Skip to main content
IUCrData logoLink to IUCrData
. 2022 Aug 16;7(Pt 8):x220797. doi: 10.1107/S2414314622007970

1-(Hex-5-en-1-yl)-4-{[3-methyl-2,3-di­hydro-1,3-benzo­thia­zol-2-yl­idene]meth­yl}quinolin-1-ium iodide monohydrate

Nathaniel Shank a,*, Andrea L Stadler b, Sean P Barrett a, Clifford W Padgett a
Editor: W T A Harrisonc
PMCID: PMC9635418  PMID: 36340973

The structure of 4-hexenyl thia­zole orange is presented.

Keywords: crystal structure, π–stacking, thia­zole orange

Abstract

The title thia­zole orange derivative, bearing an alkene substituent, crystallized as a monohydrate of its iodide salt, namely, (Z)-1-(hex-5-en-1-yl)-4-{[3-methyl-2,3-di­hydro-1,3-benzo­thia­zol-2-yl­idene]meth­yl}quinolin-1-ium iodide monohydrate, C24H25N2S+·I·H2O. The packing features aromatic π-stacking and van der Waals inter­actions. The water mol­ecule of crystallization inter­acts with the cation and anion via O—H⋯N and O—H⋯I hydrogen bonds, respectively. graphic file with name x-07-x220797-scheme1-3D1.jpg

Structure description

Inter­calating dyes are a standard means to detect duplex DNA or RNA in vitro and in vivo. The cyanine dye thia­zole orange has been used extensively as a on/off fluorescent probe in a host of biological applications (Suss et al., 2021). The bis-inter­calating dye based on thia­zole orange has been shown to have an increased affinity towards duplexed oligomers and retains its fluoro­genic characteristic (Rye et al., 1992). In an effort to enhance the binding affinity further, and essentially create a non-covalent inter­action that is effectively permanent, we synthesized a thia­zole orange dye bearing an alkene substituent that is capable of participating in polymerization reactions. Access to polymeric thia­zole orange dye and other cyanine dyes will afford extremely bright, highly organized, and versatile fluorescent probes that can be attached to mol­ecules of inter­est and mitigate the equilibrium the dye would establish with endogenous duplexes.

Herein we report the crystal structure of 4-hexenyl thia­zole orange iodide monohydrate, C24H25N2S+·I·H2O, which crystallizes in the triclinic space group P Inline graphic . In the cation (Fig. 1), the benzo­thia­zole ring is titled by 3.32 (13)° with respect to the quinoline ring system: as a result the mol­ecule is close to planar (excluding the hex-1-ene group) with an r.m.s. deviation of 0.048 Å for the non-hydrogen atoms; including the hex-1-ene group increases the r.m.s.d to 0.416 Å for the non-hydrogen atoms. The crystal structure contains a water mol­ecule of crystallization bound to the cation via a weak O1—H1A⋯N1 hydrogen bond [O⋯N = 3.014 (10) Å] and the anion via an O1—H1B⋯I1 link [O1⋯I1 = 3.546 (10) Å] (Table 1). There is also a weak C2—H2⋯S1 intra­molecular inter­action with C⋯S = 3.128 (7) that helps to maintain the coplanarity of the two ring systems.

Figure 1.

Figure 1

A view of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯S1 0.93 2.40 3.128 (7) 135
O1—H1A⋯N1 0.85 2.39 3.014 (10) 131
O1—H1B⋯I1 0.85 2.71 3.546 (10) 169

In the extended structure (Fig. 2), aromatic π–π stacking is observed with Cg1⋯Cg2i = 3.559 (6) Å [symmetry code: (i) 2 − x, 2 − y, 1 − z] and Cg1⋯Cg3i = 3.492 (5) Å, where Cg1 is the centroid of the phenyl ring of the benzo­thia­zole group containing atoms C18–C23, Cg2 is the centroid of the phenyl ring of the quinoline group containing atoms C4–C9, and Cg3 is the centroid of the pyridyl ring of the quinoline groups containing atoms N1/C1–C4/C9. These π–stacking inter­actions run along the [100] direction with neighboring layers held together with van der Waals inter­actions.

Figure 2.

Figure 2

Crystal packing diagram of the title compound viewed down the b-axis direction with H atoms omitted for clarity.

Synthesis and crystallization

All materials were purchased from Fisher Scientific or Sigma Aldrich and used as received. All flash chromatography was performed with 230 × 400 mesh silica gel. Pure samples were analyzed with a Joel 300 MHz NMR and HRMS of the title compound was acquired on a Shimadzu LCMS 9030 QTof operating in positive mode. The reaction scheme is shown in Fig. 3.

Figure 3.

Figure 3

Reaction scheme.

6-Iodo­hex-1-ene (1)

In a conical reaction vial with a magnetic stir bar, 3.0 g of 6-chloro­hex-1-ene (25.4 mmol, 1 eqv) was dissolved in 50 ml of acetone. To this solution was added 11.36 g (76.3 mmol, 3 equiv.) of sodium iodide. The solution was warmed slightly to assist with dissolving the sodium iodide and then covered and stirred for 48 h. An equal portion of hexane was added to the reaction and then the solids were filtered. The volatiles were stripped and the product was purified on silica with 100% hexa­nes as the eluent. Yield 3.31 g (62%) NMR: 1H NMR [300 MHz, (CDCl3] δ = 5.77 (m, 1H, –CH=CH2), 4.98 (m, 2H, –CH=CH2 ), 2.19 (t, 2H, –CH2 I), 2.07 (t, 2H, –CH2CH2 CH2I), 1.77 (t, 2H, –CH2 CH2CH2I), 1.52 (t, 2H, –CH2= CHCH2 CH2) p.p.m.

1-(Hex-5-en-1-yl)-4-methyl­quinolin-1-ium iodide (2)

To a conical reaction vial with a magnetic stir bar was added 0.22 g (1.58 mmol, 1 eqv) of 4-methyl­quinoline and 0.5 g (2.38 mmol, 1.5 equiv.) of 6-iodo­hex-1-ene. The reaction was stirred at 70°C for 18 h. The reaction was then purified on silica eluting with 2% methanol in DCM. Yield 0.54 g (96%) NMR: 1H NMR [300 MHz, (CDCl3)] δ = 10.17 (d, 1H, Ar.), 8.37 (m, 2H, Ar.), 8.20 (t, 1H, Ar.), 8.01 (m, 2H, Ar.), 5.71 (m, 1H, CH=CH2), 5.28 (t, 2H, –CH2 N), 4.96 (m, 2H, –CH=CH2 ), 2.12 (m, 4H, –CH2 CH 2CH2), 1.62 (t, 2H, –CH2= CHCH2 CH2) p.p.m.

2-Mercapto-3-methyl­benzo­thia­zol-3-ium iodide (3)

To a conical reaction flask was added 1 g (6.0 mmol, 1 eqv) of benzo­thia­zole-2-thiol and 2.2 g (15.5 mmol, 2.6 eqv) of methyl iodide. The reaction was allowed to stir at 50°C for 24 h and then taken up in a minimal amount of methanol. The concentrated solution was then titrated into ether to form a precipitate that was collected by filtration. This provided the product as a white solid that needed no further purification. Yield 0.75 g (69%) NMR: 1H NMR [300 MHz, (CD3)2SO] δ = 8.43 (d, 1H, Ar.), 8.29 (d, 1H, Ar.), 7.90 (t, 2H, Ar.), 7.80 (t, 2H, Ar.), 4.20 (s, 3H, –CH3 ), 3.17 (t, 3H, –SCH3 ) p.p.m.

( Z )-1-(Hex-5-en-1-yl)-4-((3-methyl­benzo[ d ]thia­zol-2(3 H )-yl­idene)meth­yl)quinolin-1-ium iodide (4)

Into a conical reaction vial with a magnetic stir bar was added 106 mg (0.3 mmol, 1 eqv) of 2 that was dissolved in 2 ml of DMF. A total of 97 mg (0.3 mmol, 1 eqv) of 3 was added followed by the addition of 42 mg (0.3 mmol, 1 equiv.) of tri­ethyl­amine. The solution immediately turned dark red and was allowed to stir for 48 h.

The solution was then added to ether, and the orange solid was collected.

The title compound was then purified using a gradient (2–5%) of methanol in DCM. Yield 45 mg (30%). NMR: 1H NMR [300 MHz, (CD3)2SO)] δ = 8.80 (d, 1H, Ar.), 8.63 (d, 1H, Ar.), 8.15 (d, 1H, Ar.), 8.06 (d, 1H, Ar.), 7.99 (t, 1H, Ar.), 7.77 (q, 2H, Ar.), 7.62 (t, 1H, Ar.), 7.40 (m, 2H, Ar.), 5.77 (m, 1H, –CH=CH2), 4.97 (t, 2H, –CH2 N), 4.61 (t, 2H, –CH=CH2 ), 4.02 (s, 3H, –N—CH3 ) 2.08 (q, 2H, –CH2=CHCH2 CH2), 1.85 (quin, 2H, –CH2CH2 CH2), 1.45 (t, 2H, –CH2CH2CH2–) p.p.m.

Crystal formation: the title compound was taken up in methanol and then allowed to crystallize as dark-red prisms by slow evaporation of the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C24H25N2S+·I·H2O
M r 518.43
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 170
a, b, c (Å) 8.4780 (11), 10.5773 (17), 14.5191 (19)
α, β, γ (°) 95.810 (12), 105.762 (12), 110.651 (14)
V3) 1144.1 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.51
Crystal size (mm) 0.5 × 0.1 × 0.1
 
Data collection
Diffractometer XtaLAB Mini (ROW)
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.332, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6581, 4189, 2249
R int 0.043
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.060, 0.171, 1.03
No. of reflections 4189
No. of parameters 266
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −0.60

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314622007970/hb4408sup1.cif

x-07-x220797-sup1.cif (241.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622007970/hb4408Isup2.hkl

x-07-x220797-Isup2.hkl (333.7KB, hkl)

CCDC reference: 2195631

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Georgia Southern University and the Department of Chemistry and Biochemistry for financial support of the department X-ray facility, and Georgia Southern College of Science and Mathematics Office of Undergraduate Research for partial support, plus an NSF–MRI grant.

full crystallographic data

Crystal data

C24H25N2S+·I·H2O Z = 2
Mr = 518.43 F(000) = 524
Triclinic, P1 Dx = 1.505 Mg m3
a = 8.4780 (11) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.5773 (17) Å Cell parameters from 644 reflections
c = 14.5191 (19) Å θ = 2.1–21.1°
α = 95.810 (12)° µ = 1.51 mm1
β = 105.762 (12)° T = 170 K
γ = 110.651 (14)° Rect. prism, clear dark red
V = 1144.1 (3) Å3 0.5 × 0.1 × 0.1 mm

Data collection

XtaLAB Mini (ROW) diffractometer 4189 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source 2249 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.043
ω scans θmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) h = −10→10
Tmin = 0.332, Tmax = 1.000 k = −12→11
6581 measured reflections l = −17→16

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060 H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.1317P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
4189 reflections Δρmax = 0.66 e Å3
266 parameters Δρmin = −0.60 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All H atoms were placed in idealized locations (C—H = 0.93–0.97, O—H = 0.85 Å) and refined as riding atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.04034 (9) 0.55965 (6) 0.30846 (5) 0.0920 (3)
S1 0.7927 (3) 0.81364 (17) 0.36094 (14) 0.0577 (5)
N2 0.8314 (7) 1.0670 (5) 0.3757 (4) 0.0495 (14)
N1 0.6019 (8) 0.6852 (5) 0.6841 (5) 0.0579 (15)
C23 0.8637 (9) 1.0327 (7) 0.2901 (5) 0.0511 (17)
C4 0.6594 (9) 0.9170 (7) 0.6522 (5) 0.0498 (17)
C16 0.7461 (9) 0.9748 (7) 0.5082 (5) 0.0537 (17)
H16 0.746994 1.060734 0.530348 0.064*
C3 0.7026 (9) 0.8785 (6) 0.5662 (5) 0.0486 (17)
C17 0.7876 (8) 0.9617 (6) 0.4235 (5) 0.0467 (16)
C9 0.6078 (9) 0.8171 (7) 0.7091 (5) 0.0549 (18)
C2 0.6923 (9) 0.7436 (7) 0.5470 (5) 0.0559 (18)
H2 0.716781 0.713601 0.492143 0.067*
C1 0.6479 (9) 0.6548 (7) 0.6053 (5) 0.0590 (19)
H1 0.649126 0.567645 0.590268 0.071*
C18 0.8509 (9) 0.8971 (7) 0.2716 (5) 0.0544 (18)
C22 0.9072 (10) 1.1178 (8) 0.2252 (6) 0.066 (2)
H22 0.918042 1.209023 0.236988 0.080*
C10 0.5465 (10) 0.5769 (7) 0.7392 (6) 0.067 (2)
H10A 0.515625 0.487592 0.698316 0.080*
H10B 0.439612 0.576184 0.751890 0.080*
C5 0.6653 (10) 1.0472 (7) 0.6860 (5) 0.0609 (19)
H5 0.701850 1.115918 0.652057 0.073*
C11 0.6831 (11) 0.5937 (7) 0.8340 (6) 0.066 (2)
H11A 0.705991 0.678282 0.878000 0.079*
H11B 0.793698 0.601946 0.822871 0.079*
C6 0.6208 (11) 1.0797 (8) 0.7658 (6) 0.072 (2)
H6 0.624418 1.167804 0.783995 0.086*
C24 0.8400 (10) 1.2008 (7) 0.4111 (6) 0.064 (2)
H24A 0.927482 1.239531 0.475373 0.096*
H24B 0.725376 1.193066 0.414159 0.096*
H24C 0.872977 1.259910 0.367520 0.096*
C8 0.5616 (11) 0.8527 (8) 0.7912 (6) 0.071 (2)
H8 0.524265 0.786504 0.826843 0.085*
O1 0.2316 (12) 0.5102 (8) 0.5443 (7) 0.138 (3)
H1A 0.291275 0.581291 0.590880 0.207*
H1B 0.192515 0.534755 0.491739 0.207*
C19 0.8832 (11) 0.8450 (8) 0.1895 (6) 0.073 (2)
H19 0.877847 0.755232 0.177902 0.087*
C12 0.6232 (11) 0.4721 (8) 0.8818 (6) 0.071 (2)
H12A 0.512182 0.464089 0.892323 0.085*
H12B 0.599653 0.387829 0.837227 0.085*
C20 0.9230 (12) 0.9296 (9) 0.1268 (6) 0.081 (2)
H20 0.943321 0.895594 0.071436 0.097*
C21 0.9340 (11) 1.0618 (9) 0.1423 (6) 0.075 (2)
H21 0.959534 1.115594 0.097174 0.090*
C7 0.5706 (12) 0.9825 (9) 0.8191 (7) 0.080 (3)
H7 0.542670 1.005128 0.874551 0.095*
C13 0.7538 (14) 0.4843 (11) 0.9753 (8) 0.110 (3)
H13A 0.770531 0.565495 1.020756 0.132*
H13B 0.867061 0.500098 0.965176 0.132*
C14 0.7080 (18) 0.3633 (12) 1.0222 (8) 0.113 (4)
H14 0.790099 0.376037 1.083381 0.136*
C15 0.585 (2) 0.2529 (12) 0.9957 (10) 0.146 (6)
H15A 0.496588 0.231168 0.935308 0.175*
H15B 0.578332 0.188806 1.035348 0.175*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.1378 (6) 0.0665 (4) 0.0968 (5) 0.0488 (4) 0.0612 (4) 0.0317 (3)
S1 0.0704 (12) 0.0407 (9) 0.0605 (12) 0.0162 (9) 0.0271 (10) 0.0111 (9)
N2 0.057 (4) 0.041 (3) 0.055 (4) 0.019 (3) 0.024 (3) 0.018 (3)
N1 0.058 (4) 0.041 (3) 0.072 (4) 0.011 (3) 0.029 (3) 0.016 (3)
C23 0.045 (4) 0.048 (4) 0.056 (5) 0.010 (3) 0.019 (4) 0.014 (4)
C4 0.053 (4) 0.043 (4) 0.061 (5) 0.019 (3) 0.028 (4) 0.017 (3)
C16 0.060 (5) 0.046 (4) 0.061 (5) 0.021 (4) 0.028 (4) 0.017 (4)
C3 0.048 (4) 0.043 (4) 0.055 (4) 0.016 (3) 0.018 (3) 0.016 (3)
C17 0.038 (4) 0.042 (4) 0.058 (5) 0.010 (3) 0.018 (3) 0.014 (3)
C9 0.050 (4) 0.058 (4) 0.064 (5) 0.024 (4) 0.025 (4) 0.020 (4)
C2 0.069 (5) 0.048 (4) 0.057 (5) 0.019 (4) 0.033 (4) 0.018 (4)
C1 0.069 (5) 0.047 (4) 0.060 (5) 0.018 (4) 0.027 (4) 0.008 (4)
C18 0.057 (5) 0.047 (4) 0.055 (5) 0.013 (4) 0.023 (4) 0.013 (4)
C22 0.066 (5) 0.068 (5) 0.075 (6) 0.028 (4) 0.033 (4) 0.027 (5)
C10 0.084 (6) 0.050 (4) 0.070 (5) 0.016 (4) 0.042 (5) 0.024 (4)
C5 0.078 (5) 0.057 (4) 0.062 (5) 0.031 (4) 0.035 (4) 0.022 (4)
C11 0.080 (5) 0.059 (5) 0.073 (6) 0.030 (4) 0.039 (5) 0.024 (4)
C6 0.101 (6) 0.062 (5) 0.083 (6) 0.045 (5) 0.059 (5) 0.026 (4)
C24 0.073 (5) 0.054 (4) 0.077 (6) 0.027 (4) 0.036 (4) 0.027 (4)
C8 0.088 (6) 0.078 (5) 0.082 (6) 0.043 (5) 0.060 (5) 0.042 (5)
O1 0.121 (7) 0.111 (6) 0.159 (8) 0.044 (6) 0.020 (6) 0.009 (5)
C19 0.091 (6) 0.058 (5) 0.066 (5) 0.015 (5) 0.043 (5) 0.006 (4)
C12 0.081 (6) 0.063 (5) 0.078 (6) 0.028 (5) 0.039 (5) 0.025 (5)
C20 0.093 (7) 0.078 (6) 0.068 (6) 0.016 (5) 0.048 (5) 0.009 (5)
C21 0.084 (6) 0.072 (5) 0.070 (6) 0.017 (5) 0.040 (5) 0.028 (5)
C7 0.106 (7) 0.080 (6) 0.096 (7) 0.057 (6) 0.069 (6) 0.035 (5)
C13 0.123 (9) 0.109 (8) 0.108 (8) 0.051 (7) 0.039 (7) 0.052 (7)
C14 0.159 (11) 0.105 (8) 0.094 (8) 0.060 (9) 0.051 (8) 0.051 (7)
C15 0.259 (18) 0.093 (8) 0.128 (11) 0.065 (11) 0.129 (12) 0.048 (8)

Geometric parameters (Å, º)

S1—C17 1.750 (7) C11—H11A 0.9700
S1—C18 1.726 (7) C11—H11B 0.9700
N2—C23 1.383 (8) C11—C12 1.518 (9)
N2—C17 1.366 (8) C6—H6 0.9300
N2—C24 1.426 (8) C6—C7 1.367 (10)
N1—C9 1.385 (8) C24—H24A 0.9600
N1—C1 1.349 (9) C24—H24B 0.9600
N1—C10 1.478 (8) C24—H24C 0.9600
C23—C18 1.392 (9) C8—H8 0.9300
C23—C22 1.400 (10) C8—C7 1.361 (10)
C4—C3 1.453 (9) O1—H1A 0.8500
C4—C9 1.427 (9) O1—H1B 0.8499
C4—C5 1.393 (9) C19—H19 0.9300
C16—H16 0.9300 C19—C20 1.365 (11)
C16—C3 1.399 (9) C12—H12A 0.9700
C16—C17 1.375 (9) C12—H12B 0.9700
C3—C2 1.392 (9) C12—C13 1.461 (11)
C9—C8 1.408 (10) C20—H20 0.9300
C2—H2 0.9300 C20—C21 1.360 (11)
C2—C1 1.351 (9) C21—H21 0.9300
C1—H1 0.9300 C7—H7 0.9300
C18—C19 1.397 (10) C13—H13A 0.9700
C22—H22 0.9300 C13—H13B 0.9700
C22—C21 1.396 (11) C13—C14 1.491 (13)
C10—H10A 0.9700 C14—H14 0.9300
C10—H10B 0.9700 C14—C15 1.196 (15)
C10—C11 1.485 (10) C15—H15A 0.9300
C5—H5 0.9300 C15—H15B 0.9300
C5—C6 1.360 (10)
C18—S1—C17 91.7 (3) C10—C11—C12 111.7 (7)
C23—N2—C24 123.1 (5) H11A—C11—H11B 107.9
C17—N2—C23 114.8 (5) C12—C11—H11A 109.3
C17—N2—C24 122.1 (6) C12—C11—H11B 109.3
C9—N1—C10 123.0 (6) C5—C6—H6 120.1
C1—N1—C9 118.1 (6) C5—C6—C7 119.9 (7)
C1—N1—C10 118.9 (6) C7—C6—H6 120.1
N2—C23—C18 112.7 (6) N2—C24—H24A 109.5
N2—C23—C22 127.5 (6) N2—C24—H24B 109.5
C18—C23—C22 119.8 (7) N2—C24—H24C 109.5
C9—C4—C3 119.4 (6) H24A—C24—H24B 109.5
C5—C4—C3 125.1 (6) H24A—C24—H24C 109.5
C5—C4—C9 115.5 (7) H24B—C24—H24C 109.5
C3—C16—H16 115.1 C9—C8—H8 119.5
C17—C16—H16 115.1 C7—C8—C9 121.1 (7)
C17—C16—C3 129.9 (6) C7—C8—H8 119.5
C16—C3—C4 119.3 (6) H1A—O1—H1B 109.5
C2—C3—C4 115.6 (6) C18—C19—H19 121.0
C2—C3—C16 125.1 (7) C20—C19—C18 118.1 (7)
N2—C17—S1 110.0 (5) C20—C19—H19 121.0
N2—C17—C16 123.3 (6) C11—C12—H12A 108.9
C16—C17—S1 126.8 (5) C11—C12—H12B 108.9
N1—C9—C4 120.7 (7) H12A—C12—H12B 107.7
N1—C9—C8 119.7 (6) C13—C12—C11 113.6 (7)
C8—C9—C4 119.6 (6) C13—C12—H12A 108.9
C3—C2—H2 118.8 C13—C12—H12B 108.9
C1—C2—C3 122.4 (7) C19—C20—H20 118.8
C1—C2—H2 118.8 C21—C20—C19 122.4 (8)
N1—C1—C2 123.8 (7) C21—C20—H20 118.8
N1—C1—H1 118.1 C22—C21—H21 119.6
C2—C1—H1 118.1 C20—C21—C22 120.7 (8)
C23—C18—S1 110.8 (5) C20—C21—H21 119.6
C23—C18—C19 120.8 (7) C6—C7—H7 120.0
C19—C18—S1 128.3 (5) C8—C7—C6 120.0 (8)
C23—C22—H22 120.9 C8—C7—H7 120.0
C21—C22—C23 118.2 (7) C12—C13—H13A 108.3
C21—C22—H22 120.9 C12—C13—H13B 108.3
N1—C10—H10A 108.6 C12—C13—C14 116.0 (9)
N1—C10—H10B 108.6 H13A—C13—H13B 107.4
N1—C10—C11 114.8 (6) C14—C13—H13A 108.3
H10A—C10—H10B 107.5 C14—C13—H13B 108.3
C11—C10—H10A 108.6 C13—C14—H14 114.1
C11—C10—H10B 108.6 C15—C14—C13 131.8 (13)
C4—C5—H5 118.1 C15—C14—H14 114.1
C6—C5—C4 123.9 (7) C14—C15—H15A 120.0
C6—C5—H5 118.1 C14—C15—H15B 120.0
C10—C11—H11A 109.3 H15A—C15—H15B 120.0
C10—C11—H11B 109.3
S1—C18—C19—C20 178.2 (6) C9—C4—C3—C2 −1.0 (10)
N2—C23—C18—S1 1.5 (8) C9—C4—C5—C6 −1.9 (12)
N2—C23—C18—C19 −178.5 (6) C9—C8—C7—C6 1.7 (14)
N2—C23—C22—C21 −179.8 (7) C1—N1—C9—C4 0.6 (10)
N1—C9—C8—C7 178.2 (7) C1—N1—C9—C8 −179.7 (6)
N1—C10—C11—C12 −174.8 (6) C1—N1—C10—C11 104.1 (8)
C23—N2—C17—S1 1.7 (7) C18—S1—C17—N2 −0.7 (5)
C23—N2—C17—C16 −178.1 (6) C18—S1—C17—C16 179.2 (6)
C23—C18—C19—C20 −1.7 (12) C18—C23—C22—C21 1.0 (11)
C23—C22—C21—C20 −1.9 (12) C18—C19—C20—C21 0.8 (14)
C4—C3—C2—C1 −1.1 (11) C22—C23—C18—S1 −179.1 (5)
C4—C9—C8—C7 −2.1 (12) C22—C23—C18—C19 0.8 (11)
C4—C5—C6—C7 1.6 (13) C10—N1—C9—C4 −178.9 (6)
C16—C3—C2—C1 −179.3 (7) C10—N1—C9—C8 0.8 (11)
C3—C4—C9—N1 1.2 (10) C10—N1—C1—C2 176.7 (7)
C3—C4—C9—C8 −178.5 (7) C10—C11—C12—C13 180.0 (8)
C3—C4—C5—C6 178.7 (7) C5—C4—C3—C16 −3.2 (11)
C3—C16—C17—S1 1.7 (11) C5—C4—C3—C2 178.4 (7)
C3—C16—C17—N2 −178.5 (7) C5—C4—C9—N1 −178.2 (6)
C3—C2—C1—N1 3.1 (12) C5—C4—C9—C8 2.1 (10)
C17—S1—C18—C23 −0.5 (6) C5—C6—C7—C8 −1.4 (14)
C17—S1—C18—C19 179.6 (7) C11—C12—C13—C14 −175.8 (9)
C17—N2—C23—C18 −2.1 (8) C24—N2—C23—C18 178.8 (6)
C17—N2—C23—C22 178.6 (7) C24—N2—C23—C22 −0.5 (11)
C17—C16—C3—C4 −178.6 (7) C24—N2—C17—S1 −179.2 (5)
C17—C16—C3—C2 −0.3 (12) C24—N2—C17—C16 1.0 (10)
C9—N1—C1—C2 −2.8 (11) C19—C20—C21—C22 1.0 (14)
C9—N1—C10—C11 −76.4 (9) C12—C13—C14—C15 3 (2)
C9—C4—C3—C16 177.4 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···S1 0.93 2.40 3.128 (7) 135
O1—H1A···N1 0.85 2.39 3.014 (10) 131
O1—H1B···I1 0.85 2.71 3.546 (10) 169

Funding Statement

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 2018774 to Nathaniel Shank).

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  3. Rye, H. S., Yue, S., Wemmer, D. E., Quesada, M. A., Haugland, R. P., Mathies, R. A. & Glazer, A. N. (1992). Nucleic Acids Res. 20, 2803–2812. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  5. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  6. Suss, O., Motiei, L. & Margulies, D. (2021). Molecules, 26, 2828. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314622007970/hb4408sup1.cif

x-07-x220797-sup1.cif (241.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622007970/hb4408Isup2.hkl

x-07-x220797-Isup2.hkl (333.7KB, hkl)

CCDC reference: 2195631

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES