Skip to main content
IUCrData logoLink to IUCrData
. 2022 Aug 12;7(Pt 8):x220771. doi: 10.1107/S2414314622007714

Bis[(4-methyl­phen­yl)di­phenyl­phosphine-κP](nitrito-κ2 O,O′)silver(I)

Kariska Potgieter a, Frederick P Malan b, Oyekunle Azeez Alimi a, Reinout Meijboom a,*
Editor: E R T Tiekinkc
PMCID: PMC9635422  PMID: 36340974

The title silver(I) diphenyl-p-tolyl­phosphine complex crystallizes with one complete mol­ecule in the asymmetric unit that features a bidentate nitrito, as well as two diphenyl-p-tolyl­phosphine ligands coordinated to a AgI center.

Keywords: silver(I) complex, diphenyl-p-tolyl­phosphine, nitrite, crystal structure

Abstract

The title AgI complex, [Ag(NO2)(C19H17P)2], reveals a distorted pseudo-trigonal–planar shape around the AgI atom geometry resulting from the coordination of two phosphine ligands, as well as a nitrito-O,O′ ligand coordinating to the silver(I) atom through the oxygen atoms; in this description, the two oxygen atoms are assumed to occupy one position, forming an acute O—Ag—O angle of 51.44 (9)°. The plane resulting from the NO2 coordination to Ag is nearly perpendicular to the plane from the coordination of the phosphine-P atoms to Ag [dihedral angle = 86.43 (9)°]. graphic file with name x-07-x220771-scheme1-3D1.jpg

Structure description

The mol­ecular structure of the title compound is shown in Fig. 1. The complex crystallizes in the monoclinic space group P21/c with Z = 4. The asymmetric unit contains one complete silver complex mol­ecule, featuring an AgI atom, two diphenyl-p-tolyl­phosphine ligands, and one NO2 coordinating in a bidentate fashion. Near-identical Ag—P bond lengths are observed [Ag1—P1 = 2.4209 (7) Å and Ag1—P2 = 2.4251 (8) Å]. The nitrito ligand is similarly coordinating in a near symmetric fashion (Ag1—O1 = 2.422 (2), Ag1—O2 = 2.415 (2), N1—O1 = 1.253 (4) and N1–O2 = 1.255 (4) Å). As seen in Fig. 1, the four-coordinate silver(I) atom essentially exhibits a pseudo trigonal–planar shape with the three coordinating ligands, with bond angles P1—Ag1—P2 [129.51 (3)°], P1—Ag1—O1 [116.23 (7)°], P1—Ag1—O2 [111.09 (7)°], P2—Ag1—O1 [110.79 (7)°], P2—Ag1—O2 [111.96 (7)°], and O1—Ag1—O2 [51.44 (9)°]; in this description, the two oxygen atoms are assumed to occupy one position. The plane Pl1 defined by Ag1, O1, O2 and N1 crosses the plane Pl2 defined by P1, P2 and Ag1 at an angle of 86.43 (9)°. The ipso-carbon atoms of each of the phosphine ligands overlap in a near-eclipsed fashion when viewed down the P1—Ag1—P2 plane Pl2. Corresponding torsion angles are Ag1—P1—C1—C2 = −23.4 (3)°, Ag1—P1—C7—C8 = −51.9 (3)°, Ag1—P1—C13—C14 = 147.8 (3)°, Ag1—P2—C20—C21 = −29.0 (3)°, Ag1—P2—C26—C27 = 133.3 (3) and Ag1—P2—C32—C33 = 132.3 (3)°. The complex packs in three dimensions as layers of mol­ecules, leaving thin corrugated channels in between the inorganic layers when viewed along the a axis (Fig. 2).

Figure 1.

Figure 1

Perspective view of the mol­ecular structure of the title compound showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

Figure 2.

Figure 2

Packing diagrams as viewed along the (a) a and (b) c axes. Hydrogen atoms are omitted for clarity.

Synthesis and crystallization

Diphenyl-p-tolyl­phosphine (1 mmol) was dissolved in aceto­nitrile (10 ml). Silver nitrite (1 mmol) was dissolved in aceto­nitrile (5 ml). The diphenyl-p-tolyl­phosphine solution (10 ml) was added to the silver nitrite solution (5 ml), to give a 2:1 molar ratio reaction. The mixture was heated under reflux for 2 h after which the solution was left to crystallize.

Refinement

For full experimental details including crystal data, data collection and structure refinement details, refer to Table 1.

Table 1. Experimental details.

Crystal data
Chemical formula [Ag(NO2)(C19H17P)2]
M r 706.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 11.8709 (2), 18.6292 (2), 15.4003 (2)
β (°) 103.055 (1)
V3) 3317.68 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.05
Crystal size (mm) 0.24 × 0.13 × 0.10
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022)
T min, T max 0.188, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 41716, 7030, 6535
R int 0.049
(sin θ/λ)max−1) 0.637
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.104, 1.07
No. of reflections 7030
No. of parameters 399
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.68, −0.82

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015b ), SHELXL (Sheldrick, 2015a ), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622007714/tk4082sup1.cif

x-07-x220771-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622007714/tk4082Isup2.hkl

x-07-x220771-Isup2.hkl (558.6KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622007714/tk4082Isup3.cdx

CCDC reference: 2193913

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to greatly acknowledge the National Research Foundation (NRF, SA), University of Pretoria and the University of Johannesburg for funding provided.

full crystallographic data

Crystal data

[Ag(NO2)(C19H17P)2] F(000) = 1448
Mr = 706.47 Dx = 1.414 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 11.8709 (2) Å Cell parameters from 29792 reflections
b = 18.6292 (2) Å θ = 3.8–78.9°
c = 15.4003 (2) Å µ = 6.05 mm1
β = 103.055 (1)° T = 150 K
V = 3317.68 (8) Å3 Block, colourless
Z = 4 0.24 × 0.13 × 0.10 mm

Data collection

XtaLAB Synergy R, DW system, HyPix diffractometer 7030 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source 6535 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.049
Detector resolution: 10.0000 pixels mm-1 θmax = 79.2°, θmin = 3.8°
ω scans h = −14→15
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) k = −23→23
Tmin = 0.188, Tmax = 1.000 l = −18→19
41716 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0425P)2 + 5.6399P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.002
7030 reflections Δρmax = 0.68 e Å3
399 parameters Δρmin = −0.82 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.33615 (2) 0.79867 (2) 0.56752 (2) 0.03178 (8)
P1 0.52794 (6) 0.74875 (4) 0.61894 (5) 0.02991 (16)
P2 0.14991 (6) 0.73885 (4) 0.53633 (6) 0.03298 (17)
O1 0.3244 (2) 0.91204 (13) 0.48903 (17) 0.0459 (6)
O2 0.3250 (2) 0.91839 (14) 0.62523 (18) 0.0506 (6)
N1 0.3202 (3) 0.95191 (15) 0.5538 (2) 0.0492 (8)
C7 0.5331 (3) 0.69367 (17) 0.7177 (2) 0.0325 (6)
C1 0.6466 (3) 0.81224 (16) 0.6530 (2) 0.0321 (6)
C25 −0.0805 (3) 0.77034 (18) 0.4467 (2) 0.0380 (7)
H25 −0.0857 0.7224 0.4253 0.046*
C20 0.0223 (3) 0.79524 (16) 0.5000 (2) 0.0334 (6)
C26 0.1234 (3) 0.69196 (16) 0.6342 (2) 0.0355 (7)
C13 0.5720 (3) 0.68644 (16) 0.5419 (2) 0.0337 (6)
C6 0.7500 (3) 0.79432 (18) 0.7117 (2) 0.0385 (7)
H6 0.7610 0.7473 0.7360 0.046*
C24 −0.1757 (3) 0.8154 (2) 0.4248 (2) 0.0443 (8)
H24 −0.2462 0.7980 0.3888 0.053*
C32 0.1398 (3) 0.66934 (17) 0.4515 (2) 0.0360 (7)
C2 0.6317 (3) 0.88145 (17) 0.6186 (2) 0.0352 (7)
H2 0.5610 0.8943 0.5790 0.042*
C8 0.4942 (3) 0.7238 (2) 0.7887 (2) 0.0413 (7)
H8 0.4726 0.7729 0.7870 0.050*
C37 0.1822 (3) 0.68542 (19) 0.3764 (2) 0.0425 (8)
H37 0.2095 0.7325 0.3690 0.051*
C31 0.2138 (3) 0.65361 (19) 0.6870 (3) 0.0456 (8)
H31 0.2859 0.6510 0.6702 0.055*
C5 0.8371 (3) 0.8450 (2) 0.7349 (3) 0.0461 (8)
H5 0.9076 0.8326 0.7750 0.055*
C18 0.4881 (3) 0.64259 (19) 0.4912 (3) 0.0440 (8)
H18 0.4096 0.6485 0.4941 0.053*
C10 0.5184 (3) 0.6103 (2) 0.8646 (2) 0.0459 (8)
H10 0.5119 0.5816 0.9143 0.055*
C12 0.5662 (3) 0.62220 (17) 0.7224 (2) 0.0374 (7)
H12 0.5942 0.6014 0.6750 0.045*
C14 0.6851 (3) 0.6784 (2) 0.5339 (3) 0.0474 (8)
H14 0.7437 0.7089 0.5665 0.057*
C11 0.5589 (3) 0.5806 (2) 0.7959 (2) 0.0447 (8)
H11 0.5819 0.5317 0.7985 0.054*
C4 0.8218 (3) 0.9132 (2) 0.7003 (2) 0.0453 (8)
H4 0.8817 0.9478 0.7167 0.054*
C3 0.7192 (3) 0.93168 (19) 0.6415 (2) 0.0445 (8)
H3 0.7090 0.9787 0.6171 0.053*
C23 −0.1685 (3) 0.8854 (2) 0.4552 (3) 0.0457 (8)
H23 −0.2335 0.9164 0.4398 0.055*
C21 0.0295 (3) 0.86579 (18) 0.5299 (3) 0.0447 (8)
H21 0.1000 0.8837 0.5653 0.054*
C27 0.0206 (3) 0.6970 (2) 0.6615 (3) 0.0491 (9)
H27 −0.0422 0.7235 0.6271 0.059*
C29 0.0976 (4) 0.6233 (2) 0.7899 (3) 0.0515 (9)
H29 0.0878 0.5992 0.8421 0.062*
C35 0.1463 (3) 0.5644 (2) 0.3217 (3) 0.0482 (8)
C9 0.4873 (3) 0.6817 (2) 0.8616 (2) 0.0492 (9)
H9 0.4609 0.7023 0.9098 0.059*
C22 −0.0663 (3) 0.9098 (2) 0.5080 (3) 0.0518 (9)
H22 −0.0615 0.9577 0.5297 0.062*
C36 0.1850 (3) 0.6340 (2) 0.3126 (3) 0.0465 (8)
H36 0.2137 0.6462 0.2617 0.056*
C30 0.2004 (3) 0.6192 (2) 0.7633 (3) 0.0520 (9)
H30 0.2628 0.5924 0.7978 0.062*
C17 0.5172 (4) 0.5902 (2) 0.4363 (3) 0.0523 (9)
H17 0.4585 0.5601 0.4028 0.063*
C33 0.0991 (3) 0.60034 (19) 0.4599 (3) 0.0488 (9)
H33 0.0689 0.5882 0.5101 0.059*
C15 0.7132 (4) 0.6261 (2) 0.4787 (3) 0.0580 (11)
H15 0.7914 0.6210 0.4744 0.070*
C16 0.6305 (4) 0.5809 (2) 0.4296 (3) 0.0542 (10)
C28 0.0095 (4) 0.6631 (2) 0.7393 (3) 0.0579 (10)
H28 −0.0611 0.6676 0.7581 0.069*
C34 0.1023 (4) 0.5492 (2) 0.3954 (3) 0.0568 (10)
H34 0.0735 0.5025 0.4019 0.068*
C38 0.1539 (4) 0.5072 (3) 0.2557 (3) 0.0684 (12)
H38A 0.0815 0.5056 0.2100 0.103*
H38B 0.1668 0.4607 0.2860 0.103*
H38C 0.2183 0.5177 0.2275 0.103*
C19 0.6634 (5) 0.5233 (3) 0.3706 (4) 0.0806 (16)
H19A 0.6400 0.4763 0.3889 0.121*
H19B 0.7473 0.5239 0.3763 0.121*
H19C 0.6242 0.5325 0.3085 0.121*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.02537 (12) 0.02500 (12) 0.04510 (14) −0.00004 (7) 0.00826 (9) 0.00223 (8)
P1 0.0263 (3) 0.0251 (3) 0.0388 (4) 0.0012 (3) 0.0084 (3) 0.0051 (3)
P2 0.0250 (3) 0.0251 (4) 0.0489 (5) −0.0007 (3) 0.0084 (3) 0.0014 (3)
O1 0.0571 (15) 0.0328 (12) 0.0506 (14) 0.0036 (11) 0.0179 (12) 0.0019 (10)
O2 0.0616 (16) 0.0403 (14) 0.0527 (15) −0.0017 (12) 0.0191 (12) −0.0120 (12)
N1 0.0524 (18) 0.0248 (14) 0.071 (2) 0.0032 (12) 0.0154 (15) −0.0042 (14)
C7 0.0261 (14) 0.0343 (16) 0.0376 (16) −0.0021 (11) 0.0080 (12) 0.0028 (12)
C1 0.0288 (14) 0.0299 (15) 0.0390 (16) 0.0013 (12) 0.0104 (12) 0.0028 (12)
C25 0.0315 (16) 0.0320 (16) 0.0496 (19) 0.0001 (12) 0.0075 (13) −0.0020 (14)
C20 0.0252 (14) 0.0295 (15) 0.0462 (17) −0.0008 (11) 0.0098 (12) 0.0019 (12)
C26 0.0319 (15) 0.0267 (14) 0.0482 (18) −0.0009 (12) 0.0097 (13) −0.0024 (13)
C13 0.0364 (16) 0.0284 (14) 0.0373 (16) 0.0020 (12) 0.0105 (13) 0.0086 (12)
C6 0.0302 (16) 0.0354 (17) 0.0488 (19) 0.0031 (12) 0.0064 (13) 0.0082 (14)
C24 0.0332 (17) 0.051 (2) 0.0455 (19) 0.0061 (15) 0.0027 (14) 0.0003 (16)
C32 0.0291 (15) 0.0294 (15) 0.0499 (18) 0.0013 (12) 0.0094 (13) 0.0004 (13)
C2 0.0336 (16) 0.0323 (15) 0.0381 (16) 0.0010 (12) 0.0049 (12) 0.0034 (12)
C8 0.0414 (18) 0.0389 (17) 0.0440 (18) −0.0020 (14) 0.0107 (14) −0.0029 (14)
C37 0.0407 (18) 0.0345 (17) 0.052 (2) −0.0064 (14) 0.0102 (15) 0.0017 (15)
C31 0.0332 (17) 0.0369 (17) 0.068 (2) −0.0016 (14) 0.0136 (16) 0.0122 (16)
C5 0.0319 (16) 0.053 (2) 0.051 (2) −0.0049 (15) 0.0037 (14) 0.0041 (16)
C18 0.0378 (18) 0.0388 (18) 0.056 (2) 0.0015 (14) 0.0121 (15) −0.0036 (15)
C10 0.0444 (19) 0.054 (2) 0.0378 (18) −0.0127 (16) 0.0067 (14) 0.0094 (15)
C12 0.0369 (16) 0.0339 (16) 0.0428 (17) 0.0064 (13) 0.0119 (13) 0.0091 (13)
C14 0.0400 (19) 0.046 (2) 0.063 (2) −0.0086 (15) 0.0252 (17) −0.0084 (17)
C11 0.0467 (19) 0.0419 (19) 0.0436 (19) −0.0007 (15) 0.0064 (15) 0.0128 (15)
C4 0.0398 (18) 0.0428 (19) 0.053 (2) −0.0134 (15) 0.0101 (15) −0.0008 (16)
C3 0.0465 (19) 0.0351 (17) 0.050 (2) −0.0054 (14) 0.0082 (15) 0.0064 (15)
C23 0.0373 (18) 0.0406 (18) 0.059 (2) 0.0137 (14) 0.0114 (15) 0.0070 (16)
C21 0.0310 (16) 0.0308 (16) 0.071 (2) −0.0017 (13) 0.0083 (15) −0.0048 (15)
C27 0.0391 (19) 0.050 (2) 0.062 (2) 0.0066 (16) 0.0194 (17) 0.0084 (17)
C29 0.068 (3) 0.0368 (18) 0.054 (2) −0.0029 (17) 0.0217 (19) 0.0043 (16)
C35 0.0433 (19) 0.0421 (19) 0.061 (2) 0.0021 (15) 0.0152 (17) −0.0068 (17)
C9 0.049 (2) 0.064 (2) 0.0366 (18) −0.0079 (18) 0.0137 (15) −0.0050 (16)
C22 0.044 (2) 0.0314 (17) 0.081 (3) 0.0053 (15) 0.0172 (19) −0.0036 (17)
C36 0.0430 (19) 0.052 (2) 0.048 (2) −0.0034 (16) 0.0178 (16) 0.0013 (16)
C30 0.047 (2) 0.0399 (19) 0.067 (2) −0.0023 (16) 0.0076 (18) 0.0153 (17)
C17 0.056 (2) 0.046 (2) 0.057 (2) −0.0090 (17) 0.0154 (18) −0.0139 (17)
C33 0.058 (2) 0.0320 (17) 0.062 (2) −0.0083 (16) 0.0264 (18) −0.0040 (16)
C15 0.052 (2) 0.056 (2) 0.078 (3) −0.0100 (19) 0.040 (2) −0.016 (2)
C16 0.069 (3) 0.044 (2) 0.059 (2) −0.0045 (19) 0.033 (2) −0.0089 (17)
C28 0.057 (2) 0.056 (2) 0.071 (3) 0.0122 (19) 0.036 (2) 0.012 (2)
C34 0.069 (3) 0.0321 (18) 0.076 (3) −0.0061 (17) 0.032 (2) −0.0040 (18)
C38 0.071 (3) 0.065 (3) 0.076 (3) 0.001 (2) 0.030 (2) −0.014 (2)
C19 0.094 (4) 0.072 (3) 0.090 (4) −0.013 (3) 0.051 (3) −0.037 (3)

Geometric parameters (Å, º)

Ag1—P1 2.4209 (7) C32—C37 1.395 (5)
Ag1—P2 2.4251 (8) C32—C33 1.390 (5)
Ag1—O1 2.422 (2) C2—C3 1.383 (5)
Ag1—O2 2.415 (2) C8—C9 1.386 (5)
P1—C7 1.825 (3) C37—C36 1.377 (5)
P1—C1 1.823 (3) C31—C30 1.380 (5)
P1—C13 1.820 (3) C5—C4 1.373 (5)
P2—C20 1.824 (3) C18—C17 1.385 (5)
P2—C26 1.830 (3) C10—C11 1.373 (5)
P2—C32 1.824 (3) C10—C9 1.380 (6)
O1—N1 1.253 (4) C12—C11 1.389 (5)
O2—N1 1.255 (4) C14—C15 1.382 (5)
C7—C8 1.396 (5) C4—C3 1.387 (5)
C7—C12 1.386 (4) C23—C22 1.377 (5)
C1—C6 1.391 (4) C21—C22 1.380 (5)
C1—C2 1.390 (4) C27—C28 1.386 (6)
C25—C20 1.388 (4) C29—C30 1.374 (6)
C25—C24 1.387 (5) C29—C28 1.374 (6)
C20—C21 1.389 (4) C35—C36 1.394 (5)
C26—C31 1.388 (5) C35—C34 1.381 (6)
C26—C27 1.381 (5) C35—C38 1.489 (6)
C13—C18 1.384 (5) C17—C16 1.383 (6)
C13—C14 1.384 (5) C33—C34 1.383 (5)
C6—C5 1.386 (5) C15—C16 1.381 (6)
C24—C23 1.381 (5) C16—C19 1.513 (6)
P1—Ag1—P2 129.51 (3) C5—C6—C1 120.1 (3)
P1—Ag1—O1 116.23 (7) C23—C24—C25 120.3 (3)
O1—Ag1—P2 110.79 (7) C37—C32—P2 117.7 (2)
O2—Ag1—P1 111.09 (7) C33—C32—P2 123.9 (3)
O2—Ag1—P2 111.96 (7) C33—C32—C37 118.3 (3)
O2—Ag1—O1 51.44 (9) C3—C2—C1 120.4 (3)
C7—P1—Ag1 109.92 (10) C9—C8—C7 119.8 (3)
C1—P1—Ag1 116.95 (10) C36—C37—C32 120.9 (3)
C1—P1—C7 104.28 (14) C30—C31—C26 121.0 (3)
C13—P1—Ag1 114.79 (11) C4—C5—C6 120.3 (3)
C13—P1—C7 103.00 (14) C13—C18—C17 120.9 (3)
C13—P1—C1 106.52 (14) C11—C10—C9 119.9 (3)
C20—P2—Ag1 116.91 (10) C7—C12—C11 120.6 (3)
C20—P2—C26 104.02 (15) C15—C14—C13 120.3 (4)
C26—P2—Ag1 112.02 (11) C10—C11—C12 120.1 (3)
C32—P2—Ag1 112.17 (10) C5—C4—C3 120.2 (3)
C32—P2—C20 105.88 (15) C2—C3—C4 119.8 (3)
C32—P2—C26 104.80 (15) C22—C23—C24 119.4 (3)
N1—O1—Ag1 97.3 (2) C22—C21—C20 119.8 (3)
N1—O2—Ag1 97.59 (19) C26—C27—C28 119.7 (4)
O1—N1—O2 113.6 (3) C28—C29—C30 118.3 (4)
C8—C7—P1 118.2 (2) C36—C35—C38 121.7 (4)
C12—C7—P1 122.7 (3) C34—C35—C36 117.8 (3)
C12—C7—C8 119.0 (3) C34—C35—C38 120.5 (4)
C6—C1—P1 122.8 (2) C10—C9—C8 120.6 (3)
C2—C1—P1 117.9 (2) C23—C22—C21 121.0 (3)
C2—C1—C6 119.2 (3) C37—C36—C35 121.0 (3)
C24—C25—C20 120.1 (3) C29—C30—C31 120.6 (4)
C25—C20—P2 123.2 (2) C16—C17—C18 121.0 (4)
C25—C20—C21 119.4 (3) C34—C33—C32 120.2 (4)
C21—C20—P2 117.3 (2) C16—C15—C14 121.7 (4)
C31—C26—P2 118.3 (3) C17—C16—C19 121.4 (4)
C27—C26—P2 123.1 (3) C15—C16—C17 117.8 (4)
C27—C26—C31 118.4 (3) C15—C16—C19 120.8 (4)
C18—C13—P1 117.9 (3) C29—C28—C27 121.8 (4)
C14—C13—P1 123.7 (3) C35—C34—C33 121.8 (4)
C14—C13—C18 118.3 (3)

Funding Statement

Funding for this research was provided by: National Research Foundation (grant No. 138280).

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  3. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  4. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622007714/tk4082sup1.cif

x-07-x220771-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622007714/tk4082Isup2.hkl

x-07-x220771-Isup2.hkl (558.6KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622007714/tk4082Isup3.cdx

CCDC reference: 2193913

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES