Skip to main content
IUCrData logoLink to IUCrData
. 2022 Jul 14;7(Pt 7):0. doi: 10.1107/S2414314622006939

Crystal structure of ethyl 2-{4-[(2-oxo-3-phenyl-1,2-di­hydro­quinoxalin-1-yl)meth­yl]-1H-1,2,3-triazol-1-yl}acetate

Nadeem Abad a,b, Mohcine Missioui a, Abdulsalam Alsubari c,*, Joel T Mague d, El Mokhtar Essassi b, Youssef Ramli a,
Editor: I Britoe
PMCID: PMC9635411  PMID: 36341047

The quinoxaline portion of the title mol­ecule is not quite planar and the conformation of the entire mol­ecule is ‘U-shaped’, which is consolidated by an intra­molecular anti­parallel carbonyl electrostatic inter­action. In the crystal, the mol­ecules form corrugated layers through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and π-stacking inter­actions.

Keywords: crystal structure, quinoxaline, triazole, hydrogen bond, π-stacking

Abstract

The quinoxaline portion of the title mol­ecule, C21H19N5O3, is not quite planar as indicated by a dihedral angle of 3.38 (7)° between the constituent rings. The mol­ecule is ‘U-shaped’, which is consolidated by an intra­molecular anti­parallel carbonyl electrostatic inter­action with C··O distances of 2.8905 (16) and 3.0221 (15) Å, in the crystal forms corrugated layers through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and π-stacking inter­actions. graphic file with name x-07-00000-scheme1-3D1.jpg

Structure description

Quinoxaline derivatives exhibit a wide range of biological applications including anti­microbial (Teja et al., 2016), anti-inflammatory (Guirado et al., 2012), anti­cancer (Abbas et al., 2015), anti­diabetic (Kulkarni et al., 2012) and anti­histaminic (Sridevi et al., 2010) effects. As a continuation of our research on the synthesis and biological properties of quinoxaline derivatives (Missioui et al., 2022a ,b ,c ), the title compound (Fig. 1) was prepared and its crystal structure is reported here.

Figure 1.

Figure 1

The title mol­ecule with the labeling scheme and 50% probability ellipsoids. The π inter­action between the C19=O2 carbonyl group and the C1/C6/N1/C7/C8/N2 ring is shown by an orange dashed line.

The quinoxaline portion is not quite planar as indicated by a dihedral angle of 3.38 (7)° between the constituent rings. The dihedral angle between the C9–C14 and C1/C6/N1/C7/C8/N2 rings is 9.05 (8)° while that between the latter ring and the triazole ring is 78.47 (3)°. The mol­ecule adopts a ‘U-shaped’ conformation, which is consolidated by an intramolecular antiparallel carbonyl electrostatic interaction (Allen et al., 1998) between the C8=O1 and C19=O2 groups with C19⋯O1 = 2.890 Å and C8⋯O2 = 3.022 Å. In the crystal, C12—H12⋯N3 hydrogen bonds (Table 1) lead to the formation of chains extending along the c-axis direction, which are linked into corrugated layers by C5—H5⋯N4 and C15—H15B⋯O2 hydrogen bonds and by C15—15A⋯Cg1 inter­actions (Table 1 and Fig. 2). These are accompanied by weak π-stacking inter­actions between C1/C6/N1/C7/C8/N2 and C1–C6 rings related by the symmetry operation x −  Inline graphic , y, −z −  Inline graphic [centroid–centroid distance = 3.8105 (7) Å, dihedral angle = 6.13 (6)°].

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the triazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N4i 0.973 (16) 2.462 (16) 3.2183 (17) 134.3 (12)
C12—H12⋯N3ii 0.988 (19) 2.572 (19) 3.4094 (18) 142.5 (15)
C15—H15ACg1iii 0.997 (16) 2.657 (15) 3.3580 (14) 127.5 (10)
C15—H15B⋯O2iv 0.986 (15) 2.464 (15) 3.2459 (16) 135.9 (11)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 2.

Figure 2

Packing viewed along the a-axis direction. C—H⋯O and C—H⋯N hydrogen bonds are shown, respectively, by black and light-blue dashed lines while the π-stacking inter­actions are shown by orange dashed lines.

Synthesis and crystallization

To a solution of 3-phenyl-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one (0.68 mmol) in ethanol (15 ml) was added ethyl 2-azido­acetate (1.03 mmol). The reaction mixture was stirred under reflux for 72 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue was purified by column chromatography on silica gel by using a hexa­ne/ethyl acetate mixture (9:1) as eluent. The solid product obtained was crystallized from ethanol solution to afford colorless crystals. Yield 80%, m.p. = 408–410 K. 1H MNR (300 MHz, CDCl3) δ (p.p.m.):1.22–1.26 (t, 3H, CH3, J = 6 Hz); 4.12-4.19 (q, 2H, O—CH2, J = 6 Hz); 5.57 (s, 2H, N—CH2CO2); 5.60 (s, 2H, N—CH2); 7.72 (s, H,CHtriazole); 7.44–8.31 (m, 9Harom); 13C MNR (75 MHz,CDCl3) δ (p.p.m.):13.95 (CH3); 34.99 (O—CH2); 50.01(N—CH2C=O); 62.48 (N—CH2); 113.48, 124.61, 128.19 (traizole), 129.52, 130.70, 130.85, 131.16, 131.79, (CHarom); 132.79, 133.53, 134.34, 135.52, 153.69 (Cq); 154.32 (C=Oarom);166.80 (C=Oacetate)

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C21H19N5O3
M r 389.41
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 150
a, b, c (Å) 8.8585 (3), 18.0405 (5), 23.1961 (7)
V3) 3707.0 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.79
Crystal size (mm) 0.21 × 0.10 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.89, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 26694, 3662, 3086
R int 0.047
(sin θ/λ)max−1) 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.087, 1.05
No. of reflections 3662
No. of parameters 339
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.24, −0.21

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314622006939/bx4022sup1.cif

x-07-00000-sup1.cif (839.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622006939/bx4022Isup2.hkl

x-07-00000-Isup2.hkl (292.5KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622006939/bx4022Isup3.cml

CCDC reference: 2184531

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Author contributions are as follows. Conceptualization, YR and NA; methodology, MM and AS; investigation, NA and MM; writing (original draft), JTM and YR; writing (review and editing of the manuscript), YR; formal analysis, AA and YR; supervision, YR and EME; crystal-structure determination and validation, JTM; synthesis, NA.

full crystallographic data

Crystal data

C21H19N5O3 Dx = 1.395 Mg m3
Mr = 389.41 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pbca Cell parameters from 9932 reflections
a = 8.8585 (3) Å θ = 3.8–72.3°
b = 18.0405 (5) Å µ = 0.79 mm1
c = 23.1961 (7) Å T = 150 K
V = 3707.0 (2) Å3 Plate, colourless
Z = 8 0.21 × 0.10 × 0.02 mm
F(000) = 1632

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 3662 independent reflections
Radiation source: INCOATEC IµS micro–focus source 3086 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.047
Detector resolution: 10.4167 pixels mm-1 θmax = 72.5°, θmin = 3.8°
ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −22→22
Tmin = 0.89, Tmax = 0.98 l = −28→27
26694 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 All H-atom parameters refined
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0384P)2 + 1.2273P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3662 reflections Δρmax = 0.24 e Å3
339 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXL 2018/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00064 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.All H atom positional and Uiso values were freely refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.43111 (11) 0.52576 (5) 0.37440 (4) 0.0275 (2)
O2 0.09359 (10) 0.46632 (5) 0.36206 (4) 0.0270 (2)
O3 0.20937 (11) 0.40033 (5) 0.43166 (4) 0.0303 (2)
N1 0.18289 (12) 0.67590 (6) 0.34317 (5) 0.0226 (2)
N2 0.34767 (11) 0.56638 (5) 0.28730 (4) 0.0193 (2)
N3 0.16535 (13) 0.36820 (6) 0.19501 (5) 0.0252 (2)
N4 0.16515 (13) 0.34789 (6) 0.24943 (5) 0.0250 (2)
N5 0.26117 (12) 0.39291 (6) 0.27772 (5) 0.0208 (2)
C1 0.26318 (14) 0.61609 (6) 0.25427 (5) 0.0195 (3)
C2 0.26183 (16) 0.61555 (7) 0.19390 (6) 0.0238 (3)
H2 0.3228 (19) 0.5802 (9) 0.1724 (7) 0.034 (4)*
C3 0.17264 (16) 0.66602 (7) 0.16465 (6) 0.0264 (3)
H3 0.1743 (18) 0.6650 (9) 0.1222 (7) 0.033 (4)*
C4 0.08259 (16) 0.71695 (7) 0.19408 (6) 0.0260 (3)
H4 0.0164 (19) 0.7523 (9) 0.1731 (7) 0.034 (4)*
C5 0.08467 (15) 0.71842 (7) 0.25326 (6) 0.0236 (3)
H5 0.0237 (18) 0.7530 (9) 0.2755 (7) 0.031 (4)*
C6 0.17717 (14) 0.66902 (7) 0.28405 (5) 0.0207 (3)
C7 0.26837 (14) 0.63234 (7) 0.37345 (5) 0.0211 (3)
C8 0.35681 (14) 0.57104 (7) 0.34670 (5) 0.0208 (3)
C9 0.27185 (16) 0.64586 (7) 0.43697 (6) 0.0248 (3)
C10 0.1715 (2) 0.69806 (8) 0.45951 (6) 0.0356 (3)
H10 0.101 (2) 0.7214 (11) 0.4333 (8) 0.053 (6)*
C11 0.1707 (2) 0.71453 (9) 0.51787 (7) 0.0435 (4)
H11 0.098 (2) 0.7522 (12) 0.5330 (9) 0.062 (6)*
C12 0.2704 (2) 0.67988 (9) 0.55500 (6) 0.0408 (4)
H12 0.268 (2) 0.6896 (11) 0.5969 (8) 0.050 (5)*
C13 0.3689 (2) 0.62824 (10) 0.53366 (7) 0.0434 (4)
H13 0.442 (2) 0.6034 (12) 0.5596 (9) 0.063 (6)*
C14 0.37072 (19) 0.61077 (9) 0.47502 (7) 0.0369 (4)
H14 0.443 (2) 0.5717 (11) 0.4606 (8) 0.051 (5)*
C15 0.42864 (14) 0.50430 (7) 0.25935 (6) 0.0206 (3)
H15A 0.5028 (17) 0.4856 (8) 0.2882 (6) 0.025 (4)*
H15B 0.4831 (17) 0.5225 (8) 0.2251 (6) 0.022 (4)*
C16 0.32363 (14) 0.44361 (6) 0.24135 (5) 0.0191 (3)
H16 0.2784 (19) 0.4473 (9) 0.1516 (7) 0.036 (4)*
C17 0.26194 (15) 0.42622 (7) 0.18895 (6) 0.0226 (3)
C18 0.28965 (15) 0.37793 (7) 0.33815 (6) 0.0232 (3)
H18A 0.3932 (19) 0.3894 (9) 0.3470 (7) 0.030 (4)*
H18B 0.2764 (17) 0.3237 (9) 0.3441 (6) 0.026 (4)*
C19 0.18500 (14) 0.42063 (7) 0.37736 (5) 0.0221 (3)
C20 0.11923 (18) 0.43913 (9) 0.47469 (6) 0.0329 (3)
H20A 0.1346 (19) 0.4932 (10) 0.4678 (7) 0.036 (4)*
H20B 0.0111 (19) 0.4247 (9) 0.4681 (7) 0.032 (4)*
C21 0.1730 (2) 0.41458 (12) 0.53292 (7) 0.0456 (4)
H21A 0.165 (2) 0.3587 (12) 0.5382 (9) 0.062 (6)*
H21B 0.111 (2) 0.4381 (11) 0.5639 (9) 0.057 (6)*
H21C 0.277 (2) 0.4295 (11) 0.5392 (8) 0.052 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0328 (5) 0.0238 (5) 0.0258 (5) 0.0042 (4) −0.0065 (4) 0.0000 (4)
O2 0.0241 (5) 0.0317 (5) 0.0251 (5) 0.0058 (4) −0.0013 (4) 0.0000 (4)
O3 0.0350 (5) 0.0339 (5) 0.0219 (5) 0.0116 (4) 0.0037 (4) 0.0036 (4)
N1 0.0247 (5) 0.0210 (5) 0.0222 (5) 0.0002 (4) −0.0005 (5) −0.0029 (4)
N2 0.0204 (5) 0.0169 (5) 0.0204 (5) −0.0001 (4) −0.0007 (4) −0.0021 (4)
N3 0.0228 (6) 0.0248 (6) 0.0280 (6) 0.0015 (4) −0.0014 (5) −0.0069 (4)
N4 0.0232 (5) 0.0218 (5) 0.0301 (6) −0.0013 (4) −0.0003 (5) −0.0062 (4)
N5 0.0212 (5) 0.0189 (5) 0.0224 (5) −0.0007 (4) 0.0010 (4) −0.0026 (4)
C1 0.0197 (6) 0.0167 (5) 0.0222 (6) −0.0030 (5) −0.0013 (5) 0.0005 (5)
C2 0.0270 (7) 0.0221 (6) 0.0223 (6) −0.0021 (5) 0.0022 (5) −0.0002 (5)
C3 0.0328 (7) 0.0249 (6) 0.0215 (7) −0.0052 (6) −0.0021 (6) 0.0031 (5)
C4 0.0280 (7) 0.0198 (6) 0.0302 (7) −0.0029 (5) −0.0068 (6) 0.0041 (5)
C5 0.0230 (6) 0.0184 (6) 0.0295 (7) −0.0002 (5) −0.0029 (5) −0.0013 (5)
C6 0.0219 (6) 0.0185 (6) 0.0216 (6) −0.0028 (5) −0.0010 (5) −0.0014 (5)
C7 0.0231 (6) 0.0189 (6) 0.0213 (6) −0.0031 (5) −0.0003 (5) −0.0013 (5)
C8 0.0217 (6) 0.0195 (6) 0.0213 (6) −0.0032 (5) −0.0016 (5) −0.0012 (5)
C9 0.0306 (7) 0.0215 (6) 0.0225 (7) −0.0046 (5) −0.0001 (6) −0.0022 (5)
C10 0.0537 (10) 0.0285 (7) 0.0246 (7) 0.0063 (7) 0.0022 (7) −0.0013 (6)
C11 0.0717 (12) 0.0329 (8) 0.0260 (8) 0.0098 (8) 0.0073 (8) −0.0043 (6)
C12 0.0684 (12) 0.0340 (8) 0.0201 (7) −0.0059 (8) 0.0021 (7) −0.0038 (6)
C13 0.0540 (10) 0.0499 (10) 0.0263 (8) 0.0030 (8) −0.0102 (7) −0.0036 (7)
C14 0.0395 (8) 0.0450 (9) 0.0263 (8) 0.0067 (7) −0.0072 (6) −0.0068 (6)
C15 0.0179 (6) 0.0198 (6) 0.0241 (6) 0.0009 (5) 0.0017 (5) −0.0031 (5)
C16 0.0173 (5) 0.0178 (5) 0.0222 (6) 0.0026 (5) 0.0025 (5) −0.0024 (5)
C17 0.0211 (6) 0.0240 (6) 0.0226 (6) 0.0029 (5) 0.0008 (5) −0.0044 (5)
C18 0.0251 (7) 0.0219 (6) 0.0226 (7) 0.0024 (5) 0.0014 (5) 0.0008 (5)
C19 0.0219 (6) 0.0232 (6) 0.0212 (6) −0.0020 (5) 0.0006 (5) 0.0004 (5)
C20 0.0366 (8) 0.0404 (8) 0.0218 (7) 0.0107 (7) 0.0051 (6) 0.0006 (6)
C21 0.0474 (10) 0.0652 (12) 0.0241 (8) 0.0154 (9) 0.0001 (7) 0.0041 (7)

Geometric parameters (Å, º)

O1—C8 1.2301 (16) C9—C14 1.395 (2)
O2—C19 1.2088 (16) C9—C10 1.397 (2)
O3—C19 1.3293 (16) C10—C11 1.386 (2)
O3—C20 1.4574 (17) C10—H10 0.97 (2)
N1—C7 1.2978 (17) C11—C12 1.383 (2)
N1—C6 1.3780 (16) C11—H11 1.00 (2)
N2—C8 1.3827 (16) C12—C13 1.369 (2)
N2—C1 1.3970 (16) C12—H12 0.988 (19)
N2—C15 1.4797 (15) C13—C14 1.396 (2)
N3—N4 1.3144 (16) C13—H13 0.99 (2)
N3—C17 1.3592 (18) C14—H14 1.01 (2)
N4—N5 1.3468 (15) C15—C16 1.4962 (17)
N5—C16 1.3618 (16) C15—H15A 0.997 (16)
N5—C18 1.4497 (17) C15—H15B 0.986 (15)
C1—C2 1.4005 (18) C16—C17 1.3691 (18)
C1—C6 1.4034 (17) C17—H16 0.957 (17)
C2—C3 1.3832 (19) C18—C19 1.5100 (18)
C2—H2 0.974 (17) C18—H18A 0.963 (17)
C3—C4 1.395 (2) C18—H18B 0.995 (16)
C3—H3 0.984 (16) C20—C21 1.499 (2)
C4—C5 1.3732 (19) C20—H20A 0.997 (18)
C4—H4 0.994 (17) C20—H20B 1.005 (17)
C5—C6 1.4055 (18) C21—H21A 1.02 (2)
C5—H5 0.973 (16) C21—H21B 1.00 (2)
C7—C8 1.4905 (17) C21—H21C 0.97 (2)
C7—C9 1.4937 (17)
C19—O3—C20 115.32 (11) C13—C12—C11 119.30 (14)
C7—N1—C6 120.37 (11) C13—C12—H12 119.4 (11)
C8—N2—C1 122.62 (10) C11—C12—H12 121.2 (11)
C8—N2—C15 117.02 (10) C12—C13—C14 120.87 (16)
C1—N2—C15 120.34 (10) C12—C13—H13 120.3 (12)
N4—N3—C17 108.35 (11) C14—C13—H13 118.8 (12)
N3—N4—N5 107.40 (10) C9—C14—C13 120.44 (15)
N4—N5—C16 111.08 (10) C9—C14—H14 120.3 (11)
N4—N5—C18 117.95 (10) C13—C14—H14 119.2 (11)
C16—N5—C18 130.82 (11) N2—C15—C16 112.02 (10)
N2—C1—C2 123.27 (11) N2—C15—H15A 106.4 (9)
N2—C1—C6 117.23 (11) C16—C15—H15A 110.4 (9)
C2—C1—C6 119.49 (12) N2—C15—H15B 109.8 (8)
C3—C2—C1 119.38 (12) C16—C15—H15B 108.9 (8)
C3—C2—H2 119.8 (10) H15A—C15—H15B 109.3 (12)
C1—C2—H2 120.8 (10) N5—C16—C17 103.54 (11)
C2—C3—C4 121.35 (12) N5—C16—C15 124.84 (11)
C2—C3—H3 118.0 (10) C17—C16—C15 131.57 (12)
C4—C3—H3 120.7 (10) N3—C17—C16 109.62 (12)
C5—C4—C3 119.61 (12) N3—C17—H16 119.7 (10)
C5—C4—H4 119.1 (10) C16—C17—H16 130.7 (10)
C3—C4—H4 121.3 (10) N5—C18—C19 112.36 (11)
C4—C5—C6 120.24 (12) N5—C18—H18A 109.3 (10)
C4—C5—H5 122.3 (9) C19—C18—H18A 110.3 (10)
C6—C5—H5 117.4 (9) N5—C18—H18B 107.3 (9)
N1—C6—C1 122.08 (11) C19—C18—H18B 110.2 (9)
N1—C6—C5 118.04 (11) H18A—C18—H18B 107.1 (13)
C1—C6—C5 119.86 (12) O2—C19—O3 125.10 (12)
N1—C7—C8 122.05 (11) O2—C19—C18 125.61 (12)
N1—C7—C9 116.55 (11) O3—C19—C18 109.29 (11)
C8—C7—C9 121.40 (11) O3—C20—C21 107.51 (13)
O1—C8—N2 120.76 (12) O3—C20—H20A 106.6 (10)
O1—C8—C7 123.81 (12) C21—C20—H20A 112.9 (10)
N2—C8—C7 115.41 (11) O3—C20—H20B 107.1 (9)
C14—C9—C10 117.95 (13) C21—C20—H20B 111.4 (9)
C14—C9—C7 124.25 (13) H20A—C20—H20B 111.0 (14)
C10—C9—C7 117.79 (12) C20—C21—H21A 112.3 (12)
C11—C10—C9 120.89 (15) C20—C21—H21B 110.4 (12)
C11—C10—H10 121.1 (12) H21A—C21—H21B 107.3 (16)
C9—C10—H10 118.0 (12) C20—C21—H21C 110.8 (12)
C12—C11—C10 120.55 (16) H21A—C21—H21C 108.7 (17)
C12—C11—H11 120.0 (12) H21B—C21—H21C 107.2 (16)
C10—C11—H11 119.4 (12)
C17—N3—N4—N5 0.03 (14) N1—C7—C9—C14 −171.75 (14)
N3—N4—N5—C16 0.56 (13) C8—C7—C9—C14 9.3 (2)
N3—N4—N5—C18 −175.36 (10) N1—C7—C9—C10 6.99 (18)
C8—N2—C1—C2 175.04 (12) C8—C7—C9—C10 −172.00 (13)
C15—N2—C1—C2 −6.76 (18) C14—C9—C10—C11 0.2 (2)
C8—N2—C1—C6 −4.48 (17) C7—C9—C10—C11 −178.63 (15)
C15—N2—C1—C6 173.72 (11) C9—C10—C11—C12 0.5 (3)
N2—C1—C2—C3 178.84 (12) C10—C11—C12—C13 −0.9 (3)
C6—C1—C2—C3 −1.65 (19) C11—C12—C13—C14 0.6 (3)
C1—C2—C3—C4 −0.7 (2) C10—C9—C14—C13 −0.5 (2)
C2—C3—C4—C5 1.5 (2) C7—C9—C14—C13 178.27 (15)
C3—C4—C5—C6 0.1 (2) C12—C13—C14—C9 0.1 (3)
C7—N1—C6—C1 −0.69 (19) C8—N2—C15—C16 103.20 (13)
C7—N1—C6—C5 −178.96 (12) C1—N2—C15—C16 −75.10 (14)
N2—C1—C6—N1 4.56 (18) N4—N5—C16—C17 −0.90 (13)
C2—C1—C6—N1 −174.98 (12) C18—N5—C16—C17 174.34 (12)
N2—C1—C6—C5 −177.20 (11) N4—N5—C16—C15 176.59 (11)
C2—C1—C6—C5 3.26 (18) C18—N5—C16—C15 −8.2 (2)
C4—C5—C6—N1 175.80 (12) N2—C15—C16—N5 −76.76 (15)
C4—C5—C6—C1 −2.51 (19) N2—C15—C16—C17 99.98 (15)
C6—N1—C7—C8 −3.34 (18) N4—N3—C17—C16 −0.61 (14)
C6—N1—C7—C9 177.67 (11) N5—C16—C17—N3 0.91 (13)
C1—N2—C8—O1 179.23 (11) C15—C16—C17—N3 −176.34 (12)
C15—N2—C8—O1 0.97 (17) N4—N5—C18—C19 −92.47 (13)
C1—N2—C8—C7 0.80 (17) C16—N5—C18—C19 92.57 (15)
C15—N2—C8—C7 −177.45 (10) C20—O3—C19—O2 −1.8 (2)
N1—C7—C8—O1 −175.08 (12) C20—O3—C19—C18 178.01 (12)
C9—C7—C8—O1 3.85 (19) N5—C18—C19—O2 −4.81 (19)
N1—C7—C8—N2 3.29 (18) N5—C18—C19—O3 175.42 (10)
C9—C7—C8—N2 −177.78 (11) C19—O3—C20—C21 −174.39 (14)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the triazole ring.

D—H···A D—H H···A D···A D—H···A
C5—H5···N4i 0.973 (16) 2.462 (16) 3.2183 (17) 134.3 (12)
C12—H12···N3ii 0.988 (19) 2.572 (19) 3.4094 (18) 142.5 (15)
C15—H15A···Cg1iii 0.997 (16) 2.657 (15) 3.3580 (14) 127.5 (10)
C15—H15B···O2iv 0.986 (15) 2.464 (15) 3.2459 (16) 135.9 (11)

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1/2, −y+1, z+1/2; (iii) x−1/2, y, −z−1/2; (iv) x+1/2, y, −z+1/2.

Funding Statement

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

  1. Abbas, H. S., Al-Marhabi, A. R., Eissa, S. I. & Ammar, Y. A. (2015). Bioorg. Med. Chem. 23, 6560–6572. [DOI] [PubMed]
  2. Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.
  3. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Guirado, A., López Sánchez, J. I., Ruiz-Alcaraz, A. J., Bautista, D. & Gálvez, J. (2012). Eur. J. Med. Chem. 54, 87–94. [DOI] [PubMed]
  6. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  7. Kulkarni, N. V., Revankar, V. K., Kirasur, B. N. & Hugar, M. H. (2012). Med. Chem. Res. 21, 663–671.
  8. Missioui, M., Lgaz, H., Guerrab, W., Lee, H., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022a). J. Mol. Struct. 1253, 132132–143.
  9. Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022b). Arab. J. Chem. 15, 103595–613. [DOI] [PMC free article] [PubMed]
  10. Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022c). J. Mol. Struct. 1247, 131420–433.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  14. Sridevi, K. B. C. H., Naidu, A. & Sudhakaran, R. (2010). Eur. J. Chem. 7, 234–238.
  15. Teja, R., Kapu, S., Kadiyala, S., Dhanapal, V. & Raman, A. N. (2016). J. Saudi Chem. Soc. 20, S387–S392.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314622006939/bx4022sup1.cif

x-07-00000-sup1.cif (839.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622006939/bx4022Isup2.hkl

x-07-00000-Isup2.hkl (292.5KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622006939/bx4022Isup3.cml

CCDC reference: 2184531

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES