Abstract
目的
比较研究Prodisc-C Vivo人工椎间盘置换术与零切迹Zero-P融合术治疗单节段颈椎病的早期疗效及其对颈椎节段活动度的影响。
方法
回顾分析2015年1月—2018年12月收治且符合选择标准的56例单节段颈椎病患者临床资料,根据手术方式分为研究组(27例,采用Prodisc-C Vivo人工椎间盘置换术)和对照组(29例,采用零切迹Zero-P融合术)。两组患者性别、年龄、颈椎病类型、病程、累及节段及术前疼痛视觉模拟评分(VAS)、日本骨科协会(JOA)评分、颈椎功能障碍指数(NDI)、手术节段活动度、上下相邻节段活动度、颈椎整体活动度及颈椎曲度等一般指标比较,差异均无统计学意义(P>0.05)。记录并比较两组手术时间、术中出血量、术后住院时间、术后恢复工作时间及临床疗效指标(VAS评分、JOA评分、NDI及各评分改善率)和影像学指标(手术节段活动度、上下相邻节段活动度、颈椎整体活动度、颈椎曲度及假体位置、骨质吸收、异位骨化等)。
结果
两组手术时间和术中出血量比较差异无统计学意义(P>0.05);研究组术后住院时间和术后恢复工作时间明显少于对照组(P<0.05)。两组患者均获随访,随访时间12~64个月,平均26个月。均未出现肢体脏器功能损害、内植物失败及相邻节段退变严重需再次手术等并发症。术后各时间点两组VAS评分、JOA评分及NDI均较术前显著改善(P<0.05),术后各时间点两组间各评分比较差异均无统计学意义(P>0.05);末次随访时两组间各评分改善率比较差异均无统计学意义(P>0.05)。研究组术后不同程度维持了手术节段活动度,对照组术后手术节段活动度基本消失,两组比较差异有统计学意义(P<0.05)。末次随访时,研究组上、下相邻节段活动度与术前比较差异无统计学意义(P>0.05),而对照组上位相邻节段活动度较术前明显增加(P<0.05);两组颈椎整体活动度及颈椎曲度在术后3个月有所下降,末次随访时又有不同程度增加,组间及组内比较差异均无统计学意义(P>0.05)。末次随访时X线片及CT检查示,所有患者未见假体松动、下沉或移位等;研究组发生人工椎间盘下椎体终板前缘部分骨质吸收2例(7.4%),未影响手术节段活动度的异位骨化3例(11.1%)。
结论
Prodisc-C Vivo人工椎间盘置换术与零切迹Zero-P融合术治疗单节段颈椎病早期疗效均满意,前者还能在一定程度上维持颈椎手术节段活动度,同时减少术后相邻节段代偿性过度活动的发生。
Keywords: 颈椎病, 人工椎间盘置换术, 椎间融合, 活动度, 相邻节段退变
Abstract
Objective
To compare the short-term effectiveness and the impact on cervical segmental range of motion using Prodisc-C Vivo artificial disc replacement and Zero-P fusion for the treatment of single-segment cervical spondylosis.
Methods
The clinical data of 56 patients with single-segment cervical spondylosis who met the selection criteria between January 2015 and December 2018 were retrospectively analyzed, and they were divided into study group (27 cases, using Prodisc-C Vivo artificial disc replacement) and control group (29 cases, using Zero-P fusion) according to different surgical methods. There was no significant difference between the two groups in terms of gender, age, type of cervical spondylosis, disease duration, involved segments and preoperative pain visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, neck disability index (NDI), surgical segments range of motion, upper and lower adjacent segments range of motion, overall cervical spine range of motion, and cervical curvature (P>0.05). The operation time, intraoperative blood loss, postoperative hospitalization stay, time of returning to work, clinical effectiveness indicators (VAS score, JOA score, NDI, and improvement rate of each score), and imaging indicators (surgical segments range of motion, upper and lower adjacent segments range of motion, overall cervical spine range of motion, and cervical curvature, prosthesis position, bone absorption, heterotopic ossification, etc.) were recorded and compared between the two groups.
Results
There was no significant difference in operation time and intraoperative blood loss between the two groups (P>0.05); the postoperative hospitalization stay and time of returning to work in the study group were significantly shorter than those in the control group (P<0.05). Both groups were followed up 12-64 months, with an average of 26 months. There was no complication such as limb or organ damage, implant failure, and severe degeneration of adjacent segments requiring reoperation. The VAS score, JOA score, and NDI of the two groups at each time point after operation significantly improved when compared with those before operation (P<0.05); there was no significant difference in the above scores at each time point after operation between the two groups (P>0.05); there was no significant difference in the improvement rate of each score between the two groups at last follow-up (P>0.05). The surgical segments range of motion in the study group maintained to varying degrees after operation, while it in the control group basically disappeared after operation, showing significant differences between the two groups (P<0.05). At last follow-up, there was no significant difference in the upper and lower adjacent segments range of motion in the study group when compared with preoperative ones (P>0.05), while the upper adjacent segments range of motion in the control group increased significantly (P<0.05). The overall cervical spine range of motion and cervical curvature of the two groups decreased at 3 months after operation, and increased to varying degrees at last follow-up, but there was no significant difference between groups and within groups (P>0.05). At last follow-up, X-ray films and CT examinations showed that no prosthesis loosening, subsidence, or displacement was found in all patients; there were 2 cases (7.4%) of periprosthetic bone resorption and 3 cases (11.1%) of heterotopic ossification which did not affect the surgical segments range of motion.
Conclusion
Both the Prodisc-C Vivo artificial disc replacement and Zero-P fusion have satisfactory short-term effectiveness in treatment of single-segment cervical spondylosis. Prodisc-C Vivo artificial disc replacement can also maintain the cervical spine range of motion to a certain extent, while reducing the occurrence of excessive motion of adjacent segments after fusion.
Keywords: Cervical spondylosis, artificial disc replacement, intervertebral fusion, range of motion, adjacent segmental degeneration
颈椎前路间盘切除减压融合术(anterior cervical disc decompression and fusion,ACDF)是目前治疗颈椎病的经典术式,尤其是经间隙减压后零切迹Zero-P融合术,因其可减少以往钛板和Cage融合固定的众多并发症,在临床上得到广泛应用并获得良好疗效[1]。但即使是零切迹融合,因固定颈椎手术节段而导致的椎体和椎间应力分布改变、相邻节段加速退变等问题仍不能忽视[2-3]。近年,颈椎人工椎间盘置换术发展迅速,其能保留颈椎手术节段的正常生理活动,从而有效预防颈椎相邻节段退变发生,可以在一定程度上弥补融合术的不足[4]。临床研究表明,颈椎人工椎间盘置换术可以作为补充或替代ACDF的一种安全手术技术[5-6]。
Prodisc-C Vivo是继Prodisc-C和Prodisc-C Nova之后的第3代颈椎人工椎间盘。其采用无龙骨的球窝关节设计,利用上、下表面的高孔隙率钛涂层尖刺,来提高术后即刻稳定性和远期骨长入稳定固定。目前Prodisc-C Vivo临床使用时间短,相关临床研究较少。本研究通过回顾分析2015年1月—2018年12月北京大学深圳医院脊柱外科收治的单节段颈椎病患者临床资料,比较Prodisc-C Vivo人工椎间盘置换术与零切迹Zero-P融合术治疗单节段颈椎病的早期疗效和对颈椎节段活动的影响,为颈椎病手术方式的选择提供临床研究依据。报告如下。
1. 临床资料
1.1. 患者选择标准
纳入标准:① 颈椎病以单节段软性椎间盘突出压迫为主,无明显巨大后缘骨赘增生及后纵韧带骨化;② 有典型颈脊髓或神经根性症状体征,诊断明确,且经严格保守治疗无改善者;③ 无明显椎间隙狭窄(椎间隙必须大于相邻未退变节段70%),椎间伸屈活动良好,关节突关节无明显退变融合;④ 无明显不稳定和颈椎后凸;⑤ 年龄25~50岁,椎间盘及椎体发育正常;⑥ 随访资料完整。
排除标准:① 多节段颈椎病;② 二次手术患者;③ 颈椎先天性结构畸形,重度发育性椎管狭窄;④ 颈椎外伤骨折脱位,颈椎失稳;⑤ 严重骨质疏松、Peget骨病、类风湿性关节炎、强直性脊柱炎、 弥漫性特发性骨肥厚症等全身代谢性疾病;⑥ 严重器质性疾病、精神疾病、肿瘤及活动性感染[7-8]。
2015年1月—2018年12月共56例患者符合选择标准纳入研究,根据手术方式分为研究组(27例,采用Prodisc-C Vivo人工椎间盘置换术)和对照组(29例,采用零切迹Zero-P融合术)。
1.2. 一般资料
研究组:男16例,女11例;年龄27~49岁,平均38.6岁。其中神经根型颈椎病8例,脊髓型颈椎病11例,混合型颈椎病8例。病程12~64个月,平均25.7个月。累及节段:C3、4 1例,C4、5 6例,C5、6 16例,C6、7 4例。
对照组:男17例,女12例;年龄31~47岁,平均40.1岁。其中神经根型颈椎病9例,脊髓型颈椎病10例,混合型颈椎病10例。病程12~61个月,平均27.1个月。累及节段:C3、4 1例,C4、5 7例,C5、6 16例,C6、7 5例。
两组患者性别、年龄、颈椎病类型、病程、累及节段及术前疼痛视觉模拟评分(VAS)、日本骨科协会(JOA)评分、颈椎功能障碍指数(NDI)、手术节段活动度、上下相邻节段活动度、颈椎整体活动度及颈椎曲度等一般指标比较,差异均无统计学意义(P>0.05),具有可比性。见表1、2。
表 1.
Comparison of clinical effectiveness indicators at various time points between the two groups
两组患者各时间点临床疗效指标比较
组别 Group |
例数 n |
颈肩痛VAS评分 VAS score of neck and shoulder pain |
||||
术前 Preoperative |
术后 3个月 Postoperative at 3 months |
术后 12个月 Postoperative at 12 months |
末次随访 Last follow-up |
改善率(平均秩次) Improvement rate (mean rank) |
||
研究组 Study group |
16 | 4.1±0.9 | 1.7±0.9 | 1.1±0.6 | 0.6±0.5 | 20.90 |
对照组 Control group |
19 | 3.8±0.8 | 1.5±0.8 | 1.1±0.7 | 0.8±0.6 | 14.82 |
统计值 Statistic |
时间效应F=136.407,P<0.001 交互效应F=0.613,P=0.608 组间效应F=0.118,P=0.733 |
Z=−1.832 P=0.068 |
表 2.
Comparison of imaging indicators at various time points between the two groups (°, )
两组患者各时间点影像学指标比较(°,)
组别 Group |
例数 n |
上位相邻节段活动度 Upper adjacent segment range of motion |
手术节段活动度 Surgical segment range of motion |
|||||||
术前 Preoperative |
术后 3个月 Postoperative at 3 months |
术后 12个月 Postoperative at 12 months |
末次随访 Last follow-up |
术前 Preoperative |
术后 3个月 Postoperative at 3 months |
术后 12个月 Postoperative at 12 months |
末次随访 Last follow-up |
|||
研究组 Study group |
27 | 10.02±3.04 | 7.47±2.00 | 9.59±2.06 | 9.94±1.75 | 7.85±1.81 | 9.64±1.95 | 9.90±2.43 | 9.81±1.65 | |
对照组 Control group |
29 | 10.07±2.69 | 9.51±2.37 | 11.04±1.95 | 11.51±1.73 | 7.26±1.49 | 0 | 0 | 0 | |
统计值 Statistic |
时间效应F=27.032,P<0.001 交互效应F=5.249,P=0.006 组间效应F=6.402,P=0.014 |
时间效应F=54.976,P<0.001 交互效应F=163.718,P<0.001 组间效应F=947.497,P<0.001 |
表 1-1.
组别 Group |
例数 n |
上肢痛VAS评分 VAS score of upper limb pain |
||||
术前 Preoperative |
术后 3个月 Postoperative at 3 months |
术后 12个月 Postoperative at 12 months |
末次随访 Last follow-up |
改善率(平均秩次) Improvement rate (mean rank) |
||
研究组 Study group |
16 | 5.3±0.7 | 1.1±0.8 | 0.6±0.5 | 0.4±0.5 | 19.22 |
对照组 Control group |
19 | 5.2±0.7 | 1.0±0.8 | 0.6±0.5 | 0.6±0.5 | 16.97 |
统计值 Statistic |
时间效应F=418.896,P<0.001 交互效应F=0.237,P=0.871 组间效应F<0.001,P=0.988 |
Z=−6.950 P=0.487 |
表 1-2.
组别 Group |
例数 n |
JOA评分 JOA score |
||||
术前 Preoperative |
术后 3个月 Postoperative at 3 months |
术后 12个月 Postoperative at 12 months |
末次随访 Last follow-up |
改善率(平均秩次) Improvement rate (mean rank) |
||
研究组 Study group |
19 | 12.4±0.9 | 15.4±0.7 | 16.3±0.8 | 16.2±0.8 | 18.29 |
对照组 Control group |
20 | 12.0±0.8 | 15.1±0.9 | 16.0±0.8 | 16.4±0.7 | 21.63 |
统计值 Statistic |
时间效应F=237.746,P<0.001 交互效应F=0.758,P=0.520 组间效应F=1.897,P=0.177 |
Z=0.957 P=0.339 |
表 1-3.
组别 Group |
例数 n |
NDI |
||||
术前 Preoperative |
术后 3个月 Postoperative at 3 months |
术后 12个月 Postoperative at 12 months |
末次随访 Last follow-up |
改善率(平均秩次) Improvement rate (mean rank) |
||
研究组 Study group |
27 | 27.2±2.9 | 6.9±1.6 | 3.0±1.4 | 1.9±1.0 | 27.20 |
对照组 Control group |
29 | 27.7±2.8 | 7.0±1.8 | 3.1±1.6 | 1.9±0.8 | 29.71 |
统计值 Statistic |
时间效应F=2212.470,P<0.001 交互效应F=0.180,P=0.910 组间效应F=0.283,P=0.597 |
Z=0.584 P=0.559 |
表 2-1.
组别 Group |
例数 n |
下位相邻节段活动度 Lower adjacent segment range of motion |
颈椎整体活动度 Overall cervical spine range of motion |
|||||||
术前 Preoperative |
术后 3个月 Postoperative at 3 months |
术后 12个月 Postoperative at 12 months |
末次随访 Last follow-up |
术前 Preoperative |
术后 3个月 Postoperative at 3 months |
术后 12个月 Postoperative at 12 months |
末次随访 Last follow-up |
|||
研究组 Study group |
27 | 8.42±2.01 | 6.64±1.61 | 7.31±1.59 | 7.49±1.38 | 48.58±7.74 | 40.31±5.54 | 45.34±8.56 | 54.08±7.41 | |
对照组 Control group |
29 | 9.06±2.11 | 8.45±2.00 | 9.39±1.66 | 9.62±1.53 | 49.31±5.89 | 43.54±7.20 | 48.63±6.11 | 52.28±3.76 | |
统计值 Statistic |
时间效应F=6.633,P=0.002 交互效应F=2.892,P=0.058 组间效应F=28.901,P<0.001 |
时间效应F=31.482,P<0.001 交互效应F=2.120,P=0.100 组间效应F=1.716,P=0.196 |
表 2-2.
组别 Group |
例数 n |
颈椎曲度 Cervical curvature |
|||
术前 Preoperative |
术后 3个月 Postoperative at 3 months |
术后 12个月 Postoperative at 12 months |
末次随访 Last follow-up |
||
研究组 Study group |
27 | 20.04±5.22 | 18.60±4.30 | 21.21±4.02 | 21.42±4.84 |
对照组 Control group |
29 | 20.51±5.70 | 17.32±3.05 | 19.70±4.58 | 22.60±3.64 |
统计值 Statistic |
时间效应F=12.911,P<0.001 交互效应F=1.999,P=0.131 组间效应F=0.103,P=0.750 |
1.3. 手术方法
所有患者手术均由同一组医生完成。患者于气管插管全身麻醉后取平卧位,颈下垫枕保持颈椎中立位;于病变节段水平右侧作长约4 cm横切口,逐层显露并牵开皮肤、皮下及颈阔肌;于胸锁乳突肌内缘纵向切开筋膜,钝性分离血管鞘与气管、食道间隙达椎前,分别向两侧牵开保护,暴露颈长肌并牵开。透视定位手术节段椎间隙,Caspar撑开椎间隙,尖刀切开前纵韧带及前侧纤维环,摘除椎间盘髓核组织,处理终板,切除后纵韧带及突出椎间盘组织,完成脊髓神经减压。试模后,研究组和对照组分别植入相应大小的Prodisc-C Vivo人工椎间盘(强生公司,美国)和零切迹Zero-P椎间融合器(强生公司,美国),并适度加压,透视确认位置良好后,留置引流,逐层关闭切口。
1.4. 术后处理
患者术后常规予以消炎止痛、脱水、营养神经等对症处理。术后24 h拔除引流管,在颈托保护下下床活动。研究组术后第2天在医生指导下作颈椎屈伸、左右侧偏及左右旋转运动,并逐渐增加活动范围,逐步行颈背肌功能锻炼。对照组术后颈托制动1~3周,去颈托保护后加强颈背肌功能锻炼。
1.5. 疗效观察指标
比较两组患者手术时间、术中出血量、术后住院时间、术后恢复工作时间及临床疗效指标和影像学指标等,由2名骨科医生分别独立测量3次后取平均值。
临床疗效指标:术前,术后3、12个月及末次随访时,采用VAS评分评估神经根型或混合型颈椎病患者的颈肩背轴性痛及上肢麻痛,JOA评分评价脊髓型或混合型颈椎病患者的脊髓神经功能恢复情况,NDI评估所有颈椎病患者的颈椎功能状态;并按以下公式计算各评分改善率:JOA评分改善率=(末次随访评分−术前评分)/(17分−术前评分)×100%,VAS评分和NDI改善率=(术前评分−末次随访评分)/术前评分×100%。
影像学指标:① 术前,术后3、12个月及末次随访时,通过颈椎正侧位、过伸过屈动力位X线片测量手术节段活动度、上下相邻节段活动度、C2~7颈椎整体活动度以及颈椎曲度。所有测量工作在PACS系统完成,其中手术节段活动度、上下相邻节段活动度测量为过伸过屈动力位X线片上,沿目标间隙上位椎体下终板和下位椎体上终板各划1条切线(置换术后则沿假体上、下缘各划1条切线),测量2条切线所成角度,计算动力位上两角之差;颈椎整体活动度为过伸过屈动力位X线片上,沿C2、C7椎体下终板各划1条切线,测量2条切线所成角度,计算动力位上两角之差;颈椎曲度为侧位X线片上沿C2、C7椎体下终板各划1条切线,测量2条切线所成角度。见图1。② 末次随访时,行颈椎X线片和CT检查,分析假体位置以及骨质吸收和异位骨化等发生情况。
图 1.
Schematic diagram of imaging measurements
影像学测量示意图
a. 侧位X线片测量颈椎曲度(蓝线为C2和C7椎体下终板划线);b、c. 动力位X线片测量颈椎活动度(红线为C2和C7椎体下终板划线,橙线为人工椎间盘的上、下缘划线,黄线为上位椎体下终板和下位椎体上终板划线)
a. Cervical curvature was measured on lateral X-ray film (blue lines were the lower endplates of C2 and C7 vertebrae); b, c. The range of motion of cervical spine was measured by dynamic X-ray films (red lines were the lower endplates of C2 and C7 vertebrae, orange lines were the upper and lower edge of artificial intervertebral disc, yellow lines were the lower endplates of upper vertebral body and the upper endplates of lower vertebral body)
1.6. 统计学方法
采用SPSS20.0统计软件进行分析。计量资料行正态性检验,两组患者手术时间、术中出血量、术后住院时间、VAS评分、JOA评分、NDI、手术节段活动度、上下相邻节段活动度、颈椎整体活动度及颈椎曲度符合正态分布,以均数±标准差表示,两组间比较采用独立样本t检验;两组各时间点比较采用重复测量方差分析,数据均满足球形检验,同一组别不同时间点比较采用 Bonferroni 法,同一时间点两组间比较采用独立样本t检验且取校正α=0.012 5。术后恢复工作时间及各评分改善率不符合正态分布,分别以M(Q1,Q3)和平均秩次表示,组间比较采用Mann-Whitney U检验。检验水准α=0.05。
2. 结果
两组手术时间和术中出血量比较差异无统计学意义(P>0.05);研究组术后住院时间和术后恢复工作时间明显少于对照组,差异有统计学意义(P<0.05),见表3。两组患者均获随访,随访时间12~64个月,平均26个月;均未出现术后感染、脑脊液漏、食管瘘、明显吞咽困难,内植物松动、断裂、脱出以及明显的相邻节段退变需再次手术等并发症。术后各时间点两组颈肩痛和上肢痛VAS评分、JOA评分及NDI均较术前显著改善,差异有统计学意义(P<0.05);术后各时间点两组间比较差异均无统计学意义(P>0.05);末次随访时,两组各评分改善率比较差异均无统计学意义(P>0.05)。见表1、图2。
表 3.
Comparison of perioperative indicators between the two groups
两组患者围术期指标比较
组别 Group |
例数 n |
手术时间(min) Operation time (minutes) |
术中出血量(mL) Intraoperative blood loss (mL) |
术后住院时间(d) Postoperative hospital- izationstay (days) |
术后恢复工作时间 Time of returning to work |
研究组 Study group |
27 | 56.48±7.18 | 14.23±5.04 | 3.5±0.8 | 18.0(15.3,21.0) |
对照组 Control group |
29 | 60.17±8.18 | 16.21±6.77 | 4.5±1.0 | 28.0(20.8,30.0) |
统计值 Statistic |
t=−1.789 P=0.079 |
t=−1.216 P=0.229 |
t=−3.995 P<0.001 |
Z=−3.159 P=0.002 |
图 2.
Comparison of clinical effectiveness indicators at each time point before and after operation between the two groups
两组患者手术前后各时间点各临床疗效指标比较
a. 颈肩痛VAS评分;b. 上肢痛VAS评分;c. JOA评分;d. NDI
a. VAS score of neck and shoulder pain; b. VAS score of upper limb pain; c. JOA score; d. NDI
研究组术后不同程度维持了手术节段活动度,对照组术后手术节段活动度基本消失,两组比较差异有统计学意义(P<0.05)。术后3个月两组上下相邻节段活动度均较术前有所下降,差异有统计学意义(P<0.05),研究组下降较对照组更明显;从术后12个月后,对照组上下相邻节段活动度均大于术前,末次随访时对照组上位相邻节段活动度明显大于术前(P<0.05);而研究组上下相邻节段活动度接近术前,末次随访时与术前比较差异无统计学意义(P>0.05),并且末次随访时上位相邻节段活动度显著小于对照组(P<0.012 5)。两组颈椎整体活动度在术后3个月有所下降,后逐渐增加,末次随访时较术前有所增加,但与术前比较差异均无统计学意义(P>0.05);两组间术后各时间点颈椎整体活动度比较差异均无统计学意义(P>0.05)。两组颈椎曲度在术后3个月均有不同程度下降,对照组下降较为明显,但差异无统计学意义(P>0.05);末次随访时颈椎曲度又有不同程度增加,组间及组内比较差异均无统计学意义(P>0.05)。见表2、图3。
图 3.
Comparison of imaging indicators at each time point before and after operation between the two groups
两组患者手术前后各时间点各影像学指标比较
a. 上位相邻节段活动度;b. 手术节段活动度;c. 下位相邻节段活动度;d. 颈椎整体活动度;e. 颈椎曲度
a. Upper adjacent segment range of motion; b. Surgical segment range of motion; c. Lower adjacent segment range of motion; d. Overall cervical spine range of motion; e. Cervical curvature
末次随访时X线片和CT检查示,所有患者未见假体松动、下沉或移位等。见图4、5。研究组发生2例(7.4%)人工椎间盘下终板椎体前缘部分骨质吸收(其中Ⅰ级和Ⅱ级[9]各1例),但未发生与之相关的临床症状。见图6。研究组发现异位骨化3例(11.1%),其中Ⅰ、Ⅱ、Ⅲ级[10]各1例,3例患者手术节段活动度均未受影响。见图7。
图 4.
A 45-year-old female patient with cervical spondylosis myelopathy in study group
研究组患者,女,45岁,脊髓型颈椎病
a. 术前正侧位、动力位X线片及CT、MRI矢状面;b. 术后6个月正侧位及动力位X线片示人工椎间盘位置良好及各节段活动度良好;c. 术后5年正侧位及动力位X线片示人工椎间盘位置良好,手术节段和上下相邻节段活动度良好,CT和MRI矢状面示相邻节段退变未见明显进展,脊髓神经减压充分
a. Anteroposterior, lateral, and dynamic X-ray films, and sagittal CT and MRI before operation; b. Anteroposterior, lateral, and dynamic X-ray films at 6 months after operation showed good position of the artificial intervertebral disc and the range of motion was good; c. At 5 years after operation, the anteroposterior, lateral, and dynamic X-ray films showed good position of the artificial intervertebral disc, and the range of motion of the surgical segment and the upper and lower adjacent segments was good; sagittal CT and MRI showed no significant progression of adjacent segmental degeneration and adequate decompression of the spinal cord
图 5.
Anteroposterior, lateral, and dynamic X-ray films of a 46-year-old female patient with cervical spondylosis radiculopathy in control group
对照组患者,女,46岁,神经根型颈椎病正侧位及动力位X线片
a. 术前示 C5、6退变间隙变窄,颈椎曲度及整体活动度良好;b. 术后6个月示C5、6间隙恢复,融合固定后节段活动消失,颈椎曲度及整体活动度良好;c. 术后25个月示C5、6已融合,上位相邻节段C4、5活动度增加,项韧带钙化形成,颈椎曲度及整体活动度良好
a. Preoperative images showed the degenerative space of C5, 6 narrowed, and the cervical curvature and overall range of motion were good; b. Images at 6 months after operation showed that the C5, 6 spaces recovered, the segmental motion disappeared after fusion and fixation, and the cervical curvature and overall range of motion were good; c. Images at 25 months after operation showed that C5, 6 fused, the range of motion of C4, 5 increased, the nuchal ligament calcification formed, and the cervical curvature and overall range of motion were good
图 6.
Lateral X-ray films of postoperative bone resorption (grade Ⅱ) of a 33-year-old female patient with cervical spondylotic myelopathy in study group
研究组患者,女,33岁,脊髓型颈椎病,术后发生骨吸收(Ⅱ级)侧位X线片
a. 术前;b. 术后6个月未见骨吸收;c. 术后24个月假体下缘骨吸收;d. 为图c局部放大
a. Before operation; b. No bone resorption was found at 6 months after operation; c. Bone resorption at the lower edge of the prosthesis at 24 months after operation; d. Local magnification of fig.c
图 7.
X-ray films of postoperative heterotopic ossification (grade Ⅱ) of a 40-year-old male patient with cervical spondylosis radiculopathy in study group
研究组患者,男,40岁,神经根型颈椎病,术后发生异位骨化(Ⅱ级)X线片
a. 术前侧位片;b. 术后6个月侧位片示假体前缘韧带出现少许钙化;c. 术后12个月侧位片示异位骨化形成;d~f. 术后24个月动力位片示异位骨化形成明显,但手术节段活动度仍有保留(图f为异位骨化局部放大)
a. Lateral image before operation; b. Lateral image at 6 months after operation showed minor calcification of the anterior ligament of the prosthesis; c. Lateral image at 12 months after operation showed heterotopic ossification; d-f. Dynamic images at 24 months after operation showed heterotopic ossification was obvious, but the surgical segment range of motion was preserved (figure f showed a local magnification of the heterotopic ossification)
3. 讨论
20世纪50年代,Robinson等[11]首次报道采用ACDF治疗颈椎病,近年来该技术的近、远期临床有效性均得到了广泛验证,被认为是颈椎病手术治疗的“金标准”[12-13]。随后发展的减压后零切迹Zero-P融合术,因能减少既往钛板和Cage融合固定的相关并发症,临床应用更为普及;但由于术后融合节段活动度丢失,邻近节段活动度增加使得应力集中,椎间盘退变加速甚至出现临床症状,远期常需行二次手术治疗。Hilibrand等[14]研究表明,颈椎融合手术改变了脊柱的正常生物力学,每年因相邻节段病变的再手术率为2.9%;在首次手术后10年内,有25.6%患者会因相邻节段病变而再次手术。越来越多研究表明颈椎人工椎间盘置换术可作为融合手术的替代方案[15]。一项基于大量患者(置换组1 317例、融合组1 051例)随访数据的Meta分析表明,置换组在总体成功率、NDI恢复、神经功能恢复、患者满意度和预防相邻节段退变等方面均优于融合组[16]。
为满足临床需求,人工椎间盘的结构和材料在不断改进。早期人工椎间盘设计目的是保证初始稳定性,因此采用了螺钉固定 [如Prestige-ST(美敦力公司,美国)] 或过度准备植入部位的椎间隙和上下终板 [BRYAN(美敦力公司,美国)]。这些设计导致植入过程操作繁琐,技术精度要求高、耗时长,同时因终板皮质结构的打磨处理增加了异位骨化风险[17-18]。随后发展的Prodisc-C Vivo人工椎间盘针对上述缺点进行优化,其设计旨在简化植入过程,在保留瞬时稳定性的同时避免打磨终板的皮质结构[5],并利用表面多孔隙率的钛或羟基磷灰石涂层技术和椎板上的齿突设计,促进假体与椎板骨界面的骨长入,以确保早期和长期稳定性[19]。
本研究中,我们回顾分析了Prodisc-C Vivo人工椎间盘置换术与零切迹Zero-P融合术治疗单节段颈椎病的早期疗效,发现研究组手术时间和术中出血量略少于对照组,但差异无统计学意义,这与Coric等[20]的研究结果基本一致。手术过程中出血量和手术时间的减少与Prodisc-C Vivo人工椎间盘的新型设计与简化植入过程有较大相关性。有学者[21]研究发现,置换组术中出血量和住院时间均明显少于融合组,也是基于人工椎间盘操作简便等因素。研究发现,与对照组相比,研究组置换术后几乎无需颈托等外固定制动,患者下地活动更早,颈椎活动和功能恢复更早,因此明显缩短了术后住院时间,并能更早恢复工作。前期研究表明,基于VAS评分、JOA评分及NDI等临床疗效评估指标,应用人工椎间盘置换术或融合术治疗颈椎病均可取得良好临床效果[22-23]。研究发现,研究组和对照组的VAS评分、JOA评分及NDI均较术前明显改善,末次随访时两组间比较各评分改善率差异均无统计学意义,也说明Prodisc-C Vivo人工椎间盘置换术能取得与融合术类似的临床疗效。
Prodisc-C Vivo人工椎间盘置换术的特点是不仅保留手术节段活动度,恢复椎间高度,还保持了颈椎力学的延续性和稳定性,维持患者颈椎的生理功能,最终提高患者生活质量。Park等[24]研究发现人工椎间盘置换术保留了手术节段活动度(从术前平均8.0° 到术后12个月平均6.2°),虽有部分丢失,但上位相邻节段活动度无明显变化;而在融合组患者中,上位相邻节段活动度从术前平均9.6° 增加到术后12个月平均11.0°。研究显示,研究组手术节段活动度由术前(7.85±1.81)° 增加至术后3个月(9.64±1.95)°,至末次随访一直维持良好,而对照组术后手术节段活动度基本消失。术后3个月两组上下相邻节段活动度均有所下降,研究组下降更明显;但从术后12个月后,对照组上下相邻节段活动度大于术前,而研究组接近但小于术前;末次随访时,对照组上位相邻节段活动度显著大于术前,且两组间上位相邻节段活动度差异有统计学意义,这与刘浩等[25]在人工椎间盘置换术后短期随访中发现的相邻节段活动度规律一致。术后两组颈椎整体活动度基本无差异,而颈椎曲度在术后3个月时对照组下降较为明显,但差异无统计学意义。融合术后随着时间发展,相邻节段代偿性活动增加是导致上述结果的主要原因。Prodisc-C Vivo人工椎间盘置换术保持了手术节段活动度,对于颈椎整体活动度可更均匀、更接近生理性地重建。而Zero-P融合了手术节段,导致早期颈椎整体活动度减少,后期虽然颈椎节段活动度代偿性基本恢复,但这是基于相邻节段活动度增加而实现,可能因此造成颈椎术后相邻节段退变的形成。
我们的研究中,末次随访时对照组手术节段已基本融合,而研究组中有2例(7%)出现人工椎间盘下终板椎体前缘部分骨质吸收现象,骨吸收患者未发生相关临床症状,也未见3级以上严重骨质吸收以及假体松动、下沉或移位等,考虑可能是失应力性骨吸收引起,尚需要更多病例和更长时间随访观察。此外,术后两组患者均未出现明显相邻节段退变以及二次手术。有学者认为颈椎相邻节段退变是多因素共同作用的结果,不仅仅是术式差异所致,椎间盘的自然退变、融合术后活动度丢失对邻近节段生物力学的影响,以及因疼痛、姿势和手术等随生物力学应力改变而改变的序列曲度,都可能造成相邻节段退变[26]。
异位骨化是人工椎间盘置换术后最常见并发症之一,会导致人工椎间盘活动度明显下降,应力载荷异常分布,进而加速相邻节段颈椎间盘的退变;另外,异位骨化也会对患者术后神经功能改善产生负面影响。孙宇教授团队[7]通过比较Prodisc-C和Prodisc-C Vivo人工椎间盘置换术后平均5年随访结果,发现后者异位骨化总体发生率为50%,可能影响临床效果的Ⅲ级和Ⅳ级异位骨化发生率为14.3%,明显低于前者的65.4%和53.4%。Mehren等[5]报道Prodisc-C Vivo人工椎间盘置换术后平均随访2年的异位骨化发生率为42%,Ⅲ级和Ⅳ级异位骨化发生率为10%。我们的研究中, Prodisc-C Vivo人工椎间盘置换术后平均随访26个月,末次随访时发生异位骨化3例(11.1%),其中Ⅰ、Ⅱ、Ⅲ级各1例,3例患者手术节段活动度均未受影响。我们认为异位骨化的发生与终板准备时浅层皮质骨打磨过多有关。Prodisc-C Vivo人工椎间盘利用弧面设计且带有表面钛涂层固定齿突的终板匹配特征,能提供最大终板覆盖面,有利于应力均匀分布及生物骨长入,从而稳定固定假体,并尽可能减少手术中过度打磨和处理终板皮质骨,以期降低异位骨化发生率。
综上述,Prodisc-C Vivo人工椎间盘置换术与零切迹Zero-P融合术治疗单节段颈椎病早期疗效良好,均可明显改善患者的症状和神经功能。其中Prodisc-C Vivo人工椎间盘置换术减少了住院时间和颈椎制动时间,有利于患者更早恢复工作;还能较好地维持颈椎整体活动度及生理曲度,并减少零切迹Zero-P融合术后相邻节段活动度增加而诱发相邻节段退变的可能。然而本研究样本量较少、随访时间较短,仍需要更长期和大量随访数据来充分评估其预防相邻节段退变的有效性。
利益冲突 在课题研究和文章撰写过程中不存在利益冲突;经费支持没有影响文章观点和对研究数据客观结果的统计分析及其报道
伦理声明 研究方案经北京大学深圳医院伦理委员会批准;患者术前均签署知情同意书
作者贡献声明 俞莉敏:研究设计与手术实施;马宇龙、官志平:病例随访、数据收集整理及统计分析;王文豪、黄永灿:起草文章、对文章的知识性内容作批评性审阅;俞莉敏、黄永灿:经费支持
Funding Statement
国家自然科学基金青年项目(81702171);深圳市科技创新委员会项目(JCYJ20150403091443319)
National Natural Science Foundation of China (81702171); Shenzhen Science and Technology Programs (JCYJ20150403091443319)
References
- 1.Goffin J, Geusens E, Vantomme N, et al Long-term follow-up after interbody fusion of the cervical spine. J Spinal Disord Tech. 2004;17(2):79–85. doi: 10.1097/00024720-200404000-00001. [DOI] [PubMed] [Google Scholar]
- 2.Anderson PA, Sasso RC, Riew KD Comparison of adverse events between the Bryan artificial cervical disc and anterior cervical arthrodesis. Spine (Phila Pa 1976) 2008;33(12):1305–1312. doi: 10.1097/BRS.0b013e31817329a1. [DOI] [PubMed] [Google Scholar]
- 3.Radcliff K, Spivak J, Darden B, et al Five-year reoperation rates of 2-level lumbar total disk replacement versus fusion: Results of a prospective, randomized clinical trial. Clin Spine Surg. 2018;31(1):37–42. doi: 10.1097/BSD.0000000000000476. [DOI] [PubMed] [Google Scholar]
- 4.Garrido BJ, Taha TA, Sasso RC Clinical outcomes of Bryan cervical disc arthroplasty a prospective, randomized, controlled, single site trial with 48-month follow-up. J Spinal Disord Tech. 2010;23(6):367–371. doi: 10.1097/BSD.0b013e3181bb8568. [DOI] [PubMed] [Google Scholar]
- 5.Mehren C, Heider F, Sauer D, et al Clinical and radiological outcome of a new total cervical disc replacement design. Spine (Phila Pa 1976) 2019;44(4):E202–E210. doi: 10.1097/BRS.0000000000002799. [DOI] [PubMed] [Google Scholar]
- 6.Loumeau TP, Darden BV, Kesman TJ, et al A RCT comparing 7-year clinical outcomes of one level symptomatic cervical disc disease (SCDD) following ProDisc-C total disc arthroplasty (TDA) versus anterior cervical discectomy and fusion (ACDF) Eur Spine J. 2016;25(7):2263–2270. doi: 10.1007/s00586-016-4431-6. [DOI] [PubMed] [Google Scholar]
- 7.Cao S, Zhao Y, Sun Y, et al Single-level cervical arthroplasty with prodisc-C vivo artificial disc: Five-year follow-up results from one center. Spine (Phila Pa 1976) 2022;47(2):122–127. doi: 10.1097/BRS.0000000000004119. [DOI] [PubMed] [Google Scholar]
- 8.van Hooff ML, Heesterbeek PJC, Spruit M Mechanical stability of the prodisc-C vivo cervical disc arthroplasty: A preliminary, observational study using radiostereometric analysis. Global Spine J. 2020;10(3):294–302. doi: 10.1177/2192568219850763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Heo DH, Lee DC, Oh JY, et al. Bone loss of vertebral bodies at the operative segment after cervical arthroplasty: a potential complication? Neurosurg Focus, 2017, 42(2): E7. doi: 10.3171/2016.10.FOCUS16393.
- 10.曹鹏, 祁敏, 陈华江, 等 颈椎人工椎间盘置换术后异位骨化与小关节退变程度的相关性研究. 中华骨科杂志. 2015;35(4):357–361. doi: 10.3760/cma.j.issn.0253-2352.2015.04.009. [DOI] [Google Scholar]
- 11.Robinson RA, Smith G Anterolateral cervical disc removal and interbody fusion for cervical disc syndrome. Bull Johns Hopkins Hosp. 1955;96:223. doi: 10.1016/j.esas.2010.01.003. doi: 10.1016/j.esas.2010.01.003. [DOI] [Google Scholar]
- 12.Butler JS, Morrissey PB, Wagner SC, et al Surgical strategies to prevent adjacent segment disease in the cervical spine. Clin Spine Surg. 2019;32(3):91–97. doi: 10.1097/BSD.0000000000000632. [DOI] [PubMed] [Google Scholar]
- 13.Nabhan A, Ahlhelm F, Pitzen T, et al Disc replacement using Pro-Disc C versus fusion: a prospective randomised and controlled radiographic and clinical study. Eur Spine J. 2007;16(3):423–430. doi: 10.1007/s00586-006-0226-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Hilibrand AS, Robbins M. Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J, 2004, 4(6 Suppl): 190S-194S.
- 15.Badve SA, Nunley PD, Kurra S, et al Review of long-term outcomes of disc arthroplasty for symptomatic single level cervical degenerative disc disease. Expert Rev Med Devices. 2018;15(3):205–217. doi: 10.1080/17434440.2018.1433533. [DOI] [PubMed] [Google Scholar]
- 16.Hu Y, Lv G, Ren S, et al. Mid- to long-term outcomes of cervical disc arthroplasty versus anterior cervical discectomy and fusion for treatment of symptomatic cervical disc disease: A systematic review and meta-analysis of eight prospective randomized controlled trials. PLoS One, 2016, 11(2): e0149312. doi: 10.1371/journal.pone.0149312.
- 17.Côté P, Cassidy JD, Yong-Hing K, et al Apophysial joint degeneration, disc degeneration, and sagittal curve of the cervical spine. Can they be measured reliably on radiographs? Spine (Phila Pa 1976) 1997;22(8):859–864. doi: 10.1097/00007632-199704150-00007. [DOI] [PubMed] [Google Scholar]
- 18.Alhashash M, Shousha M, Boehm H Adjacent segment disease after cervical spine fusion: Evaluation of a 70 patient long-term follow-up. Spine (Phila Pa 1976) 2018;43(9):605–609. doi: 10.1097/BRS.0000000000002377. [DOI] [PubMed] [Google Scholar]
- 19.Pham MH, Mehta VA, Tuchman A, et al Material science in cervical total disc replacement. Biomed Res Int. 2015;2015:719123. doi: 10.1155/2015/719123. doi: 10.1155/2015/719123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Coric D, Kim PK, Clemente JD, et al Prospective randomized study of cervical arthroplasty and anterior cervical discectomy and fusion with long-term follow-up: results in 74 patients from a single site. J Neurosurg Spine. 2013;18(1):36–42. doi: 10.3171/2012.9.SPINE12555. [DOI] [PubMed] [Google Scholar]
- 21.王洋. 前路椎间盘切除术与Bryan人工椎间盘置换术治疗脊髓型颈椎病的长期疗效的比较. 济南: 山东大学, 2014.
- 22.Murrey D, Janssen M, Delamarter R, et al Results of the prospective, randomized, controlled multicenter Food and Drug Administration investigational device exemption study of the ProDisc-C total disc replacement versus anterior discectomy and fusion for the treatment of 1-level symptomatic cervical disc disease. Spine J. 2009;9(4):275–286. doi: 10.1016/j.spinee.2008.05.006. [DOI] [PubMed] [Google Scholar]
- 23.曹俊明, 申勇, 杨大龙, 等 Bryan人工颈椎间盘置换与颈前路椎间融合术后轴性症状的对比分析. 中国修复重建外科杂志. 2008;22(10):1200–1204. [PubMed] [Google Scholar]
- 24.Park DK, Lin EL, Phillips FM Index and adjacent level kinematics after cervical disc replacement and anterior fusion: in vivo quantitative radiographic analysis. Spine (Phila Pa 1976) 2011;36(9):721–730. doi: 10.1097/BRS.0b013e3181df10fc. [DOI] [PubMed] [Google Scholar]
- 25.刘浩, 邓宇骁, 刘子扬, 等 Pretic-Ⅰ人工颈椎间盘置换术治疗颈椎间盘突出症的早期疗效观察. 中国修复重建外科杂志. 2017;31(5):513–518. [Google Scholar]
- 26.Chang UK, Kim DH, Lee MC, et al Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion. J Neurosurg Spine. 2007;7(1):33–39. doi: 10.3171/SPI-07/07/033. [DOI] [PubMed] [Google Scholar]