Skip to main content
IUCrData logoLink to IUCrData
. 2022 Aug 26;7(Pt 8):x220830. doi: 10.1107/S2414314622008306

Bis[3,5-di­fluoro-2-(pyridin-2-yl)phen­yl](4,4′-di­meth­oxy-2,2′-bi­pyridine)­iridium(III) hexa­fluorido­phosphate

Madelyn R Shevlin a, Emily E Stumbo a, Colin D McMillen b, Jared A Pienkos a,*
Editor: M Zellerc
PMCID: PMC9635420  PMID: 36340976

The title compound, bis­[3,5-di­fluoro-2-(pyridin-2-yl)phen­yl](4,4′-dimeth­oxy-2,2′-bi­pyridine)­iridium(III) hexa­fluorido­phosphate, is a distorted octa­hedral cyclo­metalated complex that exhibits a trans effect.

Keywords: crystal structure; 4–4′-dimeth­oxy-2,2′-bi­pyridine; iridium(III); cyclo­metalated complex

Abstract

The title cyclo­metalated distorted octa­hedral iridium complex, [Ir(C11H6F2N)2(C12H12N2O2)]PF6, exhibits elongated Ir—N bonds to the dimeth­oxy bi­pyridine ligand [2.128 (3) and 2.136 (3) Å] where these nitro­gen atoms are trans to the Ir—C bonds of the two cyclo­metalating di­fluoro­phenyl­pyridine ligands. The angles between the mean planes of the phenyl and pyridyl fragments within the individual ligands range from 3.5 (2) to 11.4 (2)° to deviate slightly from coplanarity. graphic file with name x-07-x220830-scheme1-3D1.jpg

Structure description

The title compound, [Ir(dfppy)2(bipyOMe)](PF6), is a distorted octa­hedral complex composed of bidentate cyclo­metallated ligands. The photophysical properties of cyclo­metalated iridium(III) complexes have been studied extensively in diverse applications such as cell imaging and OLEDs (Lee et al., 2009; Thorp-Greenwood, 2012; You et al., 2014). In [Ir(dfppy)2(bipyOMe)](PF6), the nitro­gen atoms of the bipyOMe ligand are oriented trans to the carbon atoms of the dfppy ligands (Fig. 1). The Ir—N bond lengths to the bipyOMe ligand are 2.128 (3) and 2.136 (3) Å, longer than the Ir—N [2.035 (3) and 2.042 (3) Å] or Ir—C [2.014 (3) and 2.017 (3) Å] bonds to the dfppy ligands. This is consistent with a substantial trans effect directed by the carbon atoms of dfppy. This feature is also present in related structures in the literature, including for example Ir—N bonds to the trans-effected nitro­gen atoms of the hydrogen pyridin-2-yl-phosophonato ligand of bis­[3,5-di­fluoro-2-(pyridin-2-yl)phen­yl](hydrogen pyridin-2-yl-phospho­nato)iridium(III) [Ir—N = 2.153 (4) Å; Zeng et al., 2019], and of the bi­pyridine ligands in the structures of (2,2′-bi­pyridine)­bis­[3,5-di­fluoro-2-(pyridin-2-yl)phen­yl]iridium(III) com­plexes [ranging from 2.120 (4) to 2.141 (4) Å; Li et al., 2017; Moriuchi et al., 2012]. This arrangement maximizes the number of C—Ir—N inter­ligand trans-inter­actions compared to other potential isomers that would orient only one of the bipyOMe nitro­gen atoms across from a strong trans-donor carbon atom, or that would have both strong trans-donor carbon atoms opposing one another (i.e. all nitro­gen atoms are trans to one another).

Figure 1.

Figure 1

The structures of the molecular components of the title compound shown as 50% probability ellipsoids. Hydrogen atoms have been omitted for clarity.

In addition to the octa­hedral distortion arising from the trans-effect, an angular distortion occurs from the chelating ligands, with cis-angles about iridium ranging from 76.39 (10) to 101.08 (12)°, and trans-angles about iridium ranging from 172.49 (12) to 177.11 (12)°. The ligands themselves deviate slightly from coplanarity, with mean plane to mean plane angles between the phenyl and pyridyl fragments within the individual ligands ranging from 3.5 (2) to 11.4 (2)°. The methyl groups of the bipyOMe ligands both fold inward. Neighboring complexes form dimers (Fig. 2) through inter­actions between their dfppy ligands, including offset π stacking [centroid–centroid = 3.616 (3) Å; plane-to-plane distance = 3.202 (3) Å] and C—H⋯π (H⋯centroid = 2.52 Å) inter­actions. Several C—H⋯F inter­actions between the complexes and the (PF6) anions (Table 1, Fig. 3), as well as a C—H⋯O inter­action between meth­oxy groups of neighboring complexes further support the long-range packing.

Figure 2.

Figure 2

Dimers of the title complex formed via offset π stacking and C—H⋯π inter­actions. The projection is viewed along [010].

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯F7i 0.98 2.51 3.240 (6) 131
C11—H11B⋯O2ii 0.98 2.52 3.294 (5) 136
C20—H20⋯F2 0.95 2.25 2.866 (6) 122
C31—H31⋯F4 0.95 2.25 2.869 (6) 122
C34—H34⋯F8iii 0.95 2.55 3.412 (5) 150

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 3.

Figure 3

Packing diagram of the title compound viewed along [010].

Synthesis and crystallization

[Ir(dfppy)2Cl]2 was prepared according to the literature (Skórka et al., 2016). [Ir (dfppy)2Cl]2 (0.0508 g, 0.0418 mmol) and 4,4′-dimeth­oxy-2,2′-bi­pyridine (0.0208 g, 0.0962 mmol) were combined in ethyl­ene glycol (5 ml). The resulting yellow–green heterogenous mixture was heated under N2 to 150°C while stirring. After 20 h, the resulting yellow homogenous solution was allowed to cool to room temperature and 10 ml of NH4PF6 (sat. aq.) were added. The yellow precipitate that formed was collected by vacuum filtration, washed with H2O (3 × 10 ml), Et2O (3 ×10 ml), and dried in vacuo to give a yellow powder (0.0517 g, 78.3%). Yellow needle-like crystals suitable for X-ray diffraction were obtained by vapor–vapor diffusion from a solution of hexa­nes and di­chloro­methane. 1H NMR (400 MHz, DMSO-d 6) δ 8.48 (d, J = 2.7 Hz, 2H), 8.28 (d, J = 8.5 Hz, 2H), 8.03 (t, J = 7.9 Hz, 2H), 7.75 (dd, 2H), 7.65 (d, J = 6.4 Hz, 2H), 7.28 (td, 4H), 6.97 (d, J = 11.8 Hz, 2H), 5.61 (dd, 2H), 4.00 (s, 6H).

Refinement

Crystal data, data collection, and structure refinement details are summzarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [Ir(C11H6F2N)2(C12H12N2O2)]PF6
M r 933.74
Crystal system, space group Orthorhombic, P b c n
Temperature (K) 100
a, b, c (Å) 41.574 (3), 8.6065 (7), 18.2384 (14)
V3) 6525.9 (9)
Z 8
Radiation type Cu Kα
μ (mm−1) 9.27
Crystal size (mm) 0.20 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture Photon 2
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.667, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 51121, 6215, 5595
R int 0.043
(sin θ/λ)max−1) 0.610
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.028, 0.068, 1.16
No. of reflections 6215
No. of parameters 471
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.91, −0.61

Computer programs: APEX3 (Bruker, 2017), SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ), and Mercury (Macrae et al., 2020), publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622008306/zl4051sup1.cif

x-07-x220830-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622008306/zl4051Isup2.hkl

x-07-x220830-Isup2.hkl (494.5KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622008306/zl4051Isup3.cdx

CCDC reference: 2202472

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Bailey Newell and Dr John Lee for assistance and helpful discussions.

full crystallographic data

Crystal data

[Ir(C11H6F2N)2(C12H12N2O2)]PF6 Dx = 1.901 Mg m3
Mr = 933.74 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pbcn Cell parameters from 9410 reflections
a = 41.574 (3) Å θ = 4.0–70.2°
b = 8.6065 (7) Å µ = 9.27 mm1
c = 18.2384 (14) Å T = 100 K
V = 6525.9 (9) Å3 Column, yellow
Z = 8 0.20 × 0.07 × 0.06 mm
F(000) = 3632

Data collection

Bruker D8 Venture Photon 2 diffractometer 5595 reflections with I > 2σ(I)
Radiation source: Incoatec IµS Rint = 0.043
φ and ω scans θmax = 70.3°, θmin = 5.0°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −50→50
Tmin = 0.667, Tmax = 1.000 k = −9→10
51121 measured reflections l = −20→22
6215 independent reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068 H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0194P)2 + 21.8494P] where P = (Fo2 + 2Fc2)/3
6215 reflections (Δ/σ)max = 0.008
471 parameters Δρmax = 0.91 e Å3
0 restraints Δρmin = −0.61 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. H atoms were placed in calculated positions with C—H bond distances of 0.95 Å for aromatic 0.98 Å for CH3 moieties, respectively. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a 1.5 (for CH3) or 1.2 (for C—H) times Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ir1 0.60823 (2) 0.58537 (2) 0.48740 (2) 0.01420 (6)
P1 0.69527 (2) 1.06167 (12) 0.66335 (5) 0.0244 (2)
F1 0.51080 (6) 0.1773 (4) 0.52914 (15) 0.0471 (7)
F2 0.50104 (6) 0.6651 (4) 0.63715 (13) 0.0475 (7)
F3 0.53664 (7) 0.9251 (3) 0.29752 (15) 0.0457 (7)
F4 0.56046 (7) 0.4119 (3) 0.23471 (13) 0.0439 (7)
F5 0.67444 (7) 0.9209 (3) 0.6335 (2) 0.0588 (9)
F6 0.71604 (7) 1.2005 (3) 0.69438 (17) 0.0487 (7)
F7 0.70871 (7) 0.9525 (3) 0.72743 (16) 0.0484 (7)
F8 0.68154 (6) 1.1714 (4) 0.60026 (14) 0.0473 (7)
F9 0.72483 (6) 1.0121 (4) 0.61233 (14) 0.0477 (7)
F10 0.66573 (6) 1.1117 (3) 0.71486 (14) 0.0392 (6)
O1 0.68565 (6) 0.4864 (3) 0.77561 (13) 0.0252 (6)
O2 0.74782 (6) 0.8299 (3) 0.43096 (14) 0.0276 (6)
N1 0.63528 (7) 0.5248 (3) 0.58221 (15) 0.0172 (6)
N2 0.65522 (6) 0.6726 (3) 0.46407 (15) 0.0153 (5)
N3 0.59314 (7) 0.7760 (4) 0.54453 (15) 0.0211 (6)
N4 0.61822 (7) 0.3919 (4) 0.42744 (16) 0.0207 (6)
C1 0.62284 (8) 0.4565 (4) 0.64235 (19) 0.0204 (7)
H1 0.601441 0.418006 0.640197 0.024*
C2 0.63967 (8) 0.4401 (4) 0.70643 (19) 0.0215 (7)
H2 0.630255 0.389275 0.747379 0.026*
C3 0.67100 (8) 0.4995 (4) 0.71064 (18) 0.0184 (7)
C4 0.68430 (8) 0.5666 (4) 0.64852 (19) 0.0186 (7)
H4 0.705778 0.604258 0.649117 0.022*
C5 0.66579 (8) 0.5780 (4) 0.58555 (18) 0.0152 (6)
C6 0.67759 (8) 0.6531 (4) 0.51767 (17) 0.0159 (6)
C7 0.70924 (8) 0.7019 (4) 0.50924 (18) 0.0189 (7)
H7 0.724542 0.684919 0.547080 0.023*
C8 0.71818 (8) 0.7759 (4) 0.44450 (19) 0.0205 (7)
C9 0.69516 (9) 0.7961 (4) 0.38958 (18) 0.0210 (7)
H9 0.700598 0.846105 0.344825 0.025*
C10 0.66460 (8) 0.7424 (4) 0.40150 (17) 0.0177 (7)
H10 0.649158 0.754997 0.363565 0.021*
C11 0.71886 (10) 0.5355 (6) 0.7799 (2) 0.0352 (10)
H11A 0.731560 0.479276 0.743261 0.053*
H11B 0.727276 0.512989 0.828998 0.053*
H11C 0.720241 0.647362 0.770505 0.053*
C12 0.77258 (9) 0.7963 (5) 0.4834 (2) 0.0307 (9)
H12A 0.767154 0.844654 0.530472 0.046*
H12B 0.793125 0.837818 0.465787 0.046*
H12C 0.774373 0.683614 0.489807 0.046*
C13 0.56560 (8) 0.5034 (5) 0.52336 (18) 0.0237 (8)
C14 0.55276 (10) 0.3574 (5) 0.5117 (2) 0.0300 (9)
H14 0.564116 0.283327 0.483050 0.036*
C15 0.52304 (9) 0.3197 (6) 0.5421 (2) 0.0332 (9)
C16 0.50576 (10) 0.4217 (6) 0.5846 (2) 0.0381 (11)
H16 0.485645 0.393021 0.605269 0.046*
C17 0.51855 (10) 0.5655 (6) 0.5960 (2) 0.0360 (11)
C18 0.54814 (9) 0.6118 (5) 0.5669 (2) 0.0279 (9)
C19 0.56351 (9) 0.7625 (5) 0.5786 (2) 0.0290 (9)
C20 0.55180 (11) 0.8876 (6) 0.6201 (2) 0.0403 (11)
H20 0.531358 0.880956 0.643223 0.048*
C21 0.57016 (12) 1.0204 (6) 0.6272 (2) 0.0426 (11)
H21 0.562063 1.106271 0.654293 0.051*
C22 0.60004 (11) 1.0293 (6) 0.5955 (2) 0.0374 (10)
H22 0.613287 1.118091 0.602228 0.045*
C23 0.61029 (9) 0.9055 (5) 0.5534 (2) 0.0273 (8)
H23 0.630572 0.912941 0.529681 0.033*
C24 0.58468 (8) 0.6421 (5) 0.39470 (18) 0.0222 (7)
C25 0.56931 (9) 0.7793 (5) 0.3780 (2) 0.0285 (8)
H25 0.570615 0.865422 0.410381 0.034*
C26 0.55177 (9) 0.7906 (6) 0.3128 (2) 0.0336 (9)
C27 0.54847 (9) 0.6700 (6) 0.2651 (2) 0.0340 (10)
H27 0.535858 0.679906 0.221947 0.041*
C28 0.56399 (10) 0.5335 (6) 0.2816 (2) 0.0328 (9)
C29 0.58303 (9) 0.5150 (5) 0.34384 (19) 0.0273 (8)
C30 0.60312 (10) 0.3802 (5) 0.3612 (2) 0.0269 (8)
C31 0.60924 (11) 0.2514 (6) 0.3162 (2) 0.0384 (10)
H31 0.598464 0.241717 0.270467 0.046*
C32 0.63070 (13) 0.1393 (5) 0.3378 (3) 0.0428 (11)
H32 0.634963 0.052331 0.307227 0.051*
C33 0.64615 (12) 0.1545 (5) 0.4052 (3) 0.0405 (10)
H33 0.661350 0.079018 0.420865 0.049*
C34 0.63901 (9) 0.2812 (5) 0.4489 (2) 0.0294 (8)
H34 0.649092 0.290304 0.495433 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.01073 (8) 0.02118 (9) 0.01070 (8) −0.00081 (5) −0.00032 (5) 0.00108 (5)
P1 0.0238 (4) 0.0256 (5) 0.0237 (5) 0.0016 (4) −0.0007 (4) −0.0031 (4)
F1 0.0337 (13) 0.0576 (18) 0.0501 (15) −0.0234 (13) −0.0067 (12) 0.0149 (14)
F2 0.0249 (12) 0.086 (2) 0.0310 (13) 0.0105 (13) 0.0101 (10) 0.0011 (14)
F3 0.0420 (14) 0.0589 (18) 0.0361 (14) 0.0120 (13) −0.0097 (11) 0.0143 (12)
F4 0.0491 (15) 0.0615 (18) 0.0211 (12) −0.0119 (13) −0.0074 (11) −0.0070 (11)
F5 0.0402 (15) 0.0402 (16) 0.096 (3) 0.0011 (12) −0.0179 (16) −0.0321 (16)
F6 0.0400 (14) 0.0373 (15) 0.0687 (19) −0.0080 (12) −0.0104 (13) −0.0112 (14)
F7 0.0417 (15) 0.0500 (16) 0.0534 (17) 0.0084 (13) −0.0016 (13) 0.0212 (14)
F8 0.0387 (14) 0.072 (2) 0.0307 (13) 0.0182 (14) 0.0065 (11) 0.0179 (13)
F9 0.0390 (14) 0.0674 (19) 0.0368 (14) 0.0209 (14) 0.0073 (11) −0.0052 (13)
F10 0.0391 (14) 0.0416 (14) 0.0368 (13) 0.0040 (11) 0.0145 (11) 0.0054 (11)
O1 0.0263 (13) 0.0339 (15) 0.0154 (11) −0.0057 (11) −0.0060 (10) 0.0043 (11)
O2 0.0170 (12) 0.0396 (16) 0.0261 (13) −0.0069 (11) 0.0025 (10) 0.0079 (12)
N1 0.0156 (13) 0.0207 (15) 0.0153 (13) 0.0024 (11) −0.0003 (10) 0.0040 (11)
N2 0.0149 (13) 0.0176 (14) 0.0134 (13) −0.0014 (11) 0.0001 (10) −0.0015 (11)
N3 0.0185 (14) 0.0307 (17) 0.0140 (13) 0.0078 (13) −0.0012 (11) −0.0010 (12)
N4 0.0185 (14) 0.0271 (16) 0.0165 (14) −0.0024 (12) 0.0024 (11) 0.0002 (12)
C1 0.0147 (15) 0.0291 (19) 0.0172 (16) −0.0017 (14) 0.0027 (13) 0.0030 (14)
C2 0.0197 (16) 0.0290 (19) 0.0157 (16) 0.0017 (14) 0.0036 (13) 0.0047 (14)
C3 0.0235 (17) 0.0158 (16) 0.0159 (16) 0.0016 (14) −0.0025 (13) −0.0011 (13)
C4 0.0168 (16) 0.0205 (17) 0.0185 (16) −0.0011 (13) −0.0012 (13) 0.0031 (13)
C5 0.0148 (15) 0.0172 (16) 0.0137 (15) −0.0005 (12) 0.0001 (12) −0.0009 (12)
C6 0.0132 (15) 0.0200 (17) 0.0144 (15) 0.0003 (13) −0.0012 (12) −0.0004 (13)
C7 0.0165 (16) 0.0227 (18) 0.0175 (16) −0.0017 (14) −0.0013 (12) 0.0009 (13)
C8 0.0167 (16) 0.0226 (18) 0.0221 (17) −0.0034 (14) 0.0039 (13) −0.0002 (14)
C9 0.0248 (17) 0.0250 (18) 0.0132 (15) −0.0004 (15) 0.0022 (13) 0.0010 (14)
C10 0.0200 (16) 0.0214 (17) 0.0117 (14) −0.0002 (13) −0.0010 (12) 0.0007 (13)
C11 0.034 (2) 0.048 (3) 0.0237 (19) −0.015 (2) −0.0169 (17) 0.0066 (18)
C12 0.0179 (17) 0.043 (2) 0.031 (2) −0.0074 (17) 0.0000 (15) 0.0066 (18)
C13 0.0138 (15) 0.042 (2) 0.0157 (16) −0.0058 (15) −0.0039 (13) 0.0127 (16)
C14 0.0242 (19) 0.041 (2) 0.0243 (19) −0.0083 (18) −0.0061 (15) 0.0091 (17)
C15 0.0239 (19) 0.052 (3) 0.0238 (19) −0.0073 (19) −0.0062 (15) 0.0124 (19)
C16 0.0218 (19) 0.066 (3) 0.027 (2) −0.013 (2) −0.0083 (16) 0.017 (2)
C17 0.0206 (19) 0.071 (3) 0.0166 (18) 0.006 (2) 0.0009 (15) 0.0076 (19)
C18 0.0169 (17) 0.052 (3) 0.0146 (16) 0.0046 (17) 0.0007 (13) 0.0059 (16)
C19 0.0250 (18) 0.045 (2) 0.0174 (17) 0.0115 (17) 0.0002 (14) 0.0010 (17)
C20 0.038 (2) 0.057 (3) 0.026 (2) 0.019 (2) 0.0083 (18) 0.002 (2)
C21 0.052 (3) 0.043 (3) 0.033 (2) 0.017 (2) 0.004 (2) −0.009 (2)
C22 0.047 (2) 0.035 (2) 0.031 (2) 0.007 (2) 0.0002 (19) −0.0048 (19)
C23 0.029 (2) 0.030 (2) 0.0235 (19) 0.0066 (16) −0.0012 (15) −0.0023 (15)
C24 0.0136 (15) 0.040 (2) 0.0135 (15) −0.0064 (15) 0.0009 (12) 0.0065 (15)
C25 0.0188 (17) 0.043 (2) 0.0233 (18) 0.0023 (16) −0.0021 (14) 0.0074 (17)
C26 0.0242 (19) 0.051 (3) 0.0252 (19) −0.0012 (18) 0.0007 (15) 0.0110 (19)
C27 0.0242 (19) 0.057 (3) 0.0210 (19) −0.0041 (19) 0.0000 (15) 0.0141 (19)
C28 0.030 (2) 0.052 (3) 0.0167 (17) −0.0143 (19) 0.0003 (15) −0.0034 (18)
C29 0.0225 (17) 0.044 (2) 0.0155 (16) −0.0089 (17) 0.0016 (14) 0.0011 (16)
C30 0.032 (2) 0.032 (2) 0.0161 (17) −0.0114 (17) 0.0019 (15) −0.0029 (15)
C31 0.050 (3) 0.040 (3) 0.025 (2) −0.008 (2) 0.0014 (18) −0.0052 (19)
C32 0.063 (3) 0.028 (2) 0.037 (2) 0.000 (2) 0.006 (2) −0.0135 (19)
C33 0.046 (3) 0.030 (2) 0.046 (3) 0.004 (2) 0.004 (2) −0.008 (2)
C34 0.0288 (19) 0.027 (2) 0.032 (2) −0.0034 (16) 0.0027 (16) 0.0017 (17)

Geometric parameters (Å, º)

Ir1—C24 2.014 (3) C10—H10 0.9500
Ir1—C13 2.017 (3) C11—H11A 0.9800
Ir1—N4 2.035 (3) C11—H11B 0.9800
Ir1—N3 2.042 (3) C11—H11C 0.9800
Ir1—N1 2.128 (3) C12—H12A 0.9800
Ir1—N2 2.136 (3) C12—H12B 0.9800
P1—F6 1.579 (3) C12—H12C 0.9800
P1—F5 1.585 (3) C13—C14 1.382 (6)
P1—F8 1.594 (3) C13—C18 1.424 (6)
P1—F9 1.599 (3) C14—C15 1.393 (6)
P1—F7 1.601 (3) C14—H14 0.9500
P1—F10 1.605 (3) C15—C16 1.373 (7)
F1—C15 1.347 (5) C16—C17 1.364 (7)
F2—C17 1.352 (5) C16—H16 0.9500
F3—C26 1.347 (5) C17—C18 1.398 (5)
F4—C28 1.360 (5) C18—C19 1.461 (6)
O1—C3 1.337 (4) C19—C20 1.404 (6)
O1—C11 1.446 (5) C20—C21 1.381 (7)
O2—C8 1.340 (4) C20—H20 0.9500
O2—C12 1.435 (5) C21—C22 1.373 (7)
N1—C1 1.347 (4) C21—H21 0.9500
N1—C5 1.350 (4) C22—C23 1.380 (6)
N2—C10 1.347 (4) C22—H22 0.9500
N2—C6 1.360 (4) C23—H23 0.9500
N3—C23 1.333 (5) C24—C25 1.377 (6)
N3—C19 1.385 (5) C24—C29 1.435 (6)
N4—C34 1.344 (5) C25—C26 1.397 (5)
N4—C30 1.366 (5) C25—H25 0.9500
C1—C2 1.369 (5) C26—C27 1.361 (7)
C1—H1 0.9500 C27—C28 1.374 (7)
C2—C3 1.401 (5) C27—H27 0.9500
C2—H2 0.9500 C28—C29 1.393 (5)
C3—C4 1.387 (5) C29—C30 1.464 (6)
C4—C5 1.386 (5) C30—C31 1.403 (6)
C4—H4 0.9500 C31—C32 1.372 (7)
C5—C6 1.481 (4) C31—H31 0.9500
C6—C7 1.389 (5) C32—C33 1.393 (7)
C7—C8 1.392 (5) C32—H32 0.9500
C7—H7 0.9500 C33—C34 1.383 (6)
C8—C9 1.396 (5) C33—H33 0.9500
C9—C10 1.370 (5) C34—H34 0.9500
C9—H9 0.9500
C24—Ir1—C13 86.02 (13) H11A—C11—H11B 109.5
C24—Ir1—N4 81.16 (14) O1—C11—H11C 109.5
C13—Ir1—N4 93.90 (15) H11A—C11—H11C 109.5
C24—Ir1—N3 94.85 (14) H11B—C11—H11C 109.5
C13—Ir1—N3 81.09 (15) O2—C12—H12A 109.5
N4—Ir1—N3 173.84 (12) O2—C12—H12B 109.5
C24—Ir1—N1 177.11 (12) H12A—C12—H12B 109.5
C13—Ir1—N1 96.57 (12) O2—C12—H12C 109.5
N4—Ir1—N1 97.36 (12) H12A—C12—H12C 109.5
N3—Ir1—N1 86.83 (11) H12B—C12—H12C 109.5
C24—Ir1—N2 101.08 (12) C14—C13—C18 119.0 (3)
C13—Ir1—N2 172.49 (12) C14—C13—Ir1 127.4 (3)
N4—Ir1—N2 89.64 (11) C18—C13—Ir1 113.6 (3)
N3—Ir1—N2 95.76 (11) C13—C14—C15 119.6 (4)
N1—Ir1—N2 76.39 (10) C13—C14—H14 120.2
F6—P1—F5 179.0 (2) C15—C14—H14 120.2
F6—P1—F8 90.37 (17) F1—C15—C16 118.9 (4)
F5—P1—F8 90.54 (18) F1—C15—C14 118.5 (4)
F6—P1—F9 89.44 (17) C16—C15—C14 122.6 (4)
F5—P1—F9 90.93 (17) C17—C16—C15 117.5 (4)
F8—P1—F9 90.75 (14) C17—C16—H16 121.2
F6—P1—F7 89.52 (17) C15—C16—H16 121.2
F5—P1—F7 89.57 (18) F2—C17—C16 116.8 (4)
F8—P1—F7 179.25 (17) F2—C17—C18 120.3 (4)
F9—P1—F7 89.99 (15) C16—C17—C18 123.0 (4)
F6—P1—F10 90.31 (15) C17—C18—C13 118.3 (4)
F5—P1—F10 89.32 (16) C17—C18—C19 125.6 (4)
F8—P1—F10 89.40 (14) C13—C18—C19 116.1 (3)
F9—P1—F10 179.71 (17) N3—C19—C20 119.1 (4)
F7—P1—F10 89.86 (15) N3—C19—C18 113.4 (3)
C3—O1—C11 117.3 (3) C20—C19—C18 127.5 (4)
C8—O2—C12 117.8 (3) C21—C20—C19 119.6 (4)
C1—N1—C5 118.1 (3) C21—C20—H20 120.2
C1—N1—Ir1 124.4 (2) C19—C20—H20 120.2
C5—N1—Ir1 116.8 (2) C22—C21—C20 120.4 (4)
C10—N2—C6 117.8 (3) C22—C21—H21 119.8
C10—N2—Ir1 126.2 (2) C20—C21—H21 119.8
C6—N2—Ir1 116.0 (2) C21—C22—C23 118.1 (5)
C23—N3—C19 119.4 (3) C21—C22—H22 120.9
C23—N3—Ir1 124.7 (2) C23—C22—H22 120.9
C19—N3—Ir1 115.8 (3) N3—C23—C22 123.2 (4)
C34—N4—C30 120.1 (3) N3—C23—H23 118.4
C34—N4—Ir1 123.7 (3) C22—C23—H23 118.4
C30—N4—Ir1 116.2 (3) C25—C24—C29 119.2 (3)
N1—C1—C2 122.9 (3) C25—C24—Ir1 128.3 (3)
N1—C1—H1 118.5 C29—C24—Ir1 112.4 (3)
C2—C1—H1 118.5 C24—C25—C26 119.4 (4)
C1—C2—C3 119.0 (3) C24—C25—H25 120.3
C1—C2—H2 120.5 C26—C25—H25 120.3
C3—C2—H2 120.5 F3—C26—C27 118.4 (4)
O1—C3—C4 125.3 (3) F3—C26—C25 118.7 (4)
O1—C3—C2 116.2 (3) C27—C26—C25 122.9 (4)
C4—C3—C2 118.5 (3) C26—C27—C28 117.7 (4)
C5—C4—C3 119.0 (3) C26—C27—H27 121.1
C5—C4—H4 120.5 C28—C27—H27 121.1
C3—C4—H4 120.5 F4—C28—C27 118.0 (4)
N1—C5—C4 122.4 (3) F4—C28—C29 119.1 (4)
N1—C5—C6 114.9 (3) C27—C28—C29 122.9 (4)
C4—C5—C6 122.7 (3) C28—C29—C24 117.8 (4)
N2—C6—C7 122.1 (3) C28—C29—C30 126.2 (4)
N2—C6—C5 115.4 (3) C24—C29—C30 115.9 (3)
C7—C6—C5 122.6 (3) N4—C30—C31 119.5 (4)
C6—C7—C8 119.0 (3) N4—C30—C29 113.3 (3)
C6—C7—H7 120.5 C31—C30—C29 127.1 (4)
C8—C7—H7 120.5 C32—C31—C30 120.4 (4)
O2—C8—C7 124.1 (3) C32—C31—H31 119.8
O2—C8—C9 117.0 (3) C30—C31—H31 119.8
C7—C8—C9 118.9 (3) C31—C32—C33 119.2 (4)
C10—C9—C8 118.7 (3) C31—C32—H32 120.4
C10—C9—H9 120.7 C33—C32—H32 120.4
C8—C9—H9 120.7 C34—C33—C32 118.9 (4)
N2—C10—C9 123.6 (3) C34—C33—H33 120.5
N2—C10—H10 118.2 C32—C33—H33 120.5
C9—C10—H10 118.2 N4—C34—C33 121.9 (4)
O1—C11—H11A 109.5 N4—C34—H34 119.0
O1—C11—H11B 109.5 C33—C34—H34 119.0
C5—N1—C1—C2 0.5 (5) C14—C13—C18—C19 178.4 (3)
Ir1—N1—C1—C2 −169.9 (3) Ir1—C13—C18—C19 −0.1 (4)
N1—C1—C2—C3 1.4 (6) C23—N3—C19—C20 1.8 (5)
C11—O1—C3—C4 −5.0 (5) Ir1—N3—C19—C20 178.8 (3)
C11—O1—C3—C2 175.2 (3) C23—N3—C19—C18 −177.3 (3)
C1—C2—C3—O1 177.0 (3) Ir1—N3—C19—C18 −0.3 (4)
C1—C2—C3—C4 −2.9 (5) C17—C18—C19—N3 178.7 (3)
O1—C3—C4—C5 −177.4 (3) C13—C18—C19—N3 0.3 (5)
C2—C3—C4—C5 2.5 (5) C17—C18—C19—C20 −0.3 (6)
C1—N1—C5—C4 −1.0 (5) C13—C18—C19—C20 −178.7 (4)
Ir1—N1—C5—C4 170.2 (3) N3—C19—C20—C21 −1.1 (6)
C1—N1—C5—C6 −179.3 (3) C18—C19—C20—C21 177.9 (4)
Ir1—N1—C5—C6 −8.1 (4) C19—C20—C21—C22 −1.6 (7)
C3—C4—C5—N1 −0.6 (5) C20—C21—C22—C23 3.3 (7)
C3—C4—C5—C6 177.6 (3) C19—N3—C23—C22 0.0 (6)
C10—N2—C6—C7 −0.4 (5) Ir1—N3—C23—C22 −176.6 (3)
Ir1—N2—C6—C7 178.8 (3) C21—C22—C23—N3 −2.6 (7)
C10—N2—C6—C5 179.1 (3) C29—C24—C25—C26 1.6 (5)
Ir1—N2—C6—C5 −1.7 (4) Ir1—C24—C25—C26 −174.2 (3)
N1—C5—C6—N2 6.4 (4) C24—C25—C26—F3 179.4 (3)
C4—C5—C6—N2 −171.9 (3) C24—C25—C26—C27 1.5 (6)
N1—C5—C6—C7 −174.1 (3) F3—C26—C27—C28 −179.9 (3)
C4—C5—C6—C7 7.6 (5) C25—C26—C27—C28 −1.9 (6)
N2—C6—C7—C8 1.4 (5) C26—C27—C28—F4 179.2 (3)
C5—C6—C7—C8 −178.1 (3) C26—C27—C28—C29 −0.9 (6)
C12—O2—C8—C7 6.2 (5) F4—C28—C29—C24 −176.2 (3)
C12—O2—C8—C9 −173.8 (3) C27—C28—C29—C24 3.9 (6)
C6—C7—C8—O2 178.8 (3) F4—C28—C29—C30 7.2 (6)
C6—C7—C8—C9 −1.2 (5) C27—C28—C29—C30 −172.8 (4)
O2—C8—C9—C10 −180.0 (3) C25—C24—C29—C28 −4.2 (5)
C7—C8—C9—C10 0.1 (5) Ir1—C24—C29—C28 172.3 (3)
C6—N2—C10—C9 −0.9 (5) C25—C24—C29—C30 172.8 (3)
Ir1—N2—C10—C9 −180.0 (3) Ir1—C24—C29—C30 −10.7 (4)
C8—C9—C10—N2 1.0 (5) C34—N4—C30—C31 0.6 (5)
C18—C13—C14—C15 0.4 (5) Ir1—N4—C30—C31 178.9 (3)
Ir1—C13—C14—C15 178.7 (3) C34—N4—C30—C29 −176.0 (3)
C13—C14—C15—F1 179.1 (3) Ir1—N4—C30—C29 2.3 (4)
C13—C14—C15—C16 −0.7 (6) C28—C29—C30—N4 −177.7 (4)
F1—C15—C16—C17 −179.1 (3) C24—C29—C30—N4 5.6 (5)
C14—C15—C16—C17 0.7 (6) C28—C29—C30—C31 6.0 (7)
C15—C16—C17—F2 179.2 (3) C24—C29—C30—C31 −170.7 (4)
C15—C16—C17—C18 −0.4 (6) N4—C30—C31—C32 −1.3 (6)
F2—C17—C18—C13 −179.5 (3) C29—C30—C31—C32 174.9 (4)
C16—C17—C18—C13 0.1 (6) C30—C31—C32—C33 0.4 (7)
F2—C17—C18—C19 2.1 (6) C31—C32—C33—C34 1.0 (7)
C16—C17—C18—C19 −178.3 (4) C30—N4—C34—C33 0.9 (6)
C14—C13—C18—C17 −0.1 (5) Ir1—N4—C34—C33 −177.3 (3)
Ir1—C13—C18—C17 −178.6 (3) C32—C33—C34—N4 −1.7 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11A···F7i 0.98 2.51 3.240 (6) 131
C11—H11B···O2ii 0.98 2.52 3.294 (5) 136
C20—H20···F2 0.95 2.25 2.866 (6) 122
C31—H31···F4 0.95 2.25 2.869 (6) 122
C34—H34···F8iii 0.95 2.55 3.412 (5) 150

Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) −x+3/2, −y+3/2, z+1/2; (iii) x, y−1, z.

References

  1. Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  4. Lee, S. J., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030–1037. [DOI] [PubMed]
  5. Li, X., Tong, X., Yin, Y., Yan, H., Lu, C., Huang, W. & Zhao, Q. (2017). Chem. Sci. 8, 5930–5940. [DOI] [PMC free article] [PubMed]
  6. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  7. Moriuchi, T., Katano, C. & Hirao, T. (2012). Chem. Lett. 41, 310–312.
  8. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  10. Skórka, Ł., Filapek, M., Zur, L., Małecki, J. G., Pisarski, W., Olejnik, M., Danikiewicz, W. & Krompiec, S. (2016). J. Phys. Chem. C, 120, 7284–7294.
  11. Thorp-Greenwood, F. L. (2012). Organometallics, 31, 5686–5692.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  13. You, Y., Cho, S. & Nam, W. (2014). Inorg. Chem. 53, 1804–1815. [DOI] [PubMed]
  14. Zeng, D., Yuan, X.-A., Liu, J.-C., Li, L., Wang, L.-P., Qin, M.-F., Bao, S.-S., Ma, J. & Zheng, L.-M. (2019). ACS Omega, 4, 16543–16550. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622008306/zl4051sup1.cif

x-07-x220830-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622008306/zl4051Isup2.hkl

x-07-x220830-Isup2.hkl (494.5KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622008306/zl4051Isup3.cdx

CCDC reference: 2202472

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES