNF-α是软骨炎症反应的主要参与者,其中IL-1β会直接破坏软骨细胞,而TNF-α能推动炎症级联反应[29]。IL-1β和TNF-α参与了多条软骨炎症通路:① 上调一氧化氮合酶、环氧合酶 2基因的表达,并刺激NO和前列腺素E2的释放[30];② 诱导超氧自由基产生,并抑制超氧自由基抗氧化酶的表达[31];③ 抑制软骨特异性细胞外基质中Ⅱ型胶原和GAG的表达[32];④ 刺激基质金属蛋白酶1(matrix metalloproteinase 1,MMP-1)、MMP-3和MMP-13的释放,诱导IL-6、趋化因子(如IL-8、单核细胞趋化蛋白 1)和趋化因子配体5的产生[33]。本研究体内实验结果显示负载黄腐酚的PLGA支架表现出更好的软骨再生效果,而且炎症因子IL-1β和TNF-α表达明显下降。同时,本研究选择免疫系统完善的大型动物进行体内实验,与既往采用免疫缺陷的裸鼠及小动物(如小鼠、兔)研究相比,进一步说明该支架具有良好抗炎功能。
综上述,本研究构建的载药支架具有良好抗炎性能,植入羊体内后可以有效促进软骨再生。后续需要进一步研究黄腐酚在PLGA支架上载荷最佳浓度、构建具有持久、均匀缓释效果的负载黄腐酚功能性支架,以期为BEC的临床转化奠定实验基础。
利益冲突 在课题研究和文章撰写过程中不存在利益冲突;经费支持没有影响文章观点和对研究数据客观结果的统计分析及其报道
伦理声明 研究方案经河南科技大学附属许昌市中心医院保护委员会批准;实验动物使用许可证号:SYXK(沪)-2019-0002
作者贡献声明 徐松山、赵少华:研究设计、文章撰写;赵少华、徐勇:研究实施;菅炎鹏、刘伟杰、邵欣慰:数据收集整理及统计分析;樊俊:行政支持;王一公:经费支持
Funding Statement
2020年河南省部共建青年项目(SBGJ202003054)
Henan Provincial Youth Project (2020) (SBGJ202003054)
References
- 1.Boushell MK, Hung CT, Hunziker EB, et al Current strategies for integrative cartilage repair. Connect Tissue Res. 2017;58(5):393–406. doi: 10.1080/03008207.2016.1231180. [DOI] [PubMed] [Google Scholar]
- 2.陆定贵, 林佳杰, 姚顺晗, 等 关节软骨损伤修复的临床研究进展. 微创医学. 2021;16(4):538–541. [Google Scholar]
- 3.Brittberg M, Lindahl A, Nilsson A, et al Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–895. doi: 10.1056/NEJM199410063311401. [DOI] [PubMed] [Google Scholar]
- 4.王新伟, 赵英杰, 常艳, 等 间充质干细胞治疗骨关节炎软骨损伤: 作用、应用与问题. 中国组织工程研究. 2021;25(31):5053–5058. doi: 10.12307/2021.150. [DOI] [Google Scholar]
- 5.Liu X, Zheng L, Zhou Y, et al. BMSC transplantation aggravates inflammation, oxidative stress, and fibrosis and impairs skeletal muscle regeneration. Front Physiol, 2019, 10: 87. doi: 10.3389/fphys.2019.00087.
- 6.Zhang R, Ma J, Han J, et al Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis. Am J Transl Res. 2019;11(10):6275–6289. [PMC free article] [PubMed] [Google Scholar]
- 7.Girisa S, Saikia Q, Bordoloi D, et al Xanthohumol from Hop: Hope for cancer prevention and treatment. IUBMB Life. 2021;73(8):1016–1044. doi: 10.1002/iub.2522. [DOI] [PubMed] [Google Scholar]
- 8.林旭晨, 祝海年, 王增顺, 等 黄腐酚对骨关节炎模型小鼠炎性因子及关节软骨的作用. 中国组织工程研究. 2022;26(5):676–681. doi: 10.12307/2022.110. [DOI] [Google Scholar]
- 9.台会文, 周朝华 用线型聚合物作致孔剂制备的大孔树脂的形态与孔结构的研究. 河北工学院学报. 1991;(2):95–102. [Google Scholar]
- 10.Zhu Y, Zhang Y, Liu Y, et al The influence of Chm-Ⅰ knockout on ectopic cartilage regeneration and homeostasis maintenance. Tissue Eng Part A. 2015;21(3-4):782–792. doi: 10.1089/ten.tea.2014.0277. [DOI] [PubMed] [Google Scholar]
- 11.李强强, 谢亚东, 杨国清, 等 骨髓间充质干细胞成骨分化的研究进展. 医学综述. 2022;28(3):434–438. doi: 10.3969/j.issn.1006-2084.2022.03.004. [DOI] [Google Scholar]
- 12.Mariani E, Lisignoli G, Borzì RM, et al. Biomaterials: foreign bodies or tuners for the immune response? Int J Mol Sci, 2019, 20(3): 636. doi: 10.3390/ijms20030636.
- 13.Sumayya AS, Muraleedhara Kurup G In vitro anti-inflammatory potential of marine macromolecules cross-linked bio-composite scaffold on LPS stimulated RAW264.7 macrophage cells for cartilage tissue engineering applications. J Biomater Sci Polym Ed. 2021;32(8):1040–1056. doi: 10.1080/09205063.2021.1899590. [DOI] [PubMed] [Google Scholar]
- 14.Martínez-Sanmiguel JJ, G Zarate-Triviño D, Hernandez-Delgadillo R, et al Anti-inflammatory and antimicrobial activity of bioactive hydroxyapatite/silver nanocomposites. J Biomater Appl. 2019;33(10):1314–1326. doi: 10.1177/0885328219835995. [DOI] [PubMed] [Google Scholar]
- 15.Fasolino I, Raucci MG, Soriente A, et al. Osteoinductive and anti-inflammatory properties of chitosan-based scaffolds for bone regeneration. Mater Sci Eng C Mater Biol Appl, 2019, 105: 110046. doi: 10.1016/j.msec.2019.110046.
- 16.Später T, Mariyanats AO, Syachina MA, et al In vitro and in vivo analysis of adhesive, anti-inflammatory, and proangiogenic properties of novel 3D printed hyaluronic acid glycidyl methacrylate hydrogel scaffolds for tissue engineering. ACS Biomater Sci Eng. 2020;6(10):5744–5757. doi: 10.1021/acsbiomaterials.0c00741. [DOI] [PubMed] [Google Scholar]
- 17.Liang JP, Accolla RP, Jiang K, et al Controlled release of anti-inflammatory and proangiogenic factors from macroporous scaffolds. Tissue Eng Part A. 2021;27(19-20):1275–1289. doi: 10.1089/ten.tea.2020.0287. [DOI] [PubMed] [Google Scholar]
- 18.Go DP, Palmer JA, Gras SL, et al Coating and release of an anti-inflammatory hormone from PLGA microspheres for tissue engineering. J Biomed Mater Res A. 2012;100(2):507–517. doi: 10.1002/jbm.a.33299. [DOI] [PubMed] [Google Scholar]
- 19.Ziadlou R, Rotman S, Teuschl A, et al. Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111701. doi: 10.1016/j.msec.2020.111701.
- 20.Zheng T, Zhou Q, Huang J, et al. Xanthohumol inhibited mechanical stimulation-induced articular ECM degradation by mediating lncRNA GAS5/miR-27a axis. Front Pharmacol, 2021, 12: 737552. doi: 10.3389/fphar.2021.737552.
- 21.Zhang M, Zhang R, Zheng T, et al. Xanthohumol attenuated inflammation and ECM degradation by mediating HO-1/C/EBPβ pathway in osteoarthritis chondrocytes. Front Pharmacol, 2021, 12: 680585. doi: 10.3389/fphar.2021.680585.
- 22.Cho YC, Kim HJ, Kim YJ, et al Differential anti-inflammatory pathway by xanthohumol in IFN-gamma and LPS-activated macrophages. Int Immunopharmacol. 2008;8(4):567–573. doi: 10.1016/j.intimp.2007.12.017. [DOI] [PubMed] [Google Scholar]
- 23.Rocha CV, Gonçalves V, da Silva MC, et al. PLGA-based composites for various biomedical applications. Int J Mol Sci, 2022, 23(4): 2034. doi: 10.3390/ijms23042034.
- 24.Fonseca M, Macedo AS, Lima SAC, et al. Evaluation of the antitumour and antiproliferative effect of xanthohumol-loaded PLGA nanoparticles on melanoma. Materials (Basel), 2021, 14(21): 6421. doi: 10.3390/ma14216421.
- 25.Wang CC, Ho YH, Hung CF, et al. Xanthohumol, an active constituent from hope, affords protection against kainic acid-induced excitotoxicity in rats. Neurochem Int, 2020, 133: 104629. doi: 10.1016/j.neuint.2019.104629.
- 26.Li Z, Huang Z, Zhang H, et al. P2X7 receptor induces pyroptotic inflammation and cartilage degradation in osteoarthritis via NF-κB/NLRP3 crosstalk. Oxid Med Cell Longev, 2021, 2021: 8868361. doi: 10.1155/2021/8868361.
- 27.Wu CL, Harasymowicz NS, Klimak MA, et al The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis Cartilage. 2020;28(5):544–554. doi: 10.1016/j.joca.2019.12.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Li Y, Tong D, Liang P, et al. Cartilage-binding antibodies initiate joint inflammation and promote chronic erosive arthritis. Arthritis Res Ther, 2020, 22(1): 120. doi: 10.1186/s13075-020-02169-0.
- 29.Kapoor M, Martel-Pelletier J, Lajeunesse D, et al Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42. doi: 10.1038/nrrheum.2010.196. [DOI] [PubMed] [Google Scholar]
- 30.Pozgan U, Caglic D, Rozman B, et al Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biol Chem. 2010;391(5):571–579. doi: 10.1515/bc.2010.035. [DOI] [PubMed] [Google Scholar]
- 31.Shi Y, Hu X, Cheng J, et al. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nat Commun, 2019, 10(1): 1914. doi: 10.1038/s41467-019-09839-x.
- 32.Liu B, Yang L, Cui Z, et al. Anti-TNF-α therapy alters the gut microbiota in proteoglycan-induced ankylosing spondylitis in mice. Microbiologyopen, 2019, 8(12): e927. doi: 10.1002/mbo3.927.
- 33.Lefebvre V, Peeters-Joris C, Vaes G. Modulation by interleukin 1 and tumor necrosis factor alpha of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. Biochim Biophys Acta, 1990, 1052(3): 366-378. doi: 10.1016/0167-4889(90)90145-4.
