Skip to main content
IUCrData logoLink to IUCrData
. 2022 Sep 13;7(Pt 9):x220885. doi: 10.1107/S2414314622008859

3-(2,3-Di­meth­oxy­phen­yl)-2,3-di­hydro-1H-benzo[f]chromen-1-one

Jiha Sung a,*
Editor: W T A Harrisonb
PMCID: PMC9635425  PMID: 36337455

The crystal structure of a flavanone is reported in which C—H⋯O hydrogen bonds link the mol­ecules into chains.

Keywords: crystal structure, flavanone, benzochromenone, C—H⋯O hydrogen bonds

Abstract

In the title compound, C21H18O4, the central pyran ring is in an envelope conformation and the dihedral angle between the benzene ring and naphthalene ring system is 88.31 (1)°. The meth­oxy groups at the ortho and meta positions of the benzene ring are tilted to the ring with C—C—O—C torsion angles of 105.9 (4) and 9.5 (5)°, respectively. In the crystal, pairwise C—H⋯O hydrogen bonds form R 2 2(14) inversion dimers, which are linked by another pair of C—H⋯O hydrogen bonds to form [210] chains in the crystal. graphic file with name x-07-x220885-scheme1-3D1.jpg

Structure description

Flavanones exhibit a wide range of biological properties, including anti­viral (Shi et al., 2022), anti­fungal (Emami et al. 2013) and anti­cancer activities (Bailly, 2021; Zhao et al., 2019) as well as being used in the treatment of Alzheimer’s disease (Jin et al., 2021). In continuation of our research into flavanone derivatives (Sung, 2020), the title compound was synthesized and its crystal structure was determined.

The title compound, C21H18O4, was prepared in a two-step reaction. A Claisen–Schmidt condensation reaction between 2,3-dimeth­oxy-benzaldehyde and 2-hy­droxy-1-aceto­naphthone gave the corresponding benzochalcone, which was then used for an intra­molecular Michael addition reaction to provide the desired flavanone (Yong et al. 2014). The mol­ecular structure of the title compound is shown in Fig. 1. The central pyran ring (C1/C2/C3/O2/C12/C21) has an envelope conformation with atom C3 as the flap. C3 is a stereogenic centre: in the arbitrarily chosen asymmetric unit, C3 has an S configuration, but crystal symmetry generates a racemic mixture. The hydrogen atom H3 attached to C3 forms a trans diaxial conformation with atom H2B of the C2 methyl­ene group (H3—C3—C2—H2B = −179.1°) and a gauche conformation with the other H atom attached to C2 (H3—C3—C2—H2A = −60.8°). The meth­oxy group at the meta position of the benzene ring is twisted slightly from the ring [C9—C7—O4—C8 = 9.5 (5)°]. However, the meth­oxy group at the ortho position is significantly distorted from the benzene ring due to steric hindrance with the pyran ring [C4—C5—O3—C6 = 105.9 (4)°]. The C12–C21 naphthalene ring system (r.m.s. deviation = 0.036 Å) and benzene ring (C4/ C5/C7/ C11/C9/C10]; r.m.s. deviation = 0.003 Å) lie almost perpendicular to each other forming a dihedral angle of 88.31 (1)°. In the crystal, pairs of C18—H18⋯O1 hydrogen bonds form an inversion dimer with graph-set notation Inline graphic (14). The dimers are linked by another pair of C13—H13⋯O2 hydrogen bonds to form a [210] chain. (Table 1, Fig. 2).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.95 2.52 3.454 (4) 169
C18—H18⋯O1ii 0.95 2.52 3.452 (4) 166

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 2.

Figure 2

Part of the crystal structure of the title compound, showing the weak C—H⋯O hydrogen bonds forming Inline graphic (14) dimers as yellow lines. An additional pair of inter­molecular hydrogen bonds (blue lines) link the dimers to form a chain.

Synthesis and crystallization

A solution of 2-hy­droxy-1-aceto­naphthone (186 mg, 1 mmol) and 2,3-di­meth­oxy­benzaldehyde (166 mg, 1 mmol) was dissolved in ethanol (15 ml) and the temperature was adjusted to around 276–277 K in an ice bath. To the cooled reaction mixture was added 1.0 ml of 40% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 24 h. This mixture was poured into iced water (50 ml) acidified with 6 N HCl solution. The mixture was extracted with ethyl acetate (3 × 30 ml) and the combined organic layers were dried under MgSO4. Filtration and evaporation of the filtrate gave a solid chalcone, which was dissolved in DMSO and a catalytic amount of conc. HCl was added. After 10 h, the reaction mixture was poured into iced water to give a solid flavanone. Recrystallization from ethanol solution gave the crystals used in this X-ray diffraction study.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C21H18O4
M r 334.35
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 200
a, b, c (Å) 8.3312 (14), 9.6506 (16), 11.797 (2)
α, β, γ (°) 94.261 (4), 107.335 (4), 112.326 (3)
V3) 818.4 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.34 × 0.21 × 0.16
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.969, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 5181, 3202, 2136
R int 0.020
(sin θ/λ)max−1) 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.057, 0.204, 1.13
No. of reflections 3202
No. of parameters 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.38

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS and SHELXTL (Sheldrick, 2008) , SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622008859/hb4411sup1.cif

x-07-x220885-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622008859/hb4411Isup2.hkl

x-07-x220885-Isup2.hkl (157.1KB, hkl)

CCDC reference: 2205278

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C21H18O4 Z = 2
Mr = 334.35 F(000) = 352
Triclinic, P1 Dx = 1.357 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.3312 (14) Å Cell parameters from 2013 reflections
b = 9.6506 (16) Å θ = 2.7–25.9°
c = 11.797 (2) Å µ = 0.09 mm1
α = 94.261 (4)° T = 200 K
β = 107.335 (4)° Block, yellow
γ = 112.326 (3)° 0.34 × 0.21 × 0.16 mm
V = 818.4 (2) Å3

Data collection

Bruker SMART CCD diffractometer 3202 independent reflections
Radiation source: fine-focus sealed tube 2136 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
ω scans θmax = 26.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −10→9
Tmin = 0.969, Tmax = 0.985 k = −11→11
5181 measured reflections l = −14→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.8943P] where P = (Fo2 + 2Fc2)/3
3202 reflections (Δ/σ)max < 0.001
228 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5916 (4) 0.4265 (4) 0.1200 (3) 0.0387 (7)
O1 0.7393 (3) 0.5280 (3) 0.1255 (2) 0.0534 (7)
C2 0.4897 (5) 0.4555 (4) 0.1987 (3) 0.0467 (8)
H2A 0.5804 0.5215 0.2782 0.056*
H2B 0.4162 0.5101 0.1594 0.056*
C3 0.3641 (4) 0.3088 (4) 0.2179 (3) 0.0404 (8)
H3 0.4419 0.2569 0.2588 0.048*
O2 0.2359 (3) 0.2101 (2) 0.10246 (19) 0.0406 (6)
C4 0.2501 (4) 0.3214 (4) 0.2935 (3) 0.0387 (7)
C5 0.2559 (4) 0.2556 (3) 0.3936 (3) 0.0368 (7)
O3 0.3634 (3) 0.1743 (3) 0.4229 (2) 0.0470 (6)
C6 0.5292 (5) 0.2525 (5) 0.5253 (4) 0.0649 (11)
H6A 0.6015 0.3530 0.5121 0.097*
H6B 0.6025 0.1923 0.5364 0.097*
H6C 0.4983 0.2664 0.5979 0.097*
C7 0.1468 (4) 0.2610 (4) 0.4626 (3) 0.0396 (7)
O4 0.1617 (3) 0.1893 (3) 0.5578 (2) 0.0501 (6)
C8 0.0315 (5) 0.1696 (5) 0.6180 (4) 0.0558 (10)
H8A 0.0463 0.2702 0.6546 0.084*
H8B 0.0537 0.1122 0.6816 0.084*
H8C −0.0947 0.1128 0.5590 0.084*
C9 0.0321 (5) 0.3356 (4) 0.4296 (3) 0.0443 (8)
H9 −0.0429 0.3403 0.4753 0.053*
C10 0.0275 (5) 0.4029 (4) 0.3300 (3) 0.0474 (8)
H10 −0.0501 0.4549 0.3083 0.057*
C11 0.1337 (5) 0.3958 (4) 0.2616 (3) 0.0452 (8)
H11 0.1277 0.4416 0.1928 0.054*
C12 0.3185 (4) 0.1820 (4) 0.0248 (3) 0.0366 (7)
C13 0.2063 (4) 0.0489 (4) −0.0672 (3) 0.0425 (8)
H13 0.0818 −0.0104 −0.0740 0.051*
C14 0.2764 (5) 0.0057 (4) −0.1459 (3) 0.0427 (8)
H14 0.1997 −0.0838 −0.2083 0.051*
C15 0.4630 (4) 0.0918 (4) −0.1370 (3) 0.0378 (7)
C16 0.5352 (5) 0.0391 (4) −0.2161 (3) 0.0428 (8)
H16 0.4571 −0.0510 −0.2778 0.051*
C17 0.7169 (5) 0.1166 (4) −0.2048 (3) 0.0482 (9)
H17 0.7653 0.0800 −0.2577 0.058*
C18 0.8306 (5) 0.2500 (4) −0.1150 (3) 0.0474 (9)
H18 0.9572 0.3027 −0.1065 0.057*
C19 0.7633 (5) 0.3060 (4) −0.0389 (3) 0.0438 (8)
H19 0.8427 0.3985 0.0200 0.053*
C20 0.5757 (4) 0.2274 (4) −0.0469 (3) 0.0366 (7)
C21 0.4989 (4) 0.2770 (3) 0.0347 (3) 0.0364 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0354 (17) 0.0354 (16) 0.0444 (18) 0.0114 (14) 0.0171 (14) 0.0101 (14)
O1 0.0415 (14) 0.0415 (13) 0.0690 (17) 0.0044 (11) 0.0286 (13) 0.0005 (12)
C2 0.0425 (19) 0.0418 (18) 0.053 (2) 0.0108 (15) 0.0244 (16) −0.0009 (16)
C3 0.0327 (16) 0.0440 (18) 0.0390 (17) 0.0112 (14) 0.0130 (14) 0.0041 (14)
O2 0.0309 (11) 0.0458 (12) 0.0404 (12) 0.0101 (10) 0.0165 (10) 0.0001 (10)
C4 0.0335 (16) 0.0407 (17) 0.0353 (17) 0.0101 (14) 0.0120 (14) 0.0028 (14)
C5 0.0330 (16) 0.0334 (16) 0.0428 (18) 0.0123 (13) 0.0157 (14) 0.0027 (14)
O3 0.0464 (14) 0.0478 (13) 0.0530 (14) 0.0236 (11) 0.0217 (12) 0.0090 (11)
C6 0.048 (2) 0.087 (3) 0.055 (2) 0.034 (2) 0.0076 (19) 0.006 (2)
C7 0.0399 (18) 0.0389 (17) 0.0393 (17) 0.0124 (15) 0.0198 (15) 0.0042 (14)
O4 0.0556 (15) 0.0598 (15) 0.0489 (14) 0.0277 (13) 0.0312 (12) 0.0186 (12)
C8 0.061 (2) 0.061 (2) 0.056 (2) 0.023 (2) 0.039 (2) 0.0157 (19)
C9 0.0443 (19) 0.0452 (18) 0.0471 (19) 0.0172 (16) 0.0246 (16) 0.0045 (15)
C10 0.0438 (19) 0.050 (2) 0.053 (2) 0.0234 (17) 0.0196 (17) 0.0080 (17)
C11 0.0451 (19) 0.0470 (19) 0.0431 (19) 0.0180 (16) 0.0163 (16) 0.0131 (15)
C12 0.0325 (16) 0.0436 (17) 0.0360 (17) 0.0157 (14) 0.0158 (14) 0.0080 (14)
C13 0.0292 (16) 0.0429 (18) 0.0457 (19) 0.0065 (14) 0.0136 (14) 0.0007 (15)
C14 0.0402 (18) 0.0417 (18) 0.0411 (18) 0.0120 (15) 0.0161 (15) 0.0013 (14)
C15 0.0361 (17) 0.0385 (17) 0.0371 (17) 0.0141 (14) 0.0127 (14) 0.0084 (14)
C16 0.0433 (19) 0.0439 (18) 0.0452 (19) 0.0190 (15) 0.0208 (16) 0.0074 (15)
C17 0.054 (2) 0.050 (2) 0.053 (2) 0.0255 (18) 0.0306 (18) 0.0131 (17)
C18 0.0397 (18) 0.050 (2) 0.061 (2) 0.0178 (16) 0.0294 (17) 0.0189 (17)
C19 0.0370 (18) 0.0438 (18) 0.051 (2) 0.0136 (15) 0.0213 (16) 0.0105 (15)
C20 0.0343 (16) 0.0380 (16) 0.0404 (17) 0.0147 (14) 0.0165 (14) 0.0135 (14)
C21 0.0315 (16) 0.0371 (16) 0.0396 (17) 0.0120 (13) 0.0143 (14) 0.0080 (14)

Geometric parameters (Å, º)

C1—O1 1.227 (4) C8—H8C 0.9800
C1—C21 1.471 (4) C9—C10 1.381 (5)
C1—C2 1.507 (4) C9—H9 0.9500
C2—C3 1.488 (5) C10—C11 1.379 (5)
C2—H2A 0.9900 C10—H10 0.9500
C2—H2B 0.9900 C11—H11 0.9500
C3—O2 1.439 (4) C12—C21 1.394 (4)
C3—C4 1.513 (4) C12—C13 1.406 (4)
C3—H3 1.0000 C13—C14 1.352 (4)
O2—C12 1.366 (3) C13—H13 0.9500
C4—C5 1.379 (4) C14—C15 1.423 (4)
C4—C11 1.396 (5) C14—H14 0.9500
C5—O3 1.389 (4) C15—C20 1.410 (4)
C5—C7 1.400 (4) C15—C16 1.410 (4)
O3—C6 1.419 (4) C16—C17 1.369 (5)
C6—H6A 0.9800 C16—H16 0.9500
C6—H6B 0.9800 C17—C18 1.396 (5)
C6—H6C 0.9800 C17—H17 0.9500
C7—O4 1.362 (4) C18—C19 1.367 (5)
C7—C9 1.388 (5) C18—H18 0.9500
O4—C8 1.428 (4) C19—C20 1.424 (4)
C8—H8A 0.9800 C19—H19 0.9500
C8—H8B 0.9800 C20—C21 1.449 (4)
O1—C1—C21 123.8 (3) C10—C9—C7 119.7 (3)
O1—C1—C2 119.8 (3) C10—C9—H9 120.1
C21—C1—C2 116.4 (3) C7—C9—H9 120.1
C3—C2—C1 110.8 (3) C11—C10—C9 121.1 (3)
C3—C2—H2A 109.5 C11—C10—H10 119.5
C1—C2—H2A 109.5 C9—C10—H10 119.5
C3—C2—H2B 109.5 C10—C11—C4 120.0 (3)
C1—C2—H2B 109.5 C10—C11—H11 120.0
H2A—C2—H2B 108.1 C4—C11—H11 120.0
O2—C3—C2 109.8 (3) O2—C12—C21 123.3 (3)
O2—C3—C4 107.0 (2) O2—C12—C13 114.5 (3)
C2—C3—C4 116.2 (3) C21—C12—C13 122.3 (3)
O2—C3—H3 107.8 C14—C13—C12 119.7 (3)
C2—C3—H3 107.8 C14—C13—H13 120.2
C4—C3—H3 107.8 C12—C13—H13 120.2
C12—O2—C3 114.2 (2) C13—C14—C15 121.3 (3)
C5—C4—C11 118.8 (3) C13—C14—H14 119.4
C5—C4—C3 120.3 (3) C15—C14—H14 119.4
C11—C4—C3 120.9 (3) C20—C15—C16 120.5 (3)
C4—C5—O3 119.6 (3) C20—C15—C14 119.6 (3)
C4—C5—C7 121.4 (3) C16—C15—C14 119.9 (3)
O3—C5—C7 118.9 (3) C17—C16—C15 120.6 (3)
C5—O3—C6 114.0 (3) C17—C16—H16 119.7
O3—C6—H6A 109.5 C15—C16—H16 119.7
O3—C6—H6B 109.5 C16—C17—C18 119.5 (3)
H6A—C6—H6B 109.5 C16—C17—H17 120.2
O3—C6—H6C 109.5 C18—C17—H17 120.2
H6A—C6—H6C 109.5 C19—C18—C17 121.2 (3)
H6B—C6—H6C 109.5 C19—C18—H18 119.4
O4—C7—C9 125.0 (3) C17—C18—H18 119.4
O4—C7—C5 116.0 (3) C18—C19—C20 120.8 (3)
C9—C7—C5 119.0 (3) C18—C19—H19 119.6
C7—O4—C8 117.8 (3) C20—C19—H19 119.6
O4—C8—H8A 109.5 C15—C20—C19 117.4 (3)
O4—C8—H8B 109.5 C15—C20—C21 119.2 (3)
H8A—C8—H8B 109.5 C19—C20—C21 123.4 (3)
O4—C8—H8C 109.5 C12—C21—C20 117.7 (3)
H8A—C8—H8C 109.5 C12—C21—C1 117.6 (3)
H8B—C8—H8C 109.5 C20—C21—C1 124.5 (3)
O1—C1—C2—C3 −156.5 (3) C3—O2—C12—C13 158.7 (3)
C21—C1—C2—C3 26.8 (4) O2—C12—C13—C14 −176.9 (3)
C1—C2—C3—O2 −57.2 (4) C21—C12—C13—C14 3.3 (5)
C1—C2—C3—C4 −178.8 (3) C12—C13—C14—C15 0.6 (5)
C2—C3—O2—C12 55.5 (3) C13—C14—C15—C20 −2.0 (5)
C4—C3—O2—C12 −177.5 (3) C13—C14—C15—C16 176.4 (3)
O2—C3—C4—C5 111.0 (3) C20—C15—C16—C17 1.6 (5)
C2—C3—C4—C5 −125.9 (3) C14—C15—C16—C17 −176.8 (3)
O2—C3—C4—C11 −67.2 (4) C15—C16—C17—C18 −0.8 (5)
C2—C3—C4—C11 55.9 (4) C16—C17—C18—C19 −0.9 (5)
C11—C4—C5—O3 176.6 (3) C17—C18—C19—C20 1.7 (5)
C3—C4—C5—O3 −1.6 (4) C16—C15—C20—C19 −0.8 (5)
C11—C4—C5—C7 0.5 (5) C14—C15—C20—C19 177.6 (3)
C3—C4—C5—C7 −177.7 (3) C16—C15—C20—C21 −178.7 (3)
C4—C5—O3—C6 105.9 (4) C14—C15—C20—C21 −0.3 (5)
C7—C5—O3—C6 −77.9 (4) C18—C19—C20—C15 −0.9 (5)
C4—C5—C7—O4 178.7 (3) C18—C19—C20—C21 177.0 (3)
O3—C5—C7—O4 2.6 (4) O2—C12—C21—C20 174.8 (3)
C4—C5—C7—C9 −0.6 (5) C13—C12—C21—C20 −5.5 (5)
O3—C5—C7—C9 −176.7 (3) O2—C12—C21—C1 −10.3 (5)
C9—C7—O4—C8 9.5 (5) C13—C12—C21—C1 169.4 (3)
C5—C7—O4—C8 −169.8 (3) C15—C20—C21—C12 3.9 (4)
O4—C7—C9—C10 −179.3 (3) C19—C20—C21—C12 −173.9 (3)
C5—C7—C9—C10 0.0 (5) C15—C20—C21—C1 −170.6 (3)
C7—C9—C10—C11 0.7 (5) C19—C20—C21—C1 11.6 (5)
C9—C10—C11—C4 −0.8 (5) O1—C1—C21—C12 −170.1 (3)
C5—C4—C11—C10 0.2 (5) C2—C1—C21—C12 6.4 (4)
C3—C4—C11—C10 178.4 (3) O1—C1—C21—C20 4.4 (5)
C3—O2—C12—C21 −21.5 (4) C2—C1—C21—C20 −179.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13···O2i 0.95 2.52 3.454 (4) 169
C18—H18···O1ii 0.95 2.52 3.452 (4) 166

Symmetry codes: (i) −x, −y, −z; (ii) −x+2, −y+1, −z.

Funding Statement

This work was supported by a Dongduk Women’s University grant.

References

  1. Bailly, C. (2021). Bioorg. Med. Chem. 32, 116001. [DOI] [PubMed]
  2. Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Emami, S., Shojapour, S., Faramarzi, M., Samadi, N. & Irannejad, H. (2013). Eur. J. Med. Chem. 66, 480–488. [DOI] [PubMed]
  4. Jin, X., Guo, J.-L., Wang, L., Zhong, X., Yao, W.-F., Gao, H. & Liu, M.-Y. (2021). Eur. J. Med. Chem. 218, 113401. [DOI] [PubMed]
  5. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  8. Shi, S., Zheng, X., Suzuki, R., Li, Z., Shiota, T., Wang, J., Hirai-Yuki, A., Liu, Q., Muramatsu, M. & Song, S.-J. (2022). Eur. J. Med. Chem. 238, 114452. [DOI] [PubMed]
  9. Sung, J. (2020). IUCrData, 5, x201209. [DOI] [PMC free article] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  11. Yong, Y., Shin, S. Y., Hwang, D., Ahn, S., Koh, D. & Lim, Y. (2014). J. Korean Soc. Appl. Biol. Chem. 57, 561–564.
  12. Zhao, L., Yuan, X., Wang, J., Feng, Y., Ji, F., Li, Z. & Bian, J. (2019). Bioorg. Med. Chem. 27, 677–685. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622008859/hb4411sup1.cif

x-07-x220885-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622008859/hb4411Isup2.hkl

x-07-x220885-Isup2.hkl (157.1KB, hkl)

CCDC reference: 2205278

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES