Skip to main content
Journal of Clinical and Translational Hepatology logoLink to Journal of Clinical and Translational Hepatology
. 2022 Jul 14;10(6):1229–1239. doi: 10.14218/JCTH.2022.00085

Fatty Pancreas: Linking Pancreas Pathophysiology to Nonalcoholic Fatty Liver Disease

Manus Rugivarodom 1, Tanawat Geeratragool 1, Nonthalee Pausawasdi 1, Phunchai Charatcharoenwitthaya 1,*
PMCID: PMC9634764  PMID: 36381092

Abstract

Currently, scientific interest has focused on fat accumulation outside of subcutaneous adipose tissue. As various imaging modalities are available to quantify fat accumulation in particular organs, fatty pancreas has become an important area of research over the last decade. The pancreas has an essential role in regulating glucose metabolism and insulin secretion by responding to changes in nutrients under various metabolic circumstances. Mounting evidence has revealed that fatty pancreas is linked to impaired β-cell function and affects insulin secretion with metabolic consequences of impaired glucose metabolism, type 2 diabetes, and metabolic syndrome. It has been shown that there is a connection between fatty pancreas and the presence and severity of nonalcoholic fatty liver disease (NAFLD), which has become the predominant cause of chronic liver disease worldwide. Therefore, it is necessary to better understand the pathogenic mechanisms of fat accumulation in the pancreas and its relationship with NAFLD. This review summarizes the epidemiology, diagnosis, risk factors, and metabolic consequences of fatty pancreas and discusses its pathophysiology links to NAFLD.

Keywords: Fatty pancreas, Nonalcoholic fatty liver disease, β-cell function, Insulin resistance, Diabetes mellitus

Graphical abstract

graphic file with name JCTH-10-1229-ga.jpg

Introduction

The prevalence of obesity is rapidly increasing worldwide because of sedentary lifestyles and the westernization of diets.1 It is well known that obesity causes numerous metabolic derangements and accumulation of fat in specific visceral organs, including the liver and the pancreas.2 In the liver, the accumulation of triglycerides in the absence of excessive alcohol intake and other chronic liver diseases has been defined as nonalcoholic fatty liver disease (NAFLD). NAFLD can progress from simple steatosis to the more active form of nonalcoholic steatohepatitis and eventually lead to cirrhosis, hepatocellular carcinoma, and a short life expectancy.3,4 Recently, fat accumulation in the pancreas has gained considerable attention. Excessive fat storage in pancreatic tissue was first reported by Ogilvie in 1933, who called it pancreatic lipomatosis.5 The term pancreatic lipomatosis has since been replaced by various terms, including fatty pancreas, pancreatic steatosis, pancreatic fat accumulation, fatty infiltration of the pancreas, lipomatous pseudohypertrophy, and nonalcoholic fatty pancreas.68 In this review, the general term “fatty pancreas” refers to all cases of fat accumulation in the pancreas. To date, growing evidence has shown associations between fat content in the pancreas and the liver, suggesting a potential relationship between fatty pancreas and NAFLD. The data also suggest that fatty pancreas has unfavorable effects on glucose metabolism and that it is involved in the pathogenesis of NAFLD. This review summarizes the current knowledge on the epidemiology, diagnostic modality, risk factors, and metabolic consequences of fatty pancreas and its pathophysiology links to NAFLD.

Epidemiology

The prevalence of fatty pancreas varies significantly population ethnicity and the diagnostic methods used. Health examinations utilizing transabdominal ultrasound (US) show a prevalence of fatty pancreas ranging from 11% to 35% in Asian populations.911 The prevalence of fatty pancreas increased to 61.4% in individuals visiting an obesity clinic.12 However, data on the epidemiology of fatty pancreas in Western populations is limited. The prevalence of fatty pancreas was 27.8% in 230 patients who were referred for various reasons to an academic medical center in the United States of America for endoscopic ultrasound (EUS).13

To date, Wong and colleagues14 reported the most comprehensive data on the prevalence of fatty pancreas in the general population. A group of 685 adults chosen randomly from the government census database in Hong Kong, underwent standardized chemical shift-encoded magnetic resonance imaging (MRI) of the pancreas. The upper limit of normal was the ninety-fifth percentile of intrapancreatic fat deposition in individuals who did not meet any of the criteria for metabolic syndrome and had no history of alcohol abuse. Fatty pancreas was found in 16.1% of the general population [95% confidence interval (CI): 13.3–18.8%]. Data on the prevalence of fatty pancreas in selected populations of persons with various metabolic disorders were systematically reviewed by Singh and colleagues.15 A meta-analysis of 11 studies comprising 12,675 individuals estimated a pooled prevalence of 33% (95% CI: 24−41%).15 It is noteworthy that the included studies used a variety of imaging modalities. Fatty pancreas was found to be associated with a 67% increased risk of hypertension, a 108% increased risk of diabetes mellitus, and a 137% increased risk of metabolic syndrome.15 Several studies have reported an association between fatty pancreas and NAFLD.9,10,16 According to imaging studies, approximately 50–80% of patients with nonalcoholic steatohepatitis have fatty pancreas.17,18 The findings indicate that individuals with metabolic syndrome and NAFLD should be tested for fatty pancreas; however, further research is needed to better define the epidemiology of fatty pancreas.

Detection of pancreatic fat

Fat accumulation in the pancreas can be either intralobular or interlobular. Intralobular fat comprises lipid droplets in endocrine cells, lipid droplets in acinar cells, and the replacement of acinar or other apoptotic cells with adipocytes. In contrast, interlobular fat constitutes interlobular adipocytes and a small lipid droplet in stellate cells and is exclusively observed in a quiescent state.19 Intrapancreatic fat is usually located within the interstitial septa and spares the acini and islets of Langerhans,20 as shown in Figure 1. Of note, fat accumulation may be unequally distributed throughout the pancreas.21

Fig. 1. Histology of normal and fatty pancreas.

Fig. 1

Histological examination with hematoxylin and eosin stain reveals interlobular adipocytes (arrowhead, A1) predominately with only a few intralobular lipid droplets (arrowhead, A2), accounting for 3% of the total, indicating a normal pancreas (A3). Histological examination shows many peripancreatic (arrowhead, B1) and interlobular adipocytes (arrow, B2) with an increase in intralobular intracellular lipid droplets (B3), accounting for 23% of the total, indicating fatty pancreas.

Different cut-off values of fat accumulation in the pancreas for determining fatty pancreas have been used. An initial study reported that 60% of healthy subjects had a pancreatic fat content of more than 5%.14 Several studies found that a normal pancreas had a maximum fat content of 10.4%.14,22 A meta-analysis reported that the highest limit of normal pancreatic fat in healthy persons participating in MRI studies was 6.2%.15 This threshold is recommended for use in future research.

There is no standard grading system for the severity of fatty pancreas. In a cross-sectional study of 367 patients who underwent pancreatoduodenectomy for pancreatic ductal adenocarcinoma, the histology of pancreatic fat accumulation was classified into three grades, mild (fat infiltration of less than 10% of total pancreatic tissue), moderate (fat infiltration of 10–20% of total pancreatic tissue), and severe (fat infiltration of more than 20% of total pancreatic tissue).23 Therefore, to determine the presence and severity of fatty pancreas in routine patient care, standardized examination approaches with a clinically meaningful threshold for fatty pancreas must be developed.

Pathophysiology of pancreatic fat accumulation

The two main mechanisms for pancreatic fat accumulation are fatty replacement and fatty infiltration.6,8,24,25 Fatty replacement, which is often believed to be irreversible, occurs because of pancreatic acinar cell death. This theoretical pathogenic pathway was derived from animal and observational studies. In animal studies, pancreatic duct ligation resulted in an increased pancreas volume in mice because of interstitial edema in the first 2 days, followed by a rapid decrease in pancreas volume because of acinar cell apoptosis. After 2 weeks, the pancreas gradually became more prominent because of fatty replacement, reaching a volume comparable. to a normal pancreas within 8 weeks.26 Several human observational studies showed that pancreatic insults causing necrosis of acinar cells resulted in fatty replacement. Recurrent acute pancreatitis may reduce the parenchymal mass and substitute it with adipocytes.27,28 Medications, such as corticosteroids and gemcitabine, can induce pancreatic necrosis and fatty tissue replacement.2932 Certain congenital syndromes, including cystic fibrosis, hemochromatosis, Shwachman-Diamond syndrome, Johanson-Blizzard syndrome, and carboxyl-ester-lipase gene mutations, were found to be associated with pancreatic fatty replacement.6,25 In cystic fibrosis, mucous plugs obstruct the pancreatic ductules, causing pancreatic parenchyma damage and death, and the resulting empty spaces are occupied by adipocytes.33 In hemochromatosis, iron overload causes fatal damage to the pancreatic parenchyma, which is subsequently replaced by adipose tissue.6 The pathophysiology of fatty pancreas in specific congenital syndromes is not yet known.

On the other hand, fatty infiltration of the pancreas by adipocytes that typically occurs in obesity is potentially reversible.6 Circulating free fatty acids, dietary fat intake, and de novo lipogenesis are all potential sources of fatty infiltration.34 In an animal study, Zucker diabetic fatty rats fed a high-fat diet developed fat accumulation in pancreatic acinar cells.35 Animal and in vitro studies led to the description of a potential mechanism of fatty infiltration. In the presence of oxidative stress, an increase in free fatty acid transport to the pancreas by very-low-density lipoprotein and changes in various adipokines such as adiponectin,36 lipocalin-2,37 and hepatokine fetuin-A38 via the serine/threonine-protein kinase 25 (STK-25) pathway may contribute to this type of pancreatic fat accumulation.39

Risk factors for fatty pancreas

Age, sex, and ethnicity have been shown to be associated with fatty pancreas.9,10,16,40 In addition to genetic predisposition, metabolic and environmental risk factors, notably cigarette smoking and alcohol consumption, have been linked to fatty pancreas.41,42 Fat accumulation in the pancreas increases until the sixth decade, whereas parenchymal pancreatic volume increases until the third decade and then declines. That leads to an increase in the fat/parenchymal ratio in the elderly.43 According to a study that used fat-water MRI and proton-magnetic resonance spectroscopy (MRS) to measure pancreatic fat in healthy Chinese subjects, the overall risks of developing fatty pancreas were 4.95 (95% CI: 2.07–11.8) in elderly and 3.20 (95% CI: 1.44–7.15) in middle-aged, compared with young adults.14

The prevalence of fatty pancreas also varies with sex. Obese men have higher visceral adipose tissue (VAT) and ectopic fat deposition in the liver and pancreas than obese women, regardless of body mass index (BMI).44 Fatty pancreas is more common in men between 40 and 49 years of age. In women, the prevalence of fatty pancreas is highest after the sixth decade.14 This finding is supported by data showing that menopause changes adipose tissue toward a more android phenotype.45

The occurrence of fatty pancreas also differs with ethnicity. Fatty pancreas defined by MRI is more prevalent in Hispanics and Caucasians than in African Americans.46,47 A study that used computed tomography (CT) as a diagnostic modality found that Asians were more likely than Caucasians to have fatty pancreas.48 Insulin resistance has been associated with fatty pancreas in African Americans but not in Hispanics.49

The impact of lifestyle factors, such as tobacco smoking and alcohol consumption, on the development of fatty pancreas has been evaluated. Alcohol intake, even moderate alcohol consumption, was associated with increased fat deposition in the pancreas.17 In a study using MRI to measure intrapancreatic fat deposition, the amount of tobacco used but not the duration of smoking contributed to a higher variation in intrapancreatic fat deposition in patients after an attack of acute pancreatitis.42 This finding provides insight into the interplay between these risk factors and pancreatic fat deposition, particularly after pancreatitis.

Several investigations have discovered an association between metabolic syndrome and an increased risk of fatty pancreas in individuals with different ethnic backgrounds.9,13,50,51 Metabolic features, including increased BMI and obesity, have been linked to pancreatic fat accumulation.44,52,53 The association is likely attributed to visceral obesity, as VAT is related to fatty pancreas. Other components of the metabolic syndrome, such as hypertension, diabetes, and hypertriglyceridemia, have also been reported to be independent factors associated with fatty pancreas.9,10,13,16,40

Local inflammation of the pancreas has been shown to be associated with pancreatic fatty replacement. A study evaluating clinical and radiological characteristics of patients with chronic pancreatitis showed that more severe chronic pancreatitis was significantly correlated with higher intrapancreatic fat content measured by MRI.54 A systematic review of 13 studies, including 2178 patients, reported a prevalence of fatty pancreas of up to 52% in patients with pancreatic cancer or other premalignant lesions.55 Moreover, the presence of precancerous or cancerous lesions significantly increased the risk of fatty pancreas [relative risk (RR) 2.78, 95% CI: 1.56−4.94].

Diagnosis of fatty pancreas

Tissue sampling of the pancreas is not feasible for determining fatty pancreas in daily practice because of its anatomical position. Imaging modalities allow for the noninvasive detection and quantification of fat accumulation in the pancreas. Transabdominal US has been used to visualize pancreatic tissue and detect fat accumulation within the organ. Fatty pancreas is diagnosed by comparing the echogenicity of the pancreas with that of the kidney16 or liver10 (Fig. 2). The diagnostic accuracy of this method is hampered by operator dependency, body habitus interference, and changes in parenchymal echogenicity caused by pancreatic fibrosis.7 EUS has been used to estimate pancreatic fat content. The presence of fatty pancreas was determined by comparing the echogenicity of the pancreas to that of the spleen.56 The grading system for EUS was proposed based on the pancreatic parenchymal echogenicity with the identifiable characteristic fine “salt and pepper” dots in the pancreatic parenchyma and the visibility of the pancreatic duct margin (Fig. 2).13 The severity of fatty pancreas was reported as grade I (hypoechoic or isoechoic parenchyma with a clear appearance of salt and pepper dots in the pancreatic parenchyma and a clear delineation of the main pancreatic duct), grade II (hyperechoic parenchyma with a clear appearance of salt and pepper dots in the pancreatic parenchyma and a clear delineation of the main pancreatic duct), grade III (moderately hyperechoic parenchyma with moderate obscuration of salt and pepper dots in the pancreatic parenchyma and the pancreatic duct margin), or grade IV (severely hyperechoic parenchyma with severe obscuration of salt and pepper dots in the pancreatic parenchyma and the pancreatic duct margin).13 However, the system has not been validated by histologic examination or pancreatic fat estimation using CT or MRI. Although EUS enables clear visualization because of the short distances between the measurement instrument and the area of interest, it still has limitations similar to transabdominal US, such as operator dependence. Notably, the need for an endoscopic examination makes EUS relatively more invasive than other imaging modalities. CT is a commonly used imaging technology for quantifying pancreatic fat. As the radiodensity of different tissues and organic substances in CT images varies the acquisition and reconstruction parameters, pancreatic fat measurement is compared to an internal reference tissue with no lipid content, such as the spleen. With fatty pancreas, nonenhanced CT images depict decreased attenuation of the pancreas (Fig. 2).57 Further, the difference between pancreatic and splenic attenuation can objectively estimate the severity of fatty pancreas.51,58,59 The main strengths of this modality are the wide availability and relatively short imaging time; however, the risk of radiation exposure is a significant drawback.

Fig. 2. Imaging of fatty pancreas.

Fig. 2

(A) Transabdominal ultrasonography shows iso-echogenicity of normal pancreatic parenchyma (arrowhead) compared with the liver. (B) A sonographic image of fatty pancreas reveals increased parenchymal echogenicity of the pancreas (arrowhead) compared with the liver. (C) Computed tomography of the normal pancreas shows iso-attenuation of the pancreas compared with the spleen. (D) Computed tomography of histologically proven fatty pancreas reveals lower pancreatic parenchyma attenuation compared to the spleen. (E) Endoscopic ultrasound shows iso-echogenicity of normal pancreatic parenchyma with a distinctive salt and pepper appearance and a delineated main pancreatic duct. (F) An endosonographic image of fatty pancreas reveals increased parenchymal echogenicity, obscuring the characteristic salt and pepper appearance and the main pancreatic duct margin. (G) Magnetic resonance imaging with the Dixon technique of a subject with normal pancreatic fat content. (H) Magnetic resonance imaging of the pancreatic fat fraction with the Dixon technique in a subject with fatty pancreas.

MRI using the advanced multi-echo Dixon technique is a method of quantifying pancreatic fat accumulation. The technique provides a reliable and reproducible mapping of pancreatic proton density fat fraction, which has been shown to be correlated with histologically assessed fat content with a correlation coefficient of 0.71.60 Nonetheless, the use of MRI is limited by low availability, high acquisition cost, and the time requirements of the examination procedure. MRI is also susceptible to observer-dependent bias because the inhomogeneous distribution of fat in the pancreas on an almost homogeneous background of retroperitoneal fat (Fig. 2). New MRI techniques, such as MRS, MR chemical shift imaging, and MR-opsy have improved diagnostic accuracy and have minimized interobserver variation.61,62 MRI-proton density fat fraction (MRI-PDFF) is currently considered the most accurate method for quantifying visceral fat. It decreases T1 bias and T2* decay and lowers the signal-interference effect of protons in fat.63 However, few studies have used MRI-PDFF to quantify pancreatic fat.64,65 A study evaluating pancreatic fat with MRI-PDFF showed that histologic pancreatic fat content was significantly correlated with pancreatic fat quantified by MRI-PDFF (r=0.802).65 In addition to its good correlation with histology, MRI-PDFF has gained popularity because it is more available and less technically difficult compared with other MRI-based methods.6668

Metabolic consequence of fatty pancreas

Experimental and clinical studies provide evidence that fatty pancreas is associated with the development of prediabetes, type 2 diabetes mellitus (T2DM), and metabolic syndrome through the main mechanisms of β-cell dysfunction and insulin resistance (Fig. 3).

Fig. 3. Organ crosstalk in the pathophysiology of fatty pancreas and nonalcoholic fatty liver disease (NAFLD).

Fig. 3

Excessive calorie consumption and specific dietary components increase the risk of insulin resistance, metabolic disorders, and fat accumulation in the liver, pancreas, and visceral adipose tissue (VAT). In insulin resistance, hepatic steatosis with an increased hepatic very-low-density lipoprotein (VLDL) can accelerate fat accumulation in the pancreas, causing islet cell death. Alterations in adipocytokines, such as increased lipocalin-2 and serine/threonine-protein kinase 25 (STK-25) and decreased adiponectin from VAT and pancreatic fat, directly cause β-cell death. Fetuin-A, a hepatokine generated by the fatty liver, activates adipocytes and macrophages in the pancreatic islets and accelerates β-cell dysfunction, leading to insulin resistance and ectopic fat deposition in other tissues. Hepatic fat accumulation further promotes insulin resistance, resulting in a self-perpetuating loop in which insulin stimulates the synthesis of free fatty acids (FFA) spilling into the pancreas. This vicious cycle interaction between the liver and pancreas is the twin cycle hypothesis. Moreover, fatty pancreas and insulin resistance promote fat accumulation in the liver and accelerate the progression of NAFLD.

Fatty pancreas and β-cell dysfunction

Animal and preclinical studies have shown that fatty pancreas induces local inflammation that causes β-cell destruction. In mice fed a high-fat diet, the overexpression of STK-25 from ectopic adipose tissue aggravates fat infiltration of the pancreas, resulting from increased pancreatic inflammatory cell infiltration, apoptosis, stellate cell activation, and fibrosis. The process ultimately causes a decrease in islet β/α-cell ratio and alteration of islet architecture.69 Moreover, increased pancreatic free fatty acid and lipid peroxidation are associated with acinar cells and islet destruction.70

Glucolipotoxicity is the conceptual hypothesis that explains the role of fatty pancreas in β-cell dysfunction. Hyperglycemia causes an increase in malonyl coenzyme A via the tricarboxylic acid cycle. Increased malonyl coenzyme A inhibits carnitine palmitoyltransferase-1 and reduces mitochondrial β-oxidation while promoting intracellular triglyceride accumulation in β-cells. The lipolysis from VAT increases circulating free fatty acids and then promotes intracellular triglyceride accumulation in β-cells. Chronic intracellular triglyceride accumulation blunts insulin gene expression, and glucose-stimulated insulin secretion results in β-cell dysfunction. In addition, alterations of adipocytokines, such as increased lipocalin-2 and STK-25 and decreased adiponectin from VAT and pancreatic fat, directly cause β-cell death.8,34

Human studies have shown an association between fatty pancreas and β-cell dysfunction. The mean pancreatic fat content using MRI measurement was inversely associated with insulin secretion using the oral glucose tolerance test (OGTT) in patients with impaired fasting glycemia (IFG) and impaired glucose tolerance (IGT).53 A study in men found that pancreatic fat content measured by MRS was independently associated with various aspects of β-cell function.71 However, the association was not found in men with diabetes. The findings highlight the importance of fatty pancreas in the deterioration of glucose homeostasis. Other factors superimposing the effect of fatty pancreas may contribute to a progressive decline in β-cell function once diabetes develops. On the contrary, some human studies have found no association between fatty pancreas and β-cell dysfunction. In a large cohort of adult Chinese subjects, fatty pancreas evaluated by MRI was not associated with β-cell function measured by homeostasis model assessment (HOMA-β) after adjusting for liver fat and BMI.14 Another study using MRS to diagnose fatty pancreas did not find associations between total and intralobular pancreatic adipose tissue infiltration and insulin secretion or β-cell function in either normal populations or in patients with prediabetes or diabetes.72

Fatty pancreas and insulin resistance

Preclinical studies revealed that C57BL/6 mice fed a high-fat diet developed NAFLD and fatty pancreas that resulted in insulin resistance determined by the intraperitoneal insulin tolerance test and the OGTT.73 However, the association between fatty pancreas and insulin resistance remains controversial in human studies. Insulin resistance confirmed by homeostasis model assessment of insulin resistance (HOMA-IR), circulating levels of tumor necrosis factor-α, and interleukin-1b, was higher in obese children with NAFLD complicated by fatty pancreas than in children without fatty pancreas.74 Although a large cohort of Chinese adults did not show an association between fatty pancreas and HOMA-β, adults with both fatty pancreas and NAFLD had a higher HOMA-IR than those with either condition alone. Furthermore, even after adjusting for hepatic fat content and BMI, pancreatic fat content was still associated with HOMA-IR.14 In patients with IFG or IGT, a positive correlation of insulin resistance determined by both HOMA-IR and a euglycemic clamp with the severity of fatty pancreas was observed.12,75 However, after adjusting for VAT, the association between fatty pancreas and HOMA-IR disappeared, implying that VAT was more strongly associated or mediated the relationship between fatty pancreas and insulin resistance. Another study in obese subjects showed that insulin resistance using HOMA-IR was associated with NAFLD but not with fatty pancreas.44 Based on the existing evidence, it is not clear whether fatty pancreas is associated with insulin resistance because it contributes to β-cell dysfunction or is a consequence of obesity.

Prediabetes, diabetes, and metabolic syndrome

Several clinical studies disclosed the relationship of fatty pancreas with prediabetes states, diabetes, and metabolic syndrome (Table 1).911,15,16,22,40,51,59,76,77 A cross-sectional study of 7464 patients showed that fatty pancreas detected by transabdominal US was independently associated with prediabetes (OR 1.22, 95% CI: 1.00−1.49) and T2DM (OR 1.38, 95% CI: 1.05−1.82).76 The findings were further supported by a prospective longitudinal study showing that prediabetes was associated with the development of fatty pancreas in patients who did not have fat accumulation in the pancreas at baseline.58 To account for the potential confounding effect of baseline obesity, a prospective cohort of nonobese individuals were followed for a median of 6.19 years. The results confirmed that fatty pancreas diagnosed by CT was significantly associated with developing T2DM, with an OR of 1.32 (95% CI: 1.06−1.63).59 Each increased percentage point of pancreatic fat increased the risk of incident diabetes by 7%.22 Additionally, fatty pancreas was associated with the subsequent development of metabolic syndrome.51 A meta-analysis of 11 studies including 12,675 individuals showed that fatty pancreas was significantly associated with T2DM (RR 2.08, 95% CI: 1.44−3.0), metabolic syndrome (RR 2.37, 95% CI: 2.07−2.71), and hypertension (RR 1.67, 95% CI: 1.32−2.10).15 The results are in line with data from a recent meta-analysis of 13 studies investigating 49,329 patients displaying an association between fatty pancreas and significantly increased risks of T2DM (RR 1.99, 95% CI: 1.18−3.35), metabolic syndrome (RR 2.25, 95% CI: 2.00−2.53), arterial hypertension (RR 1.43, 95% CI: 1.08−1.90), and central obesity (RR 1.91, 95% CI: 1.67−2.19).77 Large meta-analyses have explored the association between metabolic conditions and NAFLD,78,79 and it is now established that there is a vicious cycle of NAFLD and metabolic dysfunction (Fig. 3). Taken together, existing evidence highlights the interplay between fatty pancreas, NAFLD, and components of metabolic syndrome.

Table 1. Clinical studies of the relationships of fatty pancreas, metabolic dysfunction, and NAFLD.

Author Year Study Design No. of Patients Diagnostic Modality Fatty Pancreas in Relation to Metabolic Dysfunction and NAFLD
Metabolic dysfunction
  Ou et al.76 2013 Retrospective 7464 Transabdominal US Increase the risk of prediabetes (OR 1.22, 95% CI: 1.002–1.491). Increase the risk of diabetes (OR 1.38, 95% CI: 1.05–1.82).
  Wang et al.16 2014 Cross-sectional 8097 Transabdominal US Association with age (OR 2.221, 95% CI: 1.895–2.602), obesity (OR 1.908, 95% CI: 1.641–2.219), and diabetes (OR 1.465, 95% CI: 1.194–1.797).
  Lesmana et al.10 2015 Cross-sectional 1054 Transabdominal US Association with diabetes (OR 1.95, 95 % CI: 1.16–3.28), male sex (OR 1.82, 95% CI: 1.35–2.45), age >35 years (OR 4.01, 95% CI: 2.82–5.70), hypertension (OR 2.18, 95% CI: 1.58–2.99), central obesity (OR 4.13, 95% CI: 3.09–5.52), hypertriglyceridemia (OR 1.92, 95% CI: 1.41–2.62), and hypercholesterolemia (OR 1.88, 95% CI: 1.42–2.49).
  Singh et al.15 2016 Systematic review 1209 MRI Increase the risk of diabetes (RR 2.08, 95% CI: 1.44–3.0). Increase risk of metabolic syndrome (RR 2.37, 95% CI: 2.07–2.71)
  Zhou et al.9 2016 Cross-sectional 1190 Transabdominal US Association with age <40 years (OR 0.41, 95% CI: 0.27–0.64), central obesity (OR 5.76, 95% CI: 3.75–8.84), diabetes (OR 1.52 95% CI: 1.08–2.14), and hypertriglyceridemia (OR 1.35, 95% CI: 1.01–1.80).
  Yamazaki et al.51 2018 Prospective 320 CT scan Increase risk of metabolic syndrome (RR 2.04, 95% CI: 1.14–3.64).
  Wang et al.40 2018 Cross-sectional 2093 Transabdominal US Association with central obesity (OR 5.36, 95% CI: 1.89–15.2), NAFLD (OR 2.67, 95% CI: 1.33–5.34), and age (OR 1.03, 95% CI: 1.01–1.06).
  Weng et al.11 2018 Cross-sectional 4419 Transabdominal US The severity of fatty pancreas was correlated with central obesity (OR 0.06, 95% CI: 0.02–0.15), and triglyceride level (0.67, 95% CI: 0.50–0.92).
  Bi et al.77 2019 Meta-analysis 49,329 Transabdominal US, EUS, MRI Increase the risk of diabetes (RR 1.99, 95% CI 1.67–2.19). Increase risk of metabolic syndrome (RR 2.2.5, 95% CI: 2.00–2.53).
  Yamazaki et al.59 2020 Prospective 1478 CT scan Increases risk of diabetes (OR 1.32, 95% CI: 1.06–1.63).
  Chan et al.22 2021 Prospective 631 MRI Increases risk of diabetes (HR 1.81, 95% CI: 1.1–3.0).
NAFLD
  Schwenzer et al.89 2008 Cross-sectional 17 MRI No correlation with hepatic fat content.
  van Greenen et al.90 2010 Cross-sectional 80 Autopsy pathology No association with NAFLD when adjusting for BMI.
  Targher et al.52 2012 Cross-sectional 42 MRI No correlation with liver fat when adjusted for age, sex, and visceral fat content.
  Wang et al.16 2014 Cross-sectional 8097 Transabdominal US Association with NAFLD (OR 2.28, 95% CI: 1.96–2.65).
  Uygun et al.18 2015 Cross-sectional 119 Transabdominal US The prevalence of fatty pancreas in NASH patients was higher than that of the healthy controls (51.2% vs. 14%, p=0.001).
The combined prevalence of diabetes and prediabetes was higher in patients with NASH and fatty pancreas than patients with only NASH (74.4% vs. 41.4%, p=0.004).
  Pacifico et al.88 2015 Cross-sectional 158 MRI No association with hepatic fat content when adjusted for age, gender, Tanner stage, BMI standard deviation score, and visceral adipose tissue.
  Lesmana et al.10 2015 Cross-sectional 1054 Transabdominal US Association with NAFLD (OR 5.20, 95 % CI: 3.84–7.03).
  Zhou et al.9 2016 Cross-sectional 1190 Transabdominal US Association with NAFLD (OR 2.52, 95% CI: 1.83–3.48).
  Wang et al.40 2018 Cross-sectional 2093 Transabdominal US Association with NAFLD (OR 2.67, 95% CI: 1.33–5.34).
  Weng et al.11 2018 Cross-sectional 4419 Transabdominal US The severity of fatty pancreas was correlated with NAFLD (OR 0.27, 95% CI: 0.13–0.54).
  Rosenblatt et al.91 2019 Retrospective 104 Transabdominal US Increase the risk of advanced liver fibrosis (OR 10.52, p<0.001). Extensive pancreatic fat accumulation increases the risk of NASH (OR 5.37, p<0.001).
  Bi et al.77 2019 Meta-analysis 49,329 Transabdominal US, EUS, MRI Increase the risk of NAFLD (RR 2.49, 95% CI: 2.06–3.02).

ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; CI, confidence interval; CT, computed tomography; EUS, endoscopic ultrasound; HDL, high-density lipoprotein), HOMA-IR, homeostasis model assessment of insulin resistance; HR, hazard ratio; LDL, low-density lipoprotein, NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; MRI, magnetic resonance imaging; OR, odds ratio; RR, relative risk; TG, triglyceride; US, ultrasonography.

Links between fatty pancreas and NAFLD

The pancreas and liver are derived from the same embryonic endoderm, which explains the relationship between fatty pancreas and NAFLD. Patients with fatty pancreas may be at increased risk of NAFLD development and progression because intrapancreatic fat affects glucose metabolism and insulin secretion. Available evidence from experimental models and human studies suggests a bidirectional relationship between fatty pancreas and NAFLD.6,19,24,39

Evidence from animal and translational studies

Early studies found that obesity was linked to increased fat accumulation in the pancreas by changes of metabolic mediators including adiponectin and lipocalin-2.36,37 In the context of insulin resistance and hyperglycemia, hepatic steatosis with an increased hepatic very-low-density lipoprotein accelerates fat accumulation in the pancreas, causing islet cell death.34,80 Fetuin-A, a hepatokine generated by a fatty liver, activates adipocytes and macrophages in the pancreatic islets of Langerhans, which are responsible for producing and releasing hormones regulating glucose homeostasis. Increased chemoattractant expression promotes macrophage or monocyte infiltration and the expression of cytotoxic proinflammatory cytokines.38 Pancreatic inflammation induced by triggering a proinflammatory response in pancreatic fat cells and islet macrophages/monocytes accelerate β-cell failure, leading to insulin resistance and ectopic fat deposition in other tissues, including the liver.12,8185 Hepatic fat accumulation further promotes insulin resistance, resulting in a self-perpetuating loop in which insulin stimulates the synthesis of free fatty acids spilling into the pancreas.86 The cyclic interaction between the liver and pancreas is known as the twin cycle hypothesis (Fig. 3).87

Evidence from clinical studies

Several cross-sectional human studies showed that NAFLD is an independent factor associated with fatty pancreas (Table 1).911,16,18,40,52,77,8891 Likewise, NAFLD was associated with more severe fat accumulation in the pancreas.11 On the other hand, a recent meta-analysis including 49,329 individuals revealed that fatty pancreas was independently associated with NAFLD (RR 2.49, 95% CI: 2.06−3.02).77 Fatty pancreas is prevalent among patients with nonalcoholic steatohepatitis and increases the rate of prediabetes and diabetes.18 Further, fatty pancreas was also related to subclinical atherosclerosis in NAFLD patients.92

Cumulative evidence has shown that fatty pancreas is significantly associated with more severe histologic features of NAFLD. The histological evaluation of NAFLD children showed a higher liver fibrosis stage, hepatocyte ballooning grading, and NAFLD activity score among NAFLD patients coexisting with fatty pancreas.74 A postmortem pathology study found that intralobular pancreatic fat was associated with nonalcoholic steatohepatitis.90 An analysis of 104 adults with biopsy-proven NAFLD demonstrated that ultrasonographic fatty pancreas was significantly associated with the histologic feature of nonalcoholic steatohepatitis (OR 5.37).91 As fatty pancreas is independently associated with nonalcoholic steatohepatitis and fibrosis stage, fatty pancreas is a potential driver of NAFLD progression.91 Therefore, the existence of fatty pancreas in the NAFLD population warrants meticulous attention.81

Interestingly, a study exploring pancreatic and hepatic fat after bariatric surgery showed that bariatric surgery reduced hepatic and pancreatic fat. Nevertheless, there was no correlation between hepatic and pancreatic fat content reduction, suggesting the tissue-specific mobilization of these ectopic fat stores.93 From this finding, it seems that the association between fatty pancreas and NAFLD is mediated by obesity.

Therapeutic approaches for fatty pancreas

Weight reduction is currently the most effective treatment for NAFLD. Weight loss, whether accomplished by diet and lifestyle modifications, bariatric surgery, or pharmacotherapy, has been shown to improve NAFLD biomarkers, prevent progression, and reverses fibrosis in some cases. Given the importance of providing effective weight loss treatment to patients suffering from obesity-related disorders, much clinical research has examined the effect of weight loss interventions in patients with fatty pancreas.24 Evidence from a randomized controlled trial showed that exercise significantly reduced fat accumulation in the pancreas as measured by MRS, and it improved insulin sensitivity.94 A post-hoc analysis of the data from a randomized controlled trial for assessing weight management intervention for T2DM demonstrated that intrapancreatic fat content quantified by MRI significantly declined in T2DM patients with weight loss-induced diabetes remission.95

Glucagon-like peptide 1 receptor agonists are the only pharmacotherapy shown to reduce pancreatic fat content. The literature is limited, but a few reports have shown that 6 months of exenatide,96 liraglutide,97 and dulaglutide,98 treatment improved liver fat content in patients with T2DM but did not significantly change pancreatic fat content measured by MRI techniques. However, because these drugs induce mild weight reduction in such patients, they may not be effective in causing a decrease in pancreatic fat content.

Several studies investigated the effects of bariatric surgery and subsequent significant weight loss on the fat content of the pancreas.93,99102 Although all of the studies showed a significant decrease in pancreatic fat content after surgery, the change was independent of a reduction in liver fat content. The results also showed improvement of β-cell function in response to loss of pancreatic fat after bariatric surgery.93,100 Discovering the molecular pathways that mediate the metabolic consequences of fatty pancreas would enable clinicians to target the pancreas therapeutically in the management of patients with NAFLD and fatty pancreas.

Conclusion

The understanding of fatty pancreas has evolved since the discovery of its relationship with obesity. Age, sex, ethnicity, unhealthy lifestyle, and metabolic disorders are all risk factors. Several imaging modalities have been developed to diagnose fatty pancreas, with MRI being the most accurate method for quantifying pancreatic fat content in clinical studies. Advancements in imaging technology have helped to comprehend pathophysiological relationships between fatty pancreas and other obesity-related disorders, including NAFLD. It is evident that fat accumulation in the pancreas is harmful and subsequently induces mechanisms that impair endocrine function. Moreover, recognizing the strong relationship between fatty pancreas and metabolic disorders has stimulated considerable interest in the putative impact of fatty pancreas on the development and progression of NAFLD. Growing evidence has uncovered potential linkages and therapeutic possibilities for fatty pancreas and NAFLD. Moreover, several questions have been raised. How can we better stratify individuals with fatty pancreas who are at high risk of developing metabolic syndrome and NAFLD? Are there any noninvasive biomarkers that can accurately detect fatty pancreas? Are there different types of fatty pancreas, and how do they affect the natural course of NAFLD? What are the best therapeutic approaches for patients with fatty pancreas and NAFLD? Further studies focusing on the pathophysiologic mechanisms may provide novel therapeutics for individuals with NAFLD and fatty pancreas.

Abbreviations

CT

computed tomography

EUS

endoscopic ultrasound

HOMA-IR

homeostasis model assessment of insulin resistance

HOMA-β

homeostasis model assessment of β-cell function

IFG

impaired fasting glycemia

IGT

impaired glucose tolerance

HR

hazard ratio

MRI

magnetic resonance imaging

MRS

magnetic resonance spectroscopy

NAFLD

nonalcoholic fatty liver disease

OGTT

oral glucose tolerance test

OR

odds ratio

RR

relative risk

STK25

serine/threonine-protein kinase 25

US

ultrasound

VAT

visceral adipose tissue

References

  • 1.Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288–298. doi: 10.1038/s41574-019-0176-8. [DOI] [PubMed] [Google Scholar]
  • 2.Neeland IJ, Ross R, Després JP, Matsuzawa Y, Yamashita S, Shai I, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7(9):715–725. doi: 10.1016/s2213-8587(19)30084-1. [DOI] [PubMed] [Google Scholar]
  • 3.Estes C, Chan HLY, Chien RN, Chuang WL, Fung J, Goh GB, et al. Modelling NAFLD disease burden in four Asian regions-2019-2030. Aliment Pharmacol Ther. 2020;51(8):801–811. doi: 10.1111/apt.15673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. doi: 10.1002/hep.28431. [DOI] [PubMed] [Google Scholar]
  • 5.Ogilvie RF. The islands of langerhans in 19 cases of obesity. J Pathol Bacteriol. 1933;37(3):473–481. doi: 10.1002/path.1700370314. [DOI] [Google Scholar]
  • 6.Smits MM, van Geenen EJ. The clinical significance of pancreatic steatosis. Nat Rev Gastroenterol Hepatol. 2011;8(3):169–177. doi: 10.1038/nrgastro.2011.4. [DOI] [PubMed] [Google Scholar]
  • 7.Majumder S, Philip NA, Takahashi N, Levy MJ, Singh VP, Chari ST. Fatty Pancreas: Should We Be Concerned? Pancreas. 2017;46(10):1251–1258. doi: 10.1097/MPA.0000000000000941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Filippatos TD, Alexakis K, Mavrikaki V, Mikhailidis DP. Nonalcoholic Fatty Pancreas Disease: Role in Metabolic Syndrome, “Prediabetes,” Diabetes and Atherosclerosis. Dig Dis Sci. 2022;67(1):26–41. doi: 10.1007/s10620-021-06824-7. [DOI] [PubMed] [Google Scholar]
  • 9.Zhou J, Li ML, Zhang DD, Lin HY, Dai XH, Sun XL, et al. The correlation between pancreatic steatosis and metabolic syndrome in a Chinese population. Pancreatology. 2016;16(4):578–583. doi: 10.1016/j.pan.2016.03.008. [DOI] [PubMed] [Google Scholar]
  • 10.Lesmana CR, Pakasi LS, Inggriani S, Aidawati ML, Lesmana LA. Prevalence of Non-Alcoholic Fatty Pancreas Disease (NAFPD) and its risk factors among adult medical check-up patients in a private hospital: a large cross sectional study. BMC Gastroenterol. 2015;15:174. doi: 10.1186/s12876-015-0404-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Weng S, Zhou J, Chen X, Sun Y, Mao Z, Chai K. Prevalence and factors associated with nonalcoholic fatty pancreas disease and its severity in China. Medicine (Baltimore) 2018;97(26):e11293. doi: 10.1097/md.0000000000011293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Lee JS, Kim SH, Jun DW, Han JH, Jang EC, Park JY, et al. Clinical implications of fatty pancreas: correlations between fatty pancreas and metabolic syndrome. World J Gastroenterol. 2009;15(15):1869–1875. doi: 10.3748/wjg.15.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Sepe PS, Ohri A, Sanaka S, Berzin TM, Sekhon S, Bennett G, et al. A prospective evaluation of fatty pancreas by using EUS. Gastrointest Endosc. 2011;73(5):987–993. doi: 10.1016/j.gie.2011.01.015. [DOI] [PubMed] [Google Scholar]
  • 14.Wong VW, Wong GL, Yeung DK, Abrigo JM, Kong AP, Chan RS, et al. Fatty pancreas, insulin resistance, and β-cell function: a population study using fat-water magnetic resonance imaging. Am J Gastroenterol. 2014;109(4):589–597. doi: 10.1038/ajg.2014.1. [DOI] [PubMed] [Google Scholar]
  • 15.Singh RG, Yoon HD, Wu LM, Lu J, Plank LD, Petrov MS. Ectopic fat accumulation in the pancreas and its clinical relevance: A systematic review, meta-analysis, and meta-regression. Metabolism. 2017;69:1–13. doi: 10.1016/j.metabol.2016.12.012. [DOI] [PubMed] [Google Scholar]
  • 16.Wang CY, Ou HY, Chen MF, Chang TC, Chang CJ. Enigmatic ectopic fat: prevalence of nonalcoholic fatty pancreas disease and its associated factors in a Chinese population. J Am Heart Assoc. 2014;3(1):e000297. doi: 10.1161/JAHA.113.000297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Al-Haddad M, Khashab M, Zyromski N, Pungpapong S, Wallace MB, Scolapio J, et al. Risk factors for hyperechogenic pancreas on endoscopic ultrasound: a case-control study. Pancreas. 2009;38(6):672–675. doi: 10.1097/MPA.0b013e3181a9d5af. [DOI] [PubMed] [Google Scholar]
  • 18.Uygun A, Kadayifci A, Demirci H, Saglam M, Sakin YS, Ozturk K, et al. The effect of fatty pancreas on serum glucose parameters in patients with nonalcoholic steatohepatitis. Eur J Intern Med. 2015;26(1):37–41. doi: 10.1016/j.ejim.2014.11.007. [DOI] [PubMed] [Google Scholar]
  • 19.Petrov MS, Taylor R. Intra-pancreatic fat deposition: bringing hidden fat to the fore. Nat Rev Gastroenterol Hepatol. 2022;19(3):153–168. doi: 10.1038/s41575-021-00551-0. [DOI] [PubMed] [Google Scholar]
  • 20.Shah N, Rocha JP, Bhutiani N, Endashaw O. Nonalcoholic Fatty Pancreas Disease. Nutr Clin Pract. 2019;34(Suppl 1):S49–S56. doi: 10.1002/ncp.10397. [DOI] [PubMed] [Google Scholar]
  • 21.Matsumoto S, Mori H, Miyake H, Takaki H, Maeda T, Yamada Y, et al. Uneven fatty replacement of the pancreas: evaluation with CT. Radiology. 1995;194(2):453–458. doi: 10.1148/radiology.194.2.7824726. [DOI] [PubMed] [Google Scholar]
  • 22.Chan TT, Tse YK, Lui RN, Wong GL, Chim AM, Kong AP, et al. Fatty Pancreas Is Independently Associated With Subsequent Diabetes Mellitus Development: A 10-Year Prospective Cohort Study. Clin Gastroenterol Hepatol. 2021 doi: 10.1016/j.cgh.2021.09.027. [DOI] [PubMed] [Google Scholar]
  • 23.Hori M, Takahashi M, Hiraoka N, Yamaji T, Mutoh M, Ishigamori R, et al. Association of pancreatic Fatty infiltration with pancreatic ductal adenocarcinoma. Clin Transl Gastroenterol. 2014;5:e53. doi: 10.1038/ctg.2014.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Wagner R, Eckstein SS, Yamazaki H, Gerst F, Machann J, Jaghutriz BA, et al. Metabolic implications of pancreatic fat accumulation. Nat Rev Endocrinol. 2022;18(1):43–54. doi: 10.1038/s41574-021-00573-3. [DOI] [PubMed] [Google Scholar]
  • 25.Khoury T, Asombang AW, Berzin TM, Cohen J, Pleskow DK, Mizrahi M. The Clinical Implications of Fatty Pancreas: A Concise Review. Dig Dis Sci. 2017;62(10):2658–2667. doi: 10.1007/s10620-017-4700-1. [DOI] [PubMed] [Google Scholar]
  • 26.Watanabe S, Abe K, Anbo Y, Katoh H. Changes in the mouse exocrine pancreas after pancreatic duct ligation: a qualitative and quantitative histological study. Arch Histol Cytol. 1995;58(3):365–374. doi: 10.1679/aohc.58.365. [DOI] [PubMed] [Google Scholar]
  • 27.Klöppel G, Maillet B. Chronic pancreatitis: evolution of the disease. Hepatogastroenterology. 1991;38(5):408–412. [PubMed] [Google Scholar]
  • 28.Klöppel G, Maillet B. The morphological basis for the evolution of acute pancreatitis into chronic pancreatitis. Virchows Arch A Pathol Anat Histopathol. 1992;420(1):1–4. doi: 10.1007/bf01605976. [DOI] [PubMed] [Google Scholar]
  • 29.Makay O, Kazimi M, Aydin U, Nart D, Yilmaz F, Zeytunlu M, et al. Fat replacement of the malignant pancreatic tissue after neoadjuvant therapy. Int J Clin Oncol. 2010;15(1):88–92. doi: 10.1007/s10147-009-0001-9. [DOI] [PubMed] [Google Scholar]
  • 30.Park CM, Han JK, Kim TK, Choi BI. Fat replacement with absence of acinar and ductal structure in the pancreatic body and tail. J Comput Assist Tomogr. 2000;24(6):893–895. doi: 10.1097/00004728-200011000-00014. [DOI] [PubMed] [Google Scholar]
  • 31.Patel S, Bellon EM, Haaga J, Park CH. Fat replacement of the exocrine pancreas. AJR Am J Roentgenol. 1980;135(4):843–845. doi: 10.2214/ajr.135.4.843. [DOI] [PubMed] [Google Scholar]
  • 32.WALTERS MN, LEAK PJ, JOSKE RA, STANLEY NF, PERRET DH. MURINE INFECTION WITH REOVIRUS. 3. PATHOLOGY OF INFECTION WITH TYPES 1 AND 2. Br J Exp Pathol. 1965;46:200–212. [PMC free article] [PubMed] [Google Scholar]
  • 33.Walters MN. Adipose atrophy of the exocrine pancreas. J Pathol Bacteriol. 1966;92(2):547–557. doi: 10.1002/path.1700920232. [DOI] [PubMed] [Google Scholar]
  • 34.Yu TY, Wang CY. Impact of non-alcoholic fatty pancreas disease on glucose metabolism. J Diabetes Investig. 2017;8(6):735–747. doi: 10.1111/jdi.12665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Matsuda A, Makino N, Tozawa T, Shirahata N, Honda T, Ikeda Y, et al. Pancreatic fat accumulation, fibrosis, and acinar cell injury in the Zucker diabetic fatty rat fed a chronic high-fat diet. Pancreas. 2014;43(5):735–743. doi: 10.1097/mpa.0000000000000129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Makino N, Shirahata N, Honda T, Ando Y, Matsuda A, Ikeda Y, et al. Pancreatic hyperechogenicity associated with hypoadiponectinemia and insulin resistance: A Japanese population study. World J Hepatol. 2016;8(33):1452–1458. doi: 10.4254/wjh.v8.i33.1452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Moschen AR, Adolph TE, Gerner RR, Wieser V, Tilg H. Lipocalin-2: A Master Mediator of Intestinal and Metabolic Inflammation. Trends Endocrinol Metab. 2017;28(5):388–397. doi: 10.1016/j.tem.2017.01.003. [DOI] [PubMed] [Google Scholar]
  • 38.Gerst F, Wagner R, Kaiser G, Panse M, Heni M, Machann J, et al. Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion. Diabetologia. 2017;60(11):2240–2251. doi: 10.1007/s00125-017-4385-1. [DOI] [PubMed] [Google Scholar]
  • 39.Filippatos TD. Non-Alcoholic Fatty Pancreas Disease: A Diagnosis of Increasing Importance. Angiology. 2022;73(6):495–496. doi: 10.1177/00033197211053902. [DOI] [PubMed] [Google Scholar]
  • 40.Wang D, Yu XP, Xiao WM, Jiao XP, Wu J, Teng DL, et al. Prevalence and clinical characteristics of fatty pancreas in Yangzhou, China: A cross-sectional study. Pancreatology. 2018;18(3):263–268. doi: 10.1016/j.pan.2018.02.004. [DOI] [PubMed] [Google Scholar]
  • 41.Jermendy G, Kolossváry M, Drobni Z, Papp S, Jermendy ÁL, Panajotu A, et al. Environmental Factors Slightly Outweigh Genetic Influences in the Development of Pancreatic Lipid Accumulation: A Classical Twin Study. Metab Syndr Relat Disord. 2020;18(9):413–418. doi: 10.1089/met.2020.0038. [DOI] [PubMed] [Google Scholar]
  • 42.Stuart CE, Ko J, Modesto AE, Alarcon Ramos GC, Bharmal SH, Cho J, et al. Implications of Tobacco Smoking and Alcohol Consumption on Ectopic Fat Deposition in Individuals After Pancreatitis. Pancreas. 2020;49(7):924–934. doi: 10.1097/mpa.0000000000001600. [DOI] [PubMed] [Google Scholar]
  • 43.Saisho Y. Pancreas Volume and Fat Deposition in Diabetes and Normal Physiology: Consideration of the Interplay Between Endocrine and Exocrine Pancreas. Rev Diabet Stud. 2016;13(2-3):132–147. doi: 10.1900/rds.2016.13.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Rossi AP, Fantin F, Zamboni GA, Mazzali G, Rinaldi CA, Del Giglio M, et al. Predictors of ectopic fat accumulation in liver and pancreas in obese men and women. Obesity (Silver Spring) 2011;19(9):1747–1754. doi: 10.1038/oby.2011.114. [DOI] [PubMed] [Google Scholar]
  • 45.Svendsen OL, Hassager C, Christiansen C. Age- and menopause-associated variations in body composition and fat distribution in healthy women as measured by dual-energy X-ray absorptiometry. Metabolism. 1995;44(3):369–373. doi: 10.1016/0026-0495(95)90168-x. [DOI] [PubMed] [Google Scholar]
  • 46.Lê KA, Ventura EE, Fisher JQ, Davis JN, Weigensberg MJ, Punyanitya M, et al. Ethnic differences in pancreatic fat accumulation and its relationship with other fat depots and inflammatory markers. Diabetes Care. 2011;34(2):485–490. doi: 10.2337/dc10-0760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Szczepaniak LS, Victor RG, Mathur R, Nelson MD, Szczepaniak EW, Tyer N, et al. Pancreatic steatosis and its relationship to β-cell dysfunction in humans: racial and ethnic variations. Diabetes Care. 2012;35(11):2377–2383. doi: 10.2337/dc12-0701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Roh E, Kim KM, Park KS, Kim YJ, Chun EJ, Choi SH, et al. Comparison of pancreatic volume and fat amount linked with glucose homeostasis between healthy Caucasians and Koreans. Diabetes Obes Metab. 2018;20(11):2642–2652. doi: 10.1111/dom.13447. [DOI] [PubMed] [Google Scholar]
  • 49.Toledo-Corral CM, Alderete TL, Hu HH, Nayak K, Esplana S, Liu T, et al. Ectopic fat deposition in prediabetic overweight and obese minority adolescents. J Clin Endocrinol Metab. 2013;98(3):1115–1121. doi: 10.1210/jc.2012-3806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Wu WC, Wang CY. Association between non-alcoholic fatty pancreatic disease (NAFPD) and the metabolic syndrome: case-control retrospective study. Cardiovasc Diabetol. 2013;12:77. doi: 10.1186/1475-2840-12-77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Yamazaki H, Tauchi S, Kimachi M, Dohke M, Hanawa N, Kodama Y, et al. Association between pancreatic fat and incidence of metabolic syndrome: a 5-year Japanese cohort study. J Gastroenterol Hepatol. 2018;33(12):2048–2054. doi: 10.1111/jgh.14266. [DOI] [PubMed] [Google Scholar]
  • 52.Targher G, Rossi AP, Zamboni GA, Fantin F, Antonioli A, Corzato F, et al. Pancreatic fat accumulation and its relationship with liver fat content and other fat depots in obese individuals. J Endocrinol Invest. 2012;35(8):748–753. doi: 10.3275/8011. [DOI] [PubMed] [Google Scholar]
  • 53.Heni M, Machann J, Staiger H, Schwenzer NF, Peter A, Schick F, et al. Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes Metab Res Rev. 2010;26(3):200–205. doi: 10.1002/dmrr.1073. [DOI] [PubMed] [Google Scholar]
  • 54.Tirkes T, Jeon CY, Li L, Joon AY, Seltman TA, Sankar M, et al. Association of Pancreatic Steatosis With Chronic Pancreatitis, Obesity, and Type 2 Diabetes Mellitus. Pancreas. 2019;48(3):420–426. doi: 10.1097/MPA.0000000000001252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Sreedhar UL, DeSouza SV, Park B, Petrov MS. A Systematic Review of Intra-pancreatic Fat Deposition and Pancreatic Carcinogenesis. J Gastrointest Surg. 2020;24(11):2560–2569. doi: 10.1007/s11605-019-04417-4. [DOI] [PubMed] [Google Scholar]
  • 56.Krill JT, Szafron D, Elhanafi S, Hussein MS, Patel K, Raijman I, et al. Endoscopic Ultrasound Finding of Diffuse Echogenicity in the Pancreas, Is It Relevant? Dig Dis Sci. 2022;67(7):3244–3251. doi: 10.1007/s10620-021-07181-1. [DOI] [PubMed] [Google Scholar]
  • 57.Kim SY, Kim H, Cho JY, Lim S, Cha K, Lee KH, et al. Quantitative assessment of pancreatic fat by using unenhanced CT: pathologic correlation and clinical implications. Radiology. 2014;271(1):104–112. doi: 10.1148/radiol.13122883. [DOI] [PubMed] [Google Scholar]
  • 58.Yamazaki H, Tauchi S, Kimachi M, Dohke M, Hanawa N, Kodama Y, et al. Independent association between prediabetes and future pancreatic fat accumulation: a 5-year Japanese cohort study. J Gastroenterol. 2018;53(7):873–882. doi: 10.1007/s00535-017-1422-2. [DOI] [PubMed] [Google Scholar]
  • 59.Yamazaki H, Tauchi S, Wang J, Dohke M, Hanawa N, Kodama Y, et al. Longitudinal association of fatty pancreas with the incidence of type-2 diabetes in lean individuals: a 6-year computed tomography-based cohort study. J Gastroenterol. 2020;55(7):712–721. doi: 10.1007/s00535-020-01683-x. [DOI] [PubMed] [Google Scholar]
  • 60.Yoon JH, Lee JM, Lee KB, Kim SW, Kang MJ, Jang JY, et al. Pancreatic Steatosis and Fibrosis: Quantitative Assessment with Preoperative Multiparametric MR Imaging. Radiology. 2016;279(1):140–150. doi: 10.1148/radiol.2015142254. [DOI] [PubMed] [Google Scholar]
  • 61.Al-Mrabeh A, Hollingsworth KG, Steven S, Tiniakos D, Taylor R. Quantification of intrapancreatic fat in type 2 diabetes by MRI. PLoS One. 2017;12(4):e0174660. doi: 10.1371/journal.pone.0174660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Coe PO, Williams SR, Morris DM, Parkin E, Harvie M, Renehan AG, et al. Development of MR quantified pancreatic fat deposition as a cancer risk biomarker. Pancreatology. 2018;18(4):429–437. doi: 10.1016/j.pan.2018.04.001. [DOI] [PubMed] [Google Scholar]
  • 63.Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging. 2012;36(5):1011–1014. doi: 10.1002/jmri.23741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Hu HH, Kim HW, Nayak KS, Goran MI. Comparison of fat-water MRI and single-voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans. Obesity (Silver Spring) 2010;18(4):841–847. doi: 10.1038/oby.2009.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Fukui H, Hori M, Fukuda Y, Onishi H, Nakamoto A, Ota T, et al. Evaluation of fatty pancreas by proton density fat fraction using 3-T magnetic resonance imaging and its association with pancreatic cancer. Eur J Radiol. 2019;118:25–31. doi: 10.1016/j.ejrad.2019.06.024. [DOI] [PubMed] [Google Scholar]
  • 66.Idilman IS, Tuzun A, Savas B, Elhan AH, Celik A, Idilman R, et al. Quantification of liver, pancreas, kidney, and vertebral body MRI-PDFF in non-alcoholic fatty liver disease. Abdom Imaging. 2015;40(6):1512–1519. doi: 10.1007/s00261-015-0385-0. [DOI] [PubMed] [Google Scholar]
  • 67.Kühn JP, Berthold F, Mayerle J, Völzke H, Reeder SB, Rathmann W, et al. Pancreatic Steatosis Demonstrated at MR Imaging in the General Population: Clinical Relevance. Radiology. 2015;276(1):129–136. doi: 10.1148/radiol.15140446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Yao WJ, Guo Z, Wang L, Li K, Saba L, Guglielmi G, et al. Pancreas fat quantification with quantitative CT: an MRI correlation analysis. Clin Radiol. 2020;75(5):397.e1–397.e6. doi: 10.1016/j.crad.2019.12.017. [DOI] [PubMed] [Google Scholar]
  • 69.Nuñez-Durán E, Chanclón B, Sütt S, Real J, Marschall HU, Wernstedt Asterholm I, et al. Protein kinase STK25 aggravates the severity of non-alcoholic fatty pancreas disease in mice. J Endocrinol. 2017;234(1):15–27. doi: 10.1530/joe-17-0018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Zhang X, Cui Y, Fang L, Li F. Chronic high-fat diets induce oxide injuries and fibrogenesis of pancreatic cells in rats. Pancreas. 2008;37(3):e31–e38. doi: 10.1097/MPA.0b013e3181744b50. [DOI] [PubMed] [Google Scholar]
  • 71.Tushuizen ME, Bunck MC, Pouwels PJ, Bontemps S, van Waesberghe JH, Schindhelm RK, et al. Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care. 2007;30(11):2916–2921. doi: 10.2337/dc07-0326. [DOI] [PubMed] [Google Scholar]
  • 72.Begovatz P, Koliaki C, Weber K, Strassburger K, Nowotny B, Nowotny P, et al. Pancreatic adipose tissue infiltration, parenchymal steatosis and beta cell function in humans. Diabetologia. 2015;58(7):1646–1655. doi: 10.1007/s00125-015-3544-5. [DOI] [PubMed] [Google Scholar]
  • 73.Fraulob JC, Ogg-Diamantino R, Fernandes-Santos C, Aguila MB, Mandarim-de-Lacerda CA. A Mouse Model of Metabolic Syndrome: Insulin Resistance, Fatty Liver and Non-Alcoholic Fatty Pancreas Disease (NAFPD) in C57BL/6 Mice Fed a High Fat Diet. J Clin Biochem Nutr. 2010;46(3):212–223. doi: 10.3164/jcbn.09-83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Della Corte C, Mosca A, Majo F, Lucidi V, Panera N, Giglioni E, et al. Nonalcoholic fatty pancreas disease and Nonalcoholic fatty liver disease: more than ectopic fat. Clin Endocrinol (Oxf) 2015;83(5):656–662. doi: 10.1111/cen.12862. [DOI] [PubMed] [Google Scholar]
  • 75.van der Zijl NJ, Goossens GH, Moors CC, van Raalte DH, Muskiet MH, Pouwels PJ, et al. Ectopic fat storage in the pancreas, liver, and abdominal fat depots: impact on β-cell function in individuals with impaired glucose metabolism. J Clin Endocrinol Metab. 2011;96(2):459–467. doi: 10.1210/jc.2010-1722. [DOI] [PubMed] [Google Scholar]
  • 76.Ou HY, Wang CY, Yang YC, Chen MF, Chang CJ. The association between nonalcoholic fatty pancreas disease and diabetes. PLoS One. 2013;8(5):e62561. doi: 10.1371/journal.pone.0062561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Bi Y, Wang JL, Li ML, Zhou J, Sun XL. The association between pancreas steatosis and metabolic syndrome: A systematic review and meta-analysis. Diabetes Metab Res Rev. 2019;35(5):e3142. doi: 10.1002/dmrr.3142. [DOI] [PubMed] [Google Scholar]
  • 78.Mantovani A, Byrne CD, Bonora E, Targher G. Nonalcoholic Fatty Liver Disease and Risk of Incident Type 2 Diabetes: A Meta-analysis. Diabetes Care. 2018;41(2):372–382. doi: 10.2337/dc17-1902. [DOI] [PubMed] [Google Scholar]
  • 79.Ballestri S, Zona S, Targher G, Romagnoli D, Baldelli E, Nascimbeni F, et al. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J Gastroenterol Hepatol. 2016;31(5):936–944. doi: 10.1111/jgh.13264. [DOI] [PubMed] [Google Scholar]
  • 80.Harmon JS, Gleason CE, Tanaka Y, Poitout V, Robertson RP. Antecedent hyperglycemia, not hyperlipidemia, is associated with increased islet triacylglycerol content and decreased insulin gene mRNA level in Zucker diabetic fatty rats. Diabetes. 2001;50(11):2481–2486. doi: 10.2337/diabetes.50.11.2481. [DOI] [PubMed] [Google Scholar]
  • 81.Zhao ZZ, Xin LL, Xia JH, Yang SL, Chen YX, Li K. Long-term High-fat High-sucrose Diet Promotes Enlarged Islets and β-Cell Damage by Oxidative Stress in Bama Minipigs. Pancreas. 2015;44(6):888–895. doi: 10.1097/mpa.0000000000000349. [DOI] [PubMed] [Google Scholar]
  • 82.van Raalte DH, van der Zijl NJ, Diamant M. Pancreatic steatosis in humans: cause or marker of lipotoxicity? Curr Opin Clin Nutr Metab Care. 2010;13(4):478–485. doi: 10.1097/MCO.0b013e32833aa1ef. [DOI] [PubMed] [Google Scholar]
  • 83.Miyake H, Sakagami J, Yasuda H, Sogame Y, Kato R, Suwa K, et al. Association of fatty pancreas with pancreatic endocrine and exocrine function. PLoS One. 2018;13(12):e0209448. doi: 10.1371/journal.pone.0209448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Wagner R, Jaghutriz BA, Gerst F, Barroso Oquendo M, Machann J, Schick F, et al. Pancreatic Steatosis Associates With Impaired Insulin Secretion in Genetically Predisposed Individuals. J Clin Endocrinol Metab. 2020;105(11):dgaa435. doi: 10.1210/clinem/dgaa435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Lu T, Wang Y, Dou T, Xue B, Tan Y, Yang J. Pancreatic fat content is associated with β-cell function and insulin resistance in Chinese type 2 diabetes subjects. Endocr J. 2019;66(3):265–270. doi: 10.1507/endocrj.EJ18-0436. [DOI] [PubMed] [Google Scholar]
  • 86.Poitout V, Amyot J, Semache M, Zarrouki B, Hagman D, Fontés G. Glucolipotoxicity of the pancreatic beta cell. Biochim Biophys Acta. 2010;1801(3):289–298. doi: 10.1016/j.bbalip.2009.08.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Taylor R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia. 2008;51(10):1781–1789. doi: 10.1007/s00125-008-1116-7. [DOI] [PubMed] [Google Scholar]
  • 88.Pacifico L, Di Martino M, Anania C, Andreoli GM, Bezzi M, Catalano C, et al. Pancreatic fat and β-cell function in overweight/obese children with nonalcoholic fatty liver disease. World J Gastroenterol. 2015;21(15):4688–4695. doi: 10.3748/wjg.v21.i15.4688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Schwenzer NF, Machann J, Martirosian P, Stefan N, Schraml C, Fritsche A, et al. Quantification of pancreatic lipomatosis and liver steatosis by MRI: comparison of in/opposed-phase and spectral-spatial excitation techniques. Invest Radiol. 2008;43(5):330–337. doi: 10.1097/RLI.0b013e31816a88c6. [DOI] [PubMed] [Google Scholar]
  • 90.van Geenen EJ, Smits MM, Schreuder TC, van der Peet DL, Bloemena E, Mulder CJ. Nonalcoholic fatty liver disease is related to nonalcoholic fatty pancreas disease. Pancreas. 2010;39(8):1185–1190. doi: 10.1097/MPA.0b013e3181f6fce2. [DOI] [PubMed] [Google Scholar]
  • 91.Rosenblatt R, Mehta A, Snell D, Hissong E, Kierans AS, Kumar S. Ultrasonographic Nonalcoholic Fatty Pancreas Is Associated with Advanced Fibrosis in NAFLD: A Retrospective Analysis. Dig Dis Sci. 2019;64(1):262–268. doi: 10.1007/s10620-018-5295-x. [DOI] [PubMed] [Google Scholar]
  • 92.Ozturk K, Dogan T, Celikkanat S, Ozen A, Demirci H, Kurt O, et al. The association of fatty pancreas with subclinical atherosclerosis in nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2018;30(4):411–417. doi: 10.1097/meg.0000000000001059. [DOI] [PubMed] [Google Scholar]
  • 93.Gaborit B, Abdesselam I, Kober F, Jacquier A, Ronsin O, Emungania O, et al. Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int J Obes (Lond) 2015;39(3):480–487. doi: 10.1038/ijo.2014.126. [DOI] [PubMed] [Google Scholar]
  • 94.Heiskanen MA, Motiani KK, Mari A, Saunavaara V, Eskelinen JJ, Virtanen KA, et al. Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: a randomised controlled trial. Diabetologia. 2018;61(8):1817–1828. doi: 10.1007/s00125-018-4627-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Al-Mrabeh A, Hollingsworth KG, Shaw JAM, McConnachie A, Sattar N, Lean MEJ, et al. 2-year remission of type 2 diabetes and pancreas morphology: a post-hoc analysis of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2020;8(12):939–948. doi: 10.1016/s2213-8587(20)30303-x. [DOI] [PubMed] [Google Scholar]
  • 96.Dutour A, Abdesselam I, Ancel P, Kober F, Mrad G, Darmon P, et al. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes Metab. 2016;18(9):882–891. doi: 10.1111/dom.12680. [DOI] [PubMed] [Google Scholar]
  • 97.Vanderheiden A, Harrison LB, Warshauer JT, Adams-Huet B, Li X, Yuan Q, et al. Mechanisms of Action of Liraglutide in Patients With Type 2 Diabetes Treated With High-Dose Insulin. J Clin Endocrinol Metab. 2016;101(4):1798–1806. doi: 10.1210/jc.2015-3906. [DOI] [PubMed] [Google Scholar]
  • 98.Kuchay MS, Krishan S, Mishra SK, Choudhary NS, Singh MK, Wasir JS, et al. Effect of dulaglutide on liver fat in patients with type 2 diabetes and NAFLD: randomised controlled trial (D-LIFT trial) Diabetologia. 2020;63(11):2434–2445. doi: 10.1007/s00125-020-05265-7. [DOI] [PubMed] [Google Scholar]
  • 99.Steven S, Hollingsworth KG, Small PK, Woodcock SA, Pucci A, Aribisala B, et al. Weight Loss Decreases Excess Pancreatic Triacylglycerol Specifically in Type 2 Diabetes. Diabetes Care. 2016;39(1):158–165. doi: 10.2337/dc15-0750. [DOI] [PubMed] [Google Scholar]
  • 100.Honka H, Koffert J, Hannukainen JC, Tuulari JJ, Karlsson HK, Immonen H, et al. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J Clin Endocrinol Metab. 2015;100(5):2015–2023. doi: 10.1210/jc.2014-4236. [DOI] [PubMed] [Google Scholar]
  • 101.Umemura A, Sasaki A, Nitta H, Baba S, Ando T, Kajiwara T, et al. Pancreas volume reduction and metabolic effects in Japanese patients with severe obesity following laparoscopic sleeve gastrectomy. Endocr J. 2017;64(5):487–498. doi: 10.1507/endocrj.EJ16-0321. [DOI] [PubMed] [Google Scholar]
  • 102.Hui SCN, Wong SKH, Ai Q, Yeung DKW, Ng EKW, Chu WCW. Observed changes in brown, white, hepatic and pancreatic fat after bariatric surgery: Evaluation with MRI. Eur Radiol. 2019;29(2):849–856. doi: 10.1007/s00330-018-5611-z. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical and Translational Hepatology are provided here courtesy of Xia & He Publishing Inc. (USA)

RESOURCES