Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

IUCrData logoLink to IUCrData
. 2022 Sep 27;7(Pt 9):x220924. doi: 10.1107/S2414314622009245

3-Methyl-5-(4-methyl­phen­oxy)-1-phenyl-1H-pyrazole-4-carbaldehyde

Sreeramapura D Archana a, Holalagudu A Nagma Banu b, Balakrishna Kalluraya b, Hemmige S Yathirajan a,*, Rishik Balerao c, Ray J Butcher d
Editor: W T A Harrisone
PMCID: PMC9635423  PMID: 36337452

In the title compound, the phenyl and pyrazole rings subtend a dihedral angle of 22.68 (8)°.

Keywords: crystal structure, pyrazole, phen­yl, aldehyde

Abstract

In the title compound, C18H16N2O2, the phenyl and pyrazole rings subtend a dihedral angle of 22.68 (8)°. The packing of the title compound features aromatic π–π stacking and weak C—H⋯π inter­actions. graphic file with name x-07-x220924-scheme1-3D1.jpg

Structure description

Pyrazoles possess many pharmacological activities such as the inhibition of protein glycation, anti­bacterial, anti­fungal, anti­cancer, anti­depressant, anti-inflammatory, anti-tuberculosis and anti­oxidant activity as well as being used as anti­viral agents (Fustero et al., 2011; Steinbach et al., 2000; García-Lozano et al., 1997). The crystal structures of (E)-1,3-dimethyl-5-p-tol­yloxy-1H-pyrazole-4-carbaldehyde o-(6-chloro­pyridazin-3-yl)oxime (Hu et al., 2006), 1-(5-bromo­pyrimidin-2-yl)-3-phenyl-1H-pyrazole-4-carbaldehyde (Thiruvalluvar et al., 2007), 5-(2,4-di­chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (Kumar et al., 2016), four 1-aryl-1H-pyrazole-3,4-di­carbox­ylate derivatives (Asma et al., 2018), functionalized 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-substituted-phen­yl)prop-2-en-1-ones (Kiran Kumar et al., 2020) and two isostructural 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-ones (Shaibah et al., 2020) have been reported.

As part our studies in this area, we now report the synthesis and crystal structure of the title compound, C18H16N2O2, (1, Fig. 1) . Compound 1 crystallizes in the monoclinic space group P21/c with one mol­ecule in the asymmetric unit. It consists of a C1/C3/C5/N1/N2 pyrazole ring linked to a C13–C18 phenyl ring by a carbon–nitro­gen single bond [C13—N1 = 1.4285 (17) Å]. As a result of the single bond, the pyrazol and phenyl rings are twisted with a dihedral angle of 22.68 (8)°, perhaps due to the steric inter­action between H18 and O2 and between H14 and N2. In the pyrazole ring, the aldehyde group (C3/C4/O1) is slightly twisted with a dihedral angle of 6.43 (10)° as a result of the steric inter­action of this group with the C2 methyl substituent. The C6–C12 toluyl substituent makes dihedral angles of 79.44 (5) and 82.40 (5)° with the pyrazol and phenyl rings, respectively. A short intra­molecular C18—H18⋯O2 contact closes an S(6) ring.

Figure 1.

Figure 1

Diagram of 1 showing displacement ellipsoids at the 30% probability level. The C18—H18⋯O2 intra­molecular contact is shown by a dashed line.

In the packing, a very weak C11—H11⋯O1 hydrogen bond generates [010] chains (Fig. 2, Table 1). In addition, aromatic π–π stacking involving the pyrazole rings in adjacent mol­ecules [centroid-to-centroid distance = 3.8908 (9) Å, slippage = 1.233 Å, symmetry operation 1 − x, 1 − y, 1 − z] is observed. There is also a weak C—H⋯π inter­action involving the toluene rings in adjacent mol­ecules [distance between ring centroid and carbon atom = 3.8075 (17) Å, C—H⋯Cg = 148°, symmetry operation 1 − x, Inline graphic  + y, Inline graphic  − z].

Figure 2.

Figure 2

Packing diagram for 1 (viewed along the c-axis direction) showing C—H⋯O and C—H⋯N contacts as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2 0.95 2.42 2.9593 (19) 116
C11—H11⋯O1i 0.95 2.75 3.626 (2) 153

Symmetry code: (i) Inline graphic .

Synthesis and crystallization

To a solution of p-cresol (0.1 mol) dissolved in 10 ml of di­methyl­sulfoxide,1-phenyl-5-chloro-3-methyl-1H-pyrazol-4-carbaldehyde (3.22 g, 0.1 mol) and potassium hydroxide (0.8 g, 0.1 mol) were added and the resulting solution was heated on a water bath for 5 h. The reaction mixture was cooled to room temperature and poured onto crushed ice. The solid that separated was filtered off and washed with water and the dried product was recrystallized from ethanol solution. The reaction scheme is shown in Fig. 3.

Figure 3.

Figure 3

Reaction scheme.

Yield: 82%; m.p. 320–322 K; MS (m/z) 293.1 (M + + 1). 1H NMR (400 MHz, CDCl3, δ p.p.m.), 2.22 (s, 3H, pyrazole meth­yl), 2.34 (s, 3H, o-tol­yloxy meth­yl), 6.93 (d, 2H, J = 8.3 Hz, Ar—H), 7.04 (d, 2H, J = 8.3 Hz, Ar—H), 7.23 (d, 1H, J = 7.3 Hz), 7.46 (d, 2H, J = 8.1 Hz, Ar—H), 7.81 (d, 2H, J = 8.1 Hz, Ar—H), 8.61 (s, 1H, aldehyde-H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C18H16N2O2
M r 292.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.2745 (5), 7.9167 (6), 23.0663 (17)
β (°) 93.225 (4)
V3) 1508.60 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.33 × 0.29 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.560, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22729, 4612, 3061
R int 0.075
(sin θ/λ)max−1) 0.717
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.051, 0.150, 1.08
No. of reflections 4612
No. of parameters 201
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2002), SHELXT (Sheldrick 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622009245/hb4413sup1.cif

x-07-x220924-sup1.cif (693.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622009245/hb4413Isup2.hkl

x-07-x220924-Isup2.hkl (367.3KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622009245/hb4413Isup3.cml

CCDC reference: 2207948

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

SDA and HAN are grateful to Mysore & Mangalore Universities, respectively for the provision of research facilities.

full crystallographic data

Crystal data

C18H16N2O2 F(000) = 616
Mr = 292.33 Dx = 1.287 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.2745 (5) Å Cell parameters from 6530 reflections
b = 7.9167 (6) Å θ = 3.1–29.6°
c = 23.0663 (17) Å µ = 0.09 mm1
β = 93.225 (4)° T = 100 K
V = 1508.60 (18) Å3 Block, pale yellow
Z = 4 0.33 × 0.29 × 0.21 mm

Data collection

Bruker APEXII CCD diffractometer 3061 reflections with I > 2σ(I)
φ and ω scans Rint = 0.075
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 30.6°, θmin = 2.5°
Tmin = 0.560, Tmax = 0.746 h = −11→11
22729 measured reflections k = −11→9
4612 independent reflections l = −32→32

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.2283P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
4612 reflections Δρmax = 0.24 e Å3
201 parameters Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All hydrogen atoms were placed geometrically and refined as riding atoms with their Uiso values 1.2 × (1.5 × for CH3) that of their attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.14639 (15) 0.70581 (16) 0.38374 (6) 0.0644 (3)
O2 0.41488 (13) 0.23801 (12) 0.37711 (4) 0.0434 (3)
N1 0.61932 (13) 0.41501 (13) 0.41767 (5) 0.0370 (3)
N2 0.63851 (14) 0.57702 (14) 0.43941 (5) 0.0395 (3)
C1 0.49777 (17) 0.65200 (17) 0.42911 (6) 0.0388 (3)
C2 0.4761 (2) 0.83049 (19) 0.44777 (7) 0.0502 (4)
H2A 0.576401 0.870910 0.467780 0.075*
H2B 0.387621 0.836723 0.474185 0.075*
H2C 0.450214 0.901154 0.413627 0.075*
C3 0.38270 (17) 0.54160 (18) 0.40121 (6) 0.0398 (3)
C4 0.21536 (19) 0.5708 (2) 0.38257 (7) 0.0492 (4)
H4 0.154397 0.476467 0.368230 0.059*
C5 0.46660 (16) 0.39239 (16) 0.39555 (6) 0.0373 (3)
C6 0.36301 (16) 0.21805 (16) 0.31822 (6) 0.0358 (3)
C7 0.41496 (19) 0.32023 (19) 0.27473 (7) 0.0453 (3)
H7 0.486871 0.411651 0.283142 0.054*
C8 0.3587 (2) 0.2851 (2) 0.21804 (7) 0.0510 (4)
H8 0.393472 0.353203 0.187199 0.061*
C9 0.25337 (19) 0.1535 (2) 0.20582 (6) 0.0473 (4)
H9 0.214581 0.133416 0.166890 0.057*
C10 0.20347 (17) 0.05002 (18) 0.25005 (6) 0.0424 (3)
C11 0.26116 (15) 0.08271 (17) 0.30678 (6) 0.0372 (3)
H11 0.230471 0.011963 0.337554 0.045*
C12 0.0879 (2) −0.0940 (3) 0.23791 (8) 0.0687 (5)
H12A 0.086719 −0.123627 0.196639 0.103*
H12B −0.021126 −0.060187 0.247824 0.103*
H12C 0.122673 −0.192035 0.261368 0.103*
C13 0.75428 (16) 0.30235 (16) 0.42240 (6) 0.0371 (3)
C14 0.87596 (18) 0.3355 (2) 0.46428 (7) 0.0470 (3)
H14 0.867780 0.429849 0.489387 0.056*
C15 1.0098 (2) 0.2308 (2) 0.46956 (8) 0.0554 (4)
H15 1.093906 0.254084 0.498186 0.067*
C16 1.0220 (2) 0.0931 (2) 0.43365 (8) 0.0540 (4)
H16 1.113977 0.021373 0.437420 0.065*
C17 0.8997 (2) 0.0602 (2) 0.39220 (8) 0.0566 (4)
H17 0.907241 −0.035666 0.367730 0.068*
C18 0.7662 (2) 0.1650 (2) 0.38573 (7) 0.0505 (4)
H18 0.683509 0.143019 0.356447 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0580 (7) 0.0630 (8) 0.0711 (8) 0.0205 (6) −0.0064 (6) −0.0004 (6)
O2 0.0538 (6) 0.0350 (5) 0.0400 (5) −0.0067 (4) −0.0104 (4) −0.0001 (4)
N1 0.0410 (6) 0.0327 (5) 0.0367 (6) 0.0002 (4) −0.0036 (4) −0.0047 (4)
N2 0.0464 (6) 0.0325 (5) 0.0391 (6) −0.0002 (5) −0.0018 (5) −0.0069 (5)
C1 0.0459 (7) 0.0362 (7) 0.0343 (7) 0.0031 (6) 0.0017 (5) −0.0008 (5)
C2 0.0614 (9) 0.0379 (7) 0.0512 (9) 0.0061 (7) 0.0014 (7) −0.0067 (6)
C3 0.0430 (7) 0.0388 (7) 0.0371 (7) 0.0020 (6) −0.0023 (5) −0.0002 (5)
C4 0.0478 (8) 0.0526 (9) 0.0463 (8) 0.0051 (7) −0.0060 (6) 0.0003 (7)
C5 0.0431 (7) 0.0343 (6) 0.0337 (6) −0.0028 (5) −0.0051 (5) −0.0013 (5)
C6 0.0355 (6) 0.0352 (6) 0.0361 (6) 0.0020 (5) −0.0026 (5) −0.0026 (5)
C7 0.0492 (8) 0.0409 (7) 0.0458 (8) −0.0069 (6) 0.0023 (6) 0.0007 (6)
C8 0.0635 (10) 0.0480 (8) 0.0422 (8) 0.0023 (7) 0.0080 (7) 0.0061 (7)
C9 0.0554 (9) 0.0496 (8) 0.0364 (7) 0.0078 (7) −0.0025 (6) −0.0052 (6)
C10 0.0400 (7) 0.0435 (7) 0.0431 (7) 0.0011 (6) −0.0022 (5) −0.0084 (6)
C11 0.0362 (6) 0.0374 (7) 0.0378 (7) −0.0011 (5) 0.0006 (5) −0.0018 (5)
C12 0.0738 (12) 0.0718 (12) 0.0589 (11) −0.0261 (10) −0.0100 (9) −0.0122 (9)
C13 0.0395 (7) 0.0351 (6) 0.0366 (7) 0.0014 (5) 0.0020 (5) 0.0008 (5)
C14 0.0492 (8) 0.0456 (8) 0.0453 (8) 0.0040 (6) −0.0061 (6) −0.0054 (6)
C15 0.0495 (9) 0.0597 (10) 0.0557 (9) 0.0102 (7) −0.0088 (7) −0.0006 (8)
C16 0.0510 (9) 0.0535 (9) 0.0581 (10) 0.0158 (7) 0.0073 (7) 0.0061 (7)
C17 0.0617 (10) 0.0485 (9) 0.0601 (10) 0.0101 (7) 0.0085 (8) −0.0112 (7)
C18 0.0515 (9) 0.0487 (8) 0.0507 (9) 0.0049 (7) −0.0030 (7) −0.0125 (7)

Geometric parameters (Å, º)

O1—C4 1.2129 (19) C8—C9 1.377 (2)
O2—C5 1.3555 (15) C9—H9 0.9500
O2—C6 1.4103 (16) C9—C10 1.389 (2)
N1—N2 1.3830 (15) C10—C11 1.3917 (19)
N1—C5 1.3478 (17) C10—C12 1.505 (2)
N1—C13 1.4285 (17) C11—H11 0.9500
N2—C1 1.3167 (18) C12—H12A 0.9800
C1—C2 1.4909 (19) C12—H12B 0.9800
C1—C3 1.4197 (19) C12—H12C 0.9800
C2—H2A 0.9800 C13—C14 1.381 (2)
C2—H2B 0.9800 C13—C18 1.384 (2)
C2—H2C 0.9800 C14—H14 0.9500
C3—C4 1.445 (2) C14—C15 1.383 (2)
C3—C5 1.3800 (19) C15—H15 0.9500
C4—H4 0.9500 C15—C16 1.376 (2)
C6—C7 1.376 (2) C16—H16 0.9500
C6—C11 1.3794 (18) C16—C17 1.377 (2)
C7—H7 0.9500 C17—H17 0.9500
C7—C8 1.391 (2) C17—C18 1.383 (2)
C8—H8 0.9500 C18—H18 0.9500
C5—O2—C6 118.48 (10) C8—C9—C10 120.45 (14)
N2—N1—C13 118.56 (11) C10—C9—H9 119.8
C5—N1—N2 110.27 (11) C9—C10—C11 118.70 (13)
C5—N1—C13 131.16 (11) C9—C10—C12 121.51 (14)
C1—N2—N1 105.68 (11) C11—C10—C12 119.79 (14)
N2—C1—C2 119.63 (13) C6—C11—C10 119.87 (13)
N2—C1—C3 111.60 (12) C6—C11—H11 120.1
C3—C1—C2 128.76 (13) C10—C11—H11 120.1
C1—C2—H2A 109.5 C10—C12—H12A 109.5
C1—C2—H2B 109.5 C10—C12—H12B 109.5
C1—C2—H2C 109.5 C10—C12—H12C 109.5
H2A—C2—H2B 109.5 H12A—C12—H12B 109.5
H2A—C2—H2C 109.5 H12A—C12—H12C 109.5
H2B—C2—H2C 109.5 H12B—C12—H12C 109.5
C1—C3—C4 130.04 (13) C14—C13—N1 118.10 (12)
C5—C3—C1 103.98 (12) C14—C13—C18 120.17 (13)
C5—C3—C4 125.97 (13) C18—C13—N1 121.72 (13)
O1—C4—C3 125.34 (15) C13—C14—H14 120.1
O1—C4—H4 117.3 C13—C14—C15 119.77 (14)
C3—C4—H4 117.3 C15—C14—H14 120.1
O2—C5—C3 130.53 (13) C14—C15—H15 119.8
N1—C5—O2 120.75 (12) C16—C15—C14 120.46 (15)
N1—C5—C3 108.45 (11) C16—C15—H15 119.8
C7—C6—O2 123.07 (12) C15—C16—H16 120.3
C7—C6—C11 121.98 (13) C15—C16—C17 119.48 (15)
C11—C6—O2 114.90 (12) C17—C16—H16 120.3
C6—C7—H7 121.1 C16—C17—H17 119.6
C6—C7—C8 117.77 (14) C16—C17—C18 120.83 (15)
C8—C7—H7 121.1 C18—C17—H17 119.6
C7—C8—H8 119.4 C13—C18—H18 120.4
C9—C8—C7 121.20 (14) C17—C18—C13 119.28 (15)
C9—C8—H8 119.4 C17—C18—H18 120.4
C8—C9—H9 119.8
O2—C6—C7—C8 178.25 (13) C5—N1—C13—C14 −157.00 (15)
O2—C6—C11—C10 −179.47 (12) C5—N1—C13—C18 24.1 (2)
N1—N2—C1—C2 179.50 (12) C5—C3—C4—O1 −174.07 (16)
N1—N2—C1—C3 0.71 (15) C6—O2—C5—N1 −118.79 (14)
N1—C13—C14—C15 −178.97 (14) C6—O2—C5—C3 67.98 (19)
N1—C13—C18—C17 179.89 (14) C6—C7—C8—C9 0.5 (2)
N2—N1—C5—O2 −173.26 (12) C7—C6—C11—C10 −2.3 (2)
N2—N1—C5—C3 1.32 (16) C7—C8—C9—C10 −1.4 (2)
N2—N1—C13—C14 21.84 (19) C8—C9—C10—C11 0.4 (2)
N2—N1—C13—C18 −157.01 (13) C8—C9—C10—C12 179.67 (16)
N2—C1—C3—C4 179.55 (14) C9—C10—C11—C6 1.4 (2)
N2—C1—C3—C5 0.05 (16) C11—C6—C7—C8 1.3 (2)
C1—C3—C4—O1 6.5 (3) C12—C10—C11—C6 −177.89 (15)
C1—C3—C5—O2 173.04 (14) C13—N1—N2—C1 179.67 (11)
C1—C3—C5—N1 −0.83 (15) C13—N1—C5—O2 5.7 (2)
C2—C1—C3—C4 0.9 (3) C13—N1—C5—C3 −179.76 (13)
C2—C1—C3—C5 −178.59 (14) C13—C14—C15—C16 −0.5 (3)
C4—C3—C5—O2 −6.5 (2) C14—C13—C18—C17 1.1 (2)
C4—C3—C5—N1 179.64 (14) C14—C15—C16—C17 0.1 (3)
C5—O2—C6—C7 25.02 (19) C15—C16—C17—C18 0.9 (3)
C5—O2—C6—C11 −157.83 (12) C16—C17—C18—C13 −1.5 (3)
C5—N1—N2—C1 −1.26 (15) C18—C13—C14—C15 −0.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C18—H18···O2 0.95 2.42 2.9593 (19) 116
C11—H11···O1i 0.95 2.75 3.626 (2) 153

Symmetry code: (i) x, y−1, z.

Funding Statement

HSY and BK are grateful to UGC, New Delhi, for the award of BSR Faculty Fellowships.

References

  1. Asma, Kalluraya, B., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 1783–1789. [DOI] [PMC free article] [PubMed]
  2. Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Fustero, S., Sánchez-Roselló, M., Barrio, P. & Simón-Fuentes, A. (2011). Chem. Rev. 111, 6984–7034. [DOI] [PubMed]
  6. García-Lozano, J., Server-Carrió, J., Escrivà, E., Folgado, J.-V., Molla, C. & Lezama, L. (1997). Polyhedron, 16, 939–944.
  7. Hu, F.-Z., Chang, Y.-Q., Zhu, Y.-Q., Zou, X.-M. & Yang, H.-Z. (2006). Acta Cryst. E62, o3676–o3677.
  8. Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495. [DOI] [PMC free article] [PubMed]
  9. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  10. Kumar, S. M., Manju, N., Asma, Kalluraya, B., Byrappa, K. & Warad, I. (2016). IUCrData, 1, x161111.
  11. Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 48–52. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  14. Steinbach, G., Lynch, P. M., Phillips, R. K. S., Wallace, M. H., Hawk, E., Gordon, G. B., Wakabayashi, N., Saunders, B., Shen, Y., Fujimura, T., Su, L.-K., Levin, B., Godio, L., Patterson, S., Rodriguez-Bigas, M. A., Jester, S. L., King, K. L., Schumacher, M., Abbruzzese, J., DuBois, R. N., Hittelman, W. N., Zimmerman, S., Sherman, J. W. & Kelloff, G. (2000). N. Engl. J. Med. 342, 1946–1952. [DOI] [PubMed]
  15. Thiruvalluvar, A., Subramanyam, M., Kalluraya, B. & Lingappa, B. (2007). Acta Cryst. E63, o3362. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622009245/hb4413sup1.cif

x-07-x220924-sup1.cif (693.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622009245/hb4413Isup2.hkl

x-07-x220924-Isup2.hkl (367.3KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622009245/hb4413Isup3.cml

CCDC reference: 2207948

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES